Skip to main content
Log in

X-ray powder diffraction and 57Fe – Mössbauer spectroscopy of synthetic trioctahedral micas {K}[Me3]\(\langle\)TSi3\(\rangle\)O10(OH)2, Me = Ni2+, Mg2+, Co2+, Fe2+; T = Al3+, Fe3+

  • Published:
Mineralogy and Petrology Aims and scope Submit manuscript

Summary

Trioctahedral 1 M micas have been synthesized along (pseudo)binary joins using hydrothermal techniques and controlled oxygen fugacities. Octahedrally coordinated iron in annite {K}[Fe3]\(\langle\)AlSi3\(\rangle\)O10(OH)2 was successively replaced by Co2+, Mg2+ and Ni2+ and tetrahedrally coordinated aluminum by Fe3+. Unit cell parameters decrease almost linearly with decreasing average radius of the octahedral cation/average M–O bond length within the octahedral sheet. With increasing substitution of Fe2+ the octahedral sheet becomes more flattened, the ditrigonal distortion of the tetrahedral sheet increases up to a maximum value of ≈10° for micas with tetrahedral sheet compositions close to \(\langle\)AlSi3\(\rangle\) and up to ≈14° for those containing a \(\langle\)FeSi3\(\rangle\) tetrahedral sheet. All iron-bearing samples were studied by 57Fe Mössbauer spectroscopy. With increasing substitution of iron by smaller divalent cations the quadrupole splitting distribution (QSD) evolves from a broad bimodal distribution in annite to a smaller unimodal distribution in Mg2+ and Ni2+-rich samples so that for high substitution rates more regular local environments are dominating. These results, however, can not be interpreted in terms of an octahedral cation ordering scheme. For none of the micas investigated reliable Fe2+ M2/M1 area ratios can be extracted. fMoreover, the complete QSD is shifted towards higher quadrupole splitting values. Similar observations were obtained for substituting Fe2+ by Mg2+ and Ni2+ in tetra-ferri-annite free of octahedral coordinated trivalent cations. Unlike in the Al3+ bearing micas a third QSD component is missing which supports the claim that the appearance of this third QSD component is closely related to the presence of trivalent cations (Al3+, Fe3+) in octahedra coordination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • H Annersten (1974) ArticleTitleMössbauer studies of natural biotites. Am Mineral 59 143–151

    Google Scholar 

  • B Boukili F Holtz J-M Beny A Abdelouafi S Niazi (2003) ArticleTitleInfrared spectra of annite in the interlayer and lattice vibrational range. Schweiz Mineral Petrogr Mitt 83 33–46

    Google Scholar 

  • MF Brigatti P Davoli (1990) ArticleTitleCrystal-structure refinements of 1 M plutonic biotites. Am Mineral 75 305–313

    Google Scholar 

  • Brigatti MF, Guggenheim S (2002) Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In: Mottana A, Sassi FP, Thompson JB, Guggenheim S (eds) (2002) Micas: crystal chemistry and metamorphic petrology. Rev Mineral Geochem 46: 1–97

  • MF Brigatti L Medici L Poppi (1996) ArticleTitleRefinement of the structure of natural ferriphlogopite. Clay Clay Mineral 44 540–545

    Google Scholar 

  • MF Brigatti P Frigieri C Ghezzo L Poppi (2000) ArticleTitleCrystal chemistry of Al-rich biotites coexisting with muscovite in peraluminous granites. Am Mineral 85 436–448

    Google Scholar 

  • E Dachs (1994) ArticleTitleAnnite stability revised. 1. Hydrogen sensor data for the reaction annite = sanidine + magnetite + H2. Contrib Mineral Petrol 117 229–240 Occurrence Handle10.1007/BF00310865

    Article  Google Scholar 

  • G Donnay JDH Donnay H Takeda (1964) ArticleTitleTrioctahedral one layer micas. II. Prediction of the structure from composition and cell dimensions. Acta Cryst 17 1374–1381 Occurrence Handle10.1107/S0365110X64003462

    Article  Google Scholar 

  • E Dowtey DH Lindsley (1973) ArticleTitleMössbauer spectra of synthetic hedenbergite – ferrosilite pyroxenes. Am Mineral 58 850–868

    Google Scholar 

  • MD Dyar (1990) ArticleTitleMössbauer spectra of biotites from metapelites. Am Mineral 75 656–666

    Google Scholar 

  • MD Dyar (1993) ArticleTitleMössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas – Discussion. Am Mineral 78 665–668

    Google Scholar 

  • Dyar MD (2002) Optical and Mössbauer spectroscopy of iron in micas. In: Mottana A, Sassi FP, Thompson JB, Guggenheim S (eds) (2002) Micas: crystal chemistry and metamorphic petrology. Rev Mineral Geochem 46: 311–350

  • MD Dyar R Burns (1986) ArticleTitleMössbauer spectral study of ferruginous one-layer trioctahedral micas. Am Mineral 71 955–965

    Google Scholar 

  • H Eugster DR Wones (1962) ArticleTitleStability relations of the ferruginous biotite, annite. J Petrol 3 82–125

    Google Scholar 

  • J Evans DG Rancourt M Grodzicki (2005) ArticleTitleHyperfine electric field gradients and local distortion environments of octahedrally co-ordinated Fe2+. Am Mineral 90 187–198 Occurrence Handle10.2138/am.2005.1441

    Article  Google Scholar 

  • M Grodzicki S Heuss-Assbichler G Amthauer (2001) ArticleTitleMössbauer investigations and molecular orbital calculations on epidote. Phys Chem Mineral 28 675–681 Occurrence Handle10.1007/s002690100150

    Article  Google Scholar 

  • RM Hazen CW Burnham (1973) ArticleTitleThe crystal structure of one-layer phlogopite and annite. Am Mineral 58 889–900

    Google Scholar 

  • RM Hazen DR Wones (1972) ArticleTitleThe effect of cationic substitutions on the physical properties of trioctahedral micas. Am Mineral 57 103–129

    Google Scholar 

  • R Ingalls (1964) ArticleTitleElectric-field gradient tensor in ferrous compounds. Phys Rev 133 A787–A795 Occurrence Handle10.1103/PhysRev.133.A787

    Article  Google Scholar 

  • A Lougear M Grodzicki C Bertoldi AX Trautwein K Steiner G Amthauer (2000) ArticleTitleMössbauer and molecular orbital study of chlorites. Phys Chem Mineral 27 258–269 Occurrence Handle10.1007/s002690050255

    Article  Google Scholar 

  • Mercier PHJ (1996) An 57Fe Mössbauer spectroscopy study of the effects of different equilibration temperatures and oxygen buffers on the Fe2+ and Fe3+ site populations in the synthetic annite mica. Thesis, University of Ottawa, 141 pp

  • Mercier PHJ, Rancourt DG, Berman RG (1996) Aspects of the crystal chemistry of annite mica. In: Ortalli I (ed) Italian Physical Society: Conference Proceedings vol 50. International Conference on the Application of the Mössbauer Effect, ICAME-95, Rimini, pp 789–792

  • PHJ Mercier RJ Evans DG Rancourt (2005a) ArticleTitleGeometric crystal chemical models for structural analysis of micas and their stacking polytypes. Am Mineral 90 382–398 Occurrence Handle10.2138/am.2005.1608

    Article  Google Scholar 

  • PHJ Mercier DG Rancourt JL Robert RG Berman GJ Redhammer (2005b) ArticleTitleFundamental difference between synthetic powder and natural or synthetic single-crystal 1 M micas: geometric homo-octahedral vs. geometric meso-octahedral sheets. Am Mineral 90 399–410 Occurrence Handle10.2138/am.2005.1609

    Article  Google Scholar 

  • RM Mineeva (1978) ArticleTitleRelationship between Mössbauer spectra and defect structure in biotites from electric field gradient calculations. Phys Chem Mineral 2 267–277 Occurrence Handle10.1007/BF00308178

    Article  Google Scholar 

  • JY Ping DG Rancourt ZM Stadnik (1991) ArticleTitleVoigt-based methods for arbitrary-shape quadrupole splitting distributions (QSD’s) applied to quasi-crystals. Hyperfine Interactions 69 493–496

    Google Scholar 

  • DG Rancourt (1989) ArticleTitleAccurate site populations from Mössbauer spectroscopy. Nucl Inst Meth Phys Res B (NIMB) 44 199–210 Occurrence Handle10.1016/0168-583X(89)90428-X

    Article  Google Scholar 

  • DG Rancourt (1993) ArticleTitleMössbauer spectroscopy of tetrahedral Fe3+ in trioctahedral micas – Reply. Am Mineral 78 669–671

    Google Scholar 

  • DG Rancourt (1994a) ArticleTitleMössbauer spectroscopy of minerals. I. Inadequacy of Lorentzian-line doublets in fitting spectra arising from quadrupole splitting distributions. Phys Chem Mineral 21 244–249

    Google Scholar 

  • DG Rancourt (1994b) ArticleTitleMössbauer spectra of minerals. II. Problem of resolving cis and trans octahedral Fe2+ sites. Phys Chem Mineral 21 250–257

    Google Scholar 

  • DG Rancourt (1998) ArticleTitleMössbauer spectroscopy in clay science. Hyperfine Interactions 117 3–38 Occurrence Handle10.1023/A:1012651628508

    Article  Google Scholar 

  • DG Rancourt JY Ping (1991) ArticleTitleVoigt-based methods for arbitrary-shape static hyperfine parameter distribution in Mössbauer spectroscopy. Nucl Instr Meth Phys Res B 58 85–97 Occurrence Handle10.1016/0168-583X(91)95681-3

    Article  Google Scholar 

  • DG Rancourt AM McDonald AE Lalonde JY Ping (1993) ArticleTitleMössbauer absorber thickness for accurate site populations in Fe-bearing minerals. Am Mineral 78 1–7

    Google Scholar 

  • DG Rancourt JY Ping RG Berman (1994a) ArticleTitleMössbauer spectroscopy of minerals. III. Octahedral-site Fe2+ quadrupole splitting distributions in layer silicates. Phys Chem Mineral 21 258–267

    Google Scholar 

  • DG Rancourt IAD Christie M Royer H Kodama JL Robert AE Lalonde E Murad (1994b) ArticleTitleDetermination of accurate [4]Fe3+, [6]Fe2+ and [6]Fe2+ site populations in synthetic annite by Mössbauer spectroscopy. Am Mineral 79 51–62

    Google Scholar 

  • DG Rancourt JY Ping B Boukili JL Robert (1996) ArticleTitleOctahedral-site Fe2+ quadrupole splitting distributions from Mössbauer spectroscopy along (OH, F)-annite join. Phys Chem Mineral 23 63–71

    Google Scholar 

  • DG Rancourt HPJ Mercier DG Cherniak S Desgreniers H Kodama JL Robert E Murad (2001) ArticleTitleMechanisms and crystal chemistry of oxidation in annite: resolving the hydrogen-loss and vacancy reaction. Clays Clay Mineral 49 455–491

    Google Scholar 

  • Redhammer GJ (1992) Mössbauer und Röntgenbeugungsuntersuchungen an natürlichen und synthetischen Glimmern der Mischreihe Phlogopit KMg3AlSi3O10(OH)2 – Annit KMg3AlSi3O10(OH)2. Thesis, University of Salzburg, 117 pp

  • Redhammer GJ (1998) Mössbauer spectroscopy of synthetic trioctahedral micas. In: Rancourt DG (ed) Mössbauer spectroscopy in clay science. Hyperfine Interactions 117: 85–115

  • Redhammer GJ (2001) Kontrollierte chemische Substitutionen in ausgewählten Ketten- und Schichtsilikaten: Beiträge von Mößbauerspektroskopie und Einkristall – Röntgenbeugung zu Kristallstruktur, Kristallchemie und Magnetismus von Glimmern und Klinopyroxenen. Thesis, Rheinsch – Westfälische Technische Hochschule (RWTH) Aachen, Germany, 335 pp (in German)

  • GJ Redhammer A Beran E Dachs G Amthauer (1993) ArticleTitleA Mössbauer and X-ray diffraction study of annites synthesized at different oxygen fugacities and crystal chemical implications. Phys Chem Mineral 20 382–394

    Google Scholar 

  • GJ Redhammer E Dachs G Amthauer (1995) ArticleTitleMössbauer spectroscopic and X-ray powder diffraction studies of synthetic micas on the join Annite KFe3AlSi3O10(OH)2– Phlogopite KMg3AlSi3O10(OH)2. Phys Chem Mineral 22 282–294

    Google Scholar 

  • GJ Redhammer A Beran J Schneider G Amthauer W Lottermoser (2000) ArticleTitleSpectroscopic and structural properties of synthetic micas on the annite–siderophyllite binary {K}[Fe2+3]\(\langle\)AlSi3\(\rangle\)O10(OH)2 – {K}[Fe2+2Al]\(\langle\)Al2Si2\(\rangle\)O10(OH)2. Am Mineral 85 449–465

    Google Scholar 

  • GJ Redhammer G Amthauer W Lottermoser G Roth (2002) ArticleTitleQuadrupole splitting distribution of Fe2+ in synthetic trioctahedral micas. Hyperfine Interactions 141/142 345–349 Occurrence Handle10.1023/A:1021224019074

    Article  Google Scholar 

  • GJ Redhammer G Roth (2002) ArticleTitleSingle-crystal structure refinement and crystal chemistry of synthetic trioctahedral micas KMe3(Al3+,Si4+)4O10(OH)2, where M = Ni2+, Mg2+, Co2+, Fe2+ or Al3+. Am Mineral 87 1464–1476

    Google Scholar 

  • Rodrigues-Carvajal J (2001) Recent developments of the program FULLPROF. CPD Newsletter 26: 12–19; http://www.iucr.org/iucr-top/comm/cpd/Newsletters/

  • RD Shannon CT Prewitt (1969) ArticleTitleEffective ionic radii in oxides and fluorides. Acta Cryst B 25 925–934 Occurrence Handle10.1107/S0567740869003220

    Article  Google Scholar 

  • RD Shannon (1970) ArticleTitleRevised values of effective ionic radii. Acta Cryst B 26 1046–1048 Occurrence Handle10.1107/S0567740870003576

    Article  Google Scholar 

  • Z Weiss M Rieder (1985) ArticleTitleGeometry of the octahedral coordination in micas: a review of refined structures. Am Mineral 70 747–757

    Google Scholar 

  • DR Wones (1965) ArticleTitlePhase equilibria of “ferriannite” Kfe2+3Fe3+Si3O10(OH)2. Am J Sci 261 581–596

    Google Scholar 

  • DR Wones HP Eugster (1965) ArticleTitleStability of biotite: experiment, theory, and application. Am Mineral 59 1228–1272

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redhammer, G., Amthauer, G., Lottermoser, W. et al. X-ray powder diffraction and 57Fe – Mössbauer spectroscopy of synthetic trioctahedral micas {K}[Me3]\(\langle\)TSi3\(\rangle\)O10(OH)2, Me = Ni2+, Mg2+, Co2+, Fe2+; T = Al3+, Fe3+. Mineralogy and Petrology 85, 89–115 (2005). https://doi.org/10.1007/s00710-005-0096-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00710-005-0096-2

Keywords

Navigation