Skip to main content
Log in

Composition and Crystalline Structure of Ternary Phases in the Ta–Ni–Al System

  • PHYSICAL METALLURGY AND HEAT TREATMENT
  • Published:
Russian Journal of Non-Ferrous Metals Aims and scope Submit manuscript

Abstract

The composition and crystal structure of compounds produced by self-propagating high-temperature synthesis (SHS) from the 5Ta–2Ni–3Al (at %) powder mixture followed by vacuum remelting at 3000°C are studied. The SHS product contains the following phases: TaNiAl (Laves τ1 phase), NiAl, Ni2Al3, and Ta. Its microstructure includes Ta85Ni7Al8, Ta52Ni20Al28, and Ta53Ni25Al22 ternary phases according to elemental analysis data. Reflections belonging to no known ternary phases in the Ta–Ni–Al system under consideration are revealed in the X-ray diffraction pattern of the remelted material. Based on the homological approach, it is found that these reflections belong to three phases with the structural types W6Fe7 (\(R\bar {3}m\)), Ti2Ni (\(Fd\bar {3}m\)), and Ta3Al (\({{P{{4}_{2}}} \mathord{\left/ {\vphantom {{P{{4}_{2}}} {mnm}}} \right. \kern-0em} {mnm}}\)). They are identified as reflections of three compounds, Ta6.5Ni6.5, Ti2Ni, and Ta2.84Al0.91, with unit-cell parameters differing from these for the same compounds with the conservation of the structural type. An increase in the unit-cell parameters of all revealed phases is noted when compared with known binary intermetallic compounds. This can be associated with the presence of Al atoms in the crystal lattice from the Ta6.5Ni6.5 phase and Al and Ta atoms in the phase with the Ti2Ni structural type. Phases Ta6.5Ni6.5 and Ti2Ni phases are identified as Ta6Ni6Al and Ta2Ni0.5Al0.5 by X-ray structural analysis and crystal-chemical modeling, and their structural type, composition, and unit-cell parameters are determined. The structure and composition are refined by the full-profile analysis, and the unit-cell parameters of the phases and their quantitative ratio in the material are determined. The phase composition of the material is as follows, wt %: 47 Ta6Ni6Al, 16 Ta2Ni0.5Al0.5, and 37 Ta3Al.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. Raghavan, V., Al–Ni–Ta (aluminum–nickel–tantalum), J. Phase Equilib. Diffus., 2006, vol. 27, no. 4, pp. 405–407. https://doi.org/10.1007/s11669-006-0016-0

    Article  CAS  Google Scholar 

  2. da Rocha, F.S., Fraga, G.L.F., Brandão, D.E., Da Silva, C.M., and Gomes, A.A., Specific heat and electronic structure of Heusler compounds Ni2TAl (T = Ti, Zr, Hf, V, Nb, Ta), Phys. B (Amsterdam, Neth.), 1999, vol. 269, no. 2, pp. 154–162. https://doi.org/10.1016/S0921-4526(99)00102-7

  3. Zhou, S., Chen, L.Q., MacKay, R.A., and Liu, Z.K. Evaluation of the thermodynamic properties and phase equilibria of the ordered γ' and disordered γ phases in the Ni-Al-Ta system, MRS Proc., 2002, vol. 755, pp. 443–450. https://doi.org/10.1557/PROC-755-DD11.25

  4. Subramanian, P.R., Miracle, D.B., and Mazdiyasni, S., Phase relationships in the Al–Ta system, Metall. Trans. A, 1990, vol. 21, no. 2, pp. 539–545. https://doi.org/10.1007/BF02671926

    Article  Google Scholar 

  5. Miura, S., Hong, Y.M., Suzuki, T., and Mishima, Y., Liquidus and solidus temperatures of Ni-solid solution in Ni–Al–X (X: V, Nb and Ta) ternary systems, J. Phase Equilib. Diffus., 2001, vol. 22, no. 3, pp. 345–351. https://doi.org/10.1361/105497101770338860

    Article  CAS  Google Scholar 

  6. Johnson, D.R. and Oliver, B.F., Ternary peritectic solidification in the NiAl–Ni2AlTa–NiAlTa system, Mater. Lett., 1994, vol. 20, nos. 3–4, pp. 129–133. https://doi.org/10.1016/0167-577X(94)90074-4

    Article  CAS  Google Scholar 

  7. Zakharov, A., Aluminium-nickel-tantalum, in Ternary Alloys: A Comprehensive Compendium of Evaluated Constitutional Data and Phase Diagrams: AlMgSe to AlNiTa, New York: Wiley-VCH, 1992, vol. 7, pp. 483–497.

    Google Scholar 

  8. Villars, P., Prince, A., and Okamoto, H., AlNiTa. Handbook of Ternary Alloy Phase Diagrams, Materials Park, OH: ASM Int., 1995, vol. 4, pp. 4186–4192.

    Google Scholar 

  9. Kuznetsov, V., Al–Ni–Ta (aluminium–nickel–tantalum), in Light Metal Systems, part 3 of Landolt-Börnstein—Group IV Physical Chemistry, Berlin, Heidelberg: Springer, 2005, vol. 11A3, pp. 425–439. https://doi.org/10.1007/10915998_33

  10. Palm, M., Sanders, W., and Sauthoff, G., Phase equilibria in the Ni–Al–Ta system, Z. Metallkd., 1996, vol. 87, no. 5, pp. 390–398.

    CAS  Google Scholar 

  11. Shchukin, A.S. Vrel, D., and Sytschev A.E, Interaction of NiAl intermetallic during SHS synthesis with Ta substrate, Adv. Eng. Mater., 2018, vol. 20, no. 8, p. 1701077. https://doi.org/10.1002/adem.20170107

    Article  Google Scholar 

  12. Shchukin, A.S., Kovalev, D.Yu., Sytschev, A.E., and Shcherbakov, A.V., Formation of new intermetallic phases in the Ta–Ni–Al system, Perspekt. Mater., 2019, no. 10, pp. 5–13. https://doi.org/10.30791/1028-978X-2019-10-5-13

  13. Macrae, C.F., Bruno, I.J., Chisholm, J.A., Edgington, P.R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., and Wood, P.A., Mercury CSD 2.0—New features for the visualization and investigation of crystal structures, J. Appl. Crystallogr., 2008, vol. 41, no. 2, pp. 466–470. https://doi.org/10.1107/S0021889807067908

    Article  CAS  Google Scholar 

  14. Zeumert, B. and Sauthoff, G., Intermetallic NiAl–Ta alloys with strengthening Laves phase for high-temperature applications, I. Basic properties, Intermetallics, 1997, vol. 5, no. 7, pp. 563–577. https://doi.org/10.1016/S0966-9795(97)00031-9

    Article  Google Scholar 

  15. Kripyakevich, P.I., Gladyshevskii, E.I., and Pylaeva, E.N., W6Fe7 compounds in Ta–Ni and Nb–Ni systems, Kristallografiya, 1962, vol. 7, no. 2, pp. 212–216

    CAS  Google Scholar 

  16. Yurko, G.A., Barton, J.W., and Parr, J.G., The crystal structure Ti2Ni, Acta Crystallogr., 1959, vol. 12, no. 11, pp. 909–911. https://doi.org/10.1107/S0365110X59002559

    Article  CAS  Google Scholar 

  17. Edshammar, Lars-Erik and Holmberg, B., The σ-phase Ta2Al, Acta Chem. Scand., 1960, vol. 14, no. 5, pp. 1219–1220. https://doi.org/10.3891/acta.chem.scand.14-1219

  18. Boulineau, A., Joubert, J.M., and Cerny, R., Structural characterization of the Ta-rich part of the Ta–Al system, J. Solid State Chem., 2006, vol. 179, no. 11, pp. 3385–3393. https://doi.org/10.1016/j.jssc.2006.07.001

    Article  CAS  Google Scholar 

  19. Batsanov, S.S., Strukturnaya khimiya. Fakty i zavisimosti (Structural Chemistry. Facts and Dependencies), Moscow: Dialog-MGU, 2000.

  20. Novotny, H., Bruki, C., and Benesovsky, F., Untersuchungen in den systemen tantal–aluminium–silicium und wolfram–aluminium–silicium, Monatsh. Chem., 1961, vol. 92, no. 1, pp. 116–127.

    Article  Google Scholar 

  21. Bilic, A., Gale, J.D., Gibson, M.A., Wilson, N., and McGregor, K., Prediction of novel alloy phases of Al with Sc or Ta, Sci. Rep., 2015, vol. 5, p. 9909. https://doi.org/10.1038/step9909

    Article  CAS  Google Scholar 

  22. McCusker, L.B., Von Dreele, R.B., Cox, D.E., Louër, D., and Scardi, P., Rietveld refinement guidelines, J. Appl. Crystallogr., 1999, vol. 32, no. 1, pp. 36–50. https://doi.org/10.1107/S0021889898009856

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. S. Shchukin, S. V. Konovalikhin, D. Yu. Kovalev or A. E. Sytschev.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by N. Korovin

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shchukin, A.S., Konovalikhin, S.V., Kovalev, D.Y. et al. Composition and Crystalline Structure of Ternary Phases in the Ta–Ni–Al System. Russ. J. Non-ferrous Metals 61, 303–308 (2020). https://doi.org/10.3103/S1067821220030141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1067821220030141

Keywords:

Navigation