Skip to main content
Log in

Melt synthesis and characterization of synthetic Mn-rich tainiolite

  • Published:
Clays and Clay Minerals

Abstract

Large transition-metal contents add desirable physical properties, such as redox reactivity, magnetism, and electric or ionic conductivity to micas and make them interesting for a variety of materials-science applications. A Mn- and F-rich tainiolite mica, \({\rm{Cs}}\left( {{\rm{Mn}}_2^{2 + }{\rm{Li}}} \right){\rm{S}}{{\rm{i}}_4}{{\rm{O}}_{10}}{{\rm{F}}_2}\), was synthesized by a high-temperature melt-synthesis technique. Subsequent annealing for 10 days led to a single-phase and coarsegrained material. Single-crystal X-ray diffraction studies were performed and characteristic geometric parameters were compared to the analogous ferrous compound, synthetic Fe-rich tainiolite, \({\rm{Cs}}\left( {{\rm{Fe}}_2^{2 + }{\rm{Li}}} \right){\rm{S}}{{\rm{i}}_4}{{\rm{O}}_{10}}{{\rm{F}}_2}\). Both tainiolite structures are outside the compositional stability limits for the 2:1 layer structure, and incorporating the relatively large cation Mn2+ requires significant structural adjustments in both the octahedral and tetrahedral sheets. As expected, increasing the ionic radius of the octahedral cation from 0.78 Å (VIFe2+) to 0.83 Å (VIMn2+) reduces the octahedral flattening angle from <Ψ> = 57.05° to <Ψ> = 56.4°, the smallest value ever observed for a tetrasilicic mica. However, even this small <Ψ> value is insufficient to match the lateral sizes of the tetrahedral and octahedral sheets and, in addition, unusual structural adjustments in the tetrahedral sheet are required. The average tetrahedral bond length <T—O> is much greater (1.643 Å) than the average value observed for tetrasilicic micas (1.607 Å,) and a significant difference between the <T—O>apical (1.605 Å) and the <T—O>basal bond lengths (1.656 Å) and an enlarged basal flattening angle (τbasal = 106.29°) are noted. These parameters indicate: (1) that the 2:1 layer might be more flexible than previously thought, to allow matching of the lateral dimensions of the tetrahedral and octahedral sheets; and (2) that many other compositions that appear interesting from a materials-science point of view might be accessible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baumgartner, A., Sattler, K., Thun, J., and Breu, J. (2008) A route to microporous materials through oxidative pillaring of micas. Angewandte Chemie-International Edition, 47, 1640–1644.

    Article  Google Scholar 

  • Breu, J., Seidl, W., Stoll, A.J., Lange, K.G., and Probst, T.U. (2001) Charge homogeneity in synthetic fluorohectorite. Chemistry of Materials, 13, 4213–4220.

    Article  Google Scholar 

  • Brigatti, M.F. and Guggenheim, S. (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. 1–97 in: Micas: Crystal Chemistry & Metamorphic Petrology (A. Mottana, F.P. Sassi, J.B. Thompson Jr., and S. Guggenheim, editors). Reviews in Mineralogy & Geochemistry, 46. Mineralogical Society of America and the Geochemical Society, Washington, DC.

    Google Scholar 

  • Coelho, A.A. (2003) TOPAS User’s Manual, Version 3.1, Bruker AXS, GmbH, Karlsruhe, Germany.

    Google Scholar 

  • Comodi, P., Zanazzi, P.F., Weiss, Z., Rieder, M., and Drabek, M. (1999) “Cs-tetra-ferri-annite”: High-pressure and high-temperature behavior of a potential nuclear waste disposal phase. American Mineralogist, 84, 325–332.

    Article  Google Scholar 

  • Donnay, G., Takeda, H., and Donnay, J.D.H. (1964) Trioctahedral 1-layer micas. II. Prediction of structure from composition and cell dimensions. Acta Crystallographica, 17, 1374–1381.

    Article  Google Scholar 

  • Eggleton, R.A. and Ashley, P.M. (1989) Norrishite, a new manganese mica, \({\rm{K}}\left( {{\rm{Mn}}_2^{3 + }{\rm{Li}}} \right){\rm{S}}{{\rm{i}}_4}{{\rm{O}}_{12}}\), from the Hoskins Mine, New South Wales, Australia. American Mineralogist, 74, 1360–1367.

    Google Scholar 

  • Fleet, M.E. (2003) Rock-Forming Minerals Vol. 3A — Micas. The Geological Society, London.

    Google Scholar 

  • Gnos, E., Armbruster, T., and Villa, I.M. (2003) Norrishite, \({\rm{K}}\left( {{\rm{Mn}}_2^{3 + }{\rm{Li}}} \right){\rm{S}}{{\rm{i}}_4}{{\rm{O}}_{10}}{\left( {\rm{O}} \right)_2}\), an oxymica associated with sugilite from the Wessels Mine, South Africa: Crystal chemistry and Ar-40-Ar-39 dating. American Mineralogist, 88, 189–194.

    Article  Google Scholar 

  • Guggenheim, S. and Eggleton, R.A. (1987) Modulated 2–1 layer silicates — review, systematics, and predictions. American Mineralogist, 72, 724–738.

    Google Scholar 

  • Gunther, D., Frischknecht, R., Heinrich, C.A., and Kahlert, H.J. (1997) Capabilities of an argon fluoride 193 nm excimer laser for laser ablation inductively coupled plasma mass spectrometry microanalysis of geological materials. Journal of Analytical Atomic Spectrometry, 12, 939–944.

    Article  Google Scholar 

  • Hazen, R.M. and Wones, D.R. (1972) Effect of cation substitutions on physical properties of trioctahedral micas. American Mineralogist, 57, 103–129.

    Google Scholar 

  • Hazen, R.M. and Wones, D.R. (1978) Predicted and observed compositional limits of trioctahedral micas. American Mineralogist, 63, 885–892.

    Google Scholar 

  • Higashi, S., Miki, H., and Komarneni, S. (2007) Mn-smectites: Hydrothermal synthesis and characterization. Applied Clay Science, 38, 104–112.

    Article  Google Scholar 

  • Ihara, Y. and Kitajima, K. (1997) Synthesis and properties of Co2+-substituted tetrasilicic fluorine micas. Journal of the Ceramic Society of Japan, 105, 881–885.

    Article  Google Scholar 

  • Ishida, K., Hawthorne, F.C., and Hirowatari, F. (2004) Shirozulite, \({\rm{KMn}}_3^{2 + }\left( {{\rm{S}}{{\rm{i}}_3}{\rm{Al}}} \right){{\rm{O}}_{10}}{\left( {{\rm{OH}}} \right)_2}\), a new manganese-dominant trioctahedral mica: Description and crystal structure. American Mineralogist, 89, 232–238.

    Article  Google Scholar 

  • Kitajima, K., Ihara, Y., and Takusagawa, N. (1995) Synthesis and properties of Ni2+-substituted tetrasilicic fluorine micas. Journal of the Ceramic Society of Japan, 103, 1057–1062.

    Article  Google Scholar 

  • Longerich, H.P., Jackson, S.E., and Gunther, D. (1996) Laser ablation inductively coupled plasma mass spectrometric transient signal data acquisition and analyte concentration calculation. Journal of Analytical Atomic Spectrometry, 11, 899–904.

    Article  Google Scholar 

  • Mariychuk, R., Baumgartner A., Wagner, F.E., Lerf, A., Dubbe, A., and Breu, J. (2007) Synthesis, structure, and electric conductivity of ferrous tainiolite and its oxidative conversion into coarse-grained swellable smectite. Chemistry of Materials, 19, 5377–5387.

    Article  Google Scholar 

  • Mercier, P.H.J., Rancourt, D.G., Redhammer, G.J., Lalonde, A.E., Robert, J.L., Berman, R.G., and Kodama, H. (2006) Upper limit of the tetrahedral rotation angle and factors affecting octahedral flattening in synthetic and natural 1M polytype C2/m space group micas. American Mineralogist, 91, 831–849.

    Article  Google Scholar 

  • Rancourt, D.G., Mercier, P.H.J., Cherniak, D.J., Desgreniers, S., Kodama, H., Robert, J.L., and Murad, E. (2001) Mechanisms and crystal chemistry of oxidation in annite: Resolving the hydrogen-loss and vacancy reactions. Clays and Clay Minerals, 49, 455–491.

    Article  Google Scholar 

  • Redhammer, G.J., Amthauer, G., Lottermoser, W., Bernroider, M., Tippelt, G., and Roth, G. (2005) X-ray powder diffraction and Fe-57-Mössbauer spectroscopy of synthetic trioctahedral micas {K}[Me3](TSi3)O10(OH)2, Me = Ni2+, Mg2+, Co2+, Fe2+; T = Al3+, Fe3+. Mineralogy and Petrology, 85, 89–115.

    Article  Google Scholar 

  • Ruscher, C.H. and Gall, S. (1995) On the polaron-mechanism in iron-bearing trioctahedral phyllosilicates — An investigation of the electrical and optical properties. Physics and Chemistry of Minerals, 22, 468–478.

    Article  Google Scholar 

  • Ruscher, C.H. and Gall, S. (1997) Dielectric properties of iron-bearing trioctahedral phyllosilicates. Physics and Chemistry of Minerals, 24, 365–373.

    Article  Google Scholar 

  • Shannon, R.D. (1976) Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A — Foundations of Crystallography, 32, 751–767.

    Article  Google Scholar 

  • Tischendorf, G., Forster, H.J., Gottesmann, B., and Rieder, M. (2007) True and brittle micas: composition and solid-solution series. Mineralogical Magazine, 71, 285–320.

    Article  Google Scholar 

  • Tsapatsis, M. and Maheshwari, S. (2008) Pores by pillaring: Not always a maze. Angewandte Chemie — international edition, 47, 4262–4263.

    Article  Google Scholar 

  • Tyrna, P.L. and Guggenheim, S. (1991) The crystal structure of norrishite, \({\rm{KLiMn}}_2^{3 + }{\rm{S}}{{\rm{i}}_4}{{\rm{O}}_{12}}{\rm{:}}\) n oxygen-rich mica. American Mineralogist, 76, 266–271.

    Google Scholar 

  • Weiss, Z., Rieder, M., and Chmielova, M. (1992) Deformation of coordination polyhedra and their sheets in phyllosilicates. European Journal of Mineralogy, 4, 665–682.

    Article  Google Scholar 

  • Weiss, Z., Rieder, M., Chmielova, M., and Krajicek, J. (1985) Geometry of the octahedral coordination in micas — A review of refined structures. American Mineralogist, 70, 747–757.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Breu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baumgartner, A., Butterhof, C., Koch, S. et al. Melt synthesis and characterization of synthetic Mn-rich tainiolite. Clays Clay Miner. 57, 271–277 (2009). https://doi.org/10.1346/CCMN.2009.0570213

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.2009.0570213

Key Words

Navigation