Skip to main content
Log in

Equilibrium Modeling of Clinoptilolite-Analcime Equilibria at Yucca Mountain, Nevada, USA

  • Published:
Clays and Clay Minerals

Abstract

Yucca Mountain, Nevada, is being investigated to determine its suitability to host a potential high-level radioactive waste respository. An important reason for its choice as a potential repository site was the presence of thick zeolite-rich horizons in the altered volcanic tufts that compose the mountain. Clinoptilolite is the most abundant zeolite at Yucca Mountain and may be important in radionuclide retardation and in determining hydrologic properties. Therefore, it is necessary to understand the geochemical conditions affecting its long-term stability. For example, it has been suggested that long-term, repository-induced heating of the rocks at Yucca Mountain may lead to the transformation of clinoptilolite to analcime, thereby significantly affecting the hydrologic properties and retardation capabilities of the rock.

Thermodynamic modeling of clinoptilolite-analcime equilibria was conducted with the program Ge0-Calc PTA-SYSTEM using estimated thermodynamic data for measured chemical compositions of clinoptilolite and analcime at Yucca Mountain. Log[aK+)2/aCa2+] versus log[aNa+)2/aCa2+] diagrams were calculated to model the conditions under which clinoptilolite may transform to analcime. Temperature, relative cation abundances and silica activity are all important factors in determining clinoptilolite-analcime equilibria. Increased Na+ concentrations in either clinoptilolite or the fluid phase, increased clinoptilolite K+ concentration, increased temperature and decreased aqueous silica activity all stabilize analcime relative to clinoptilolite, assuming present-day Yucca Mountain water compositions. However, increased Ca2+ concentrations in either clinoptilolite or the fluid phase, increased aqueous K+ concentration and increased Al:Si ratios in clinoptilolite (heulandite) all stabilize clinoptilolite with respect to analcime.

Assuming well J-13 water as the analog chemistry for Yucca Mountain water, clinoptilolite should remain stable with respect to analcime if temperatures in the clinoptilolite-bearing horizons do not significantly exceed 100 °C. Even if temperatures rise significantly (for example, to 150 °C not all clinoptilolite should alter to analcime. Perhaps more importantly, thermodynamic modeling suggests that some Yucca Mountain clinoptilolites, particularly those rich in Ca and Al, will remain stable at elevated temperatures, even with an aqueous silica activity at quartz saturation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ames LL Jr. 1964a. Some zeolite equilibria with alkali metal cations. Am Mineral 49:127–145.

    Google Scholar 

  • Ames LL Jr. 1964b. Some zeolite equilibria with alkaline earth metal cations. Am Mineral 49:1099–1110.

    Google Scholar 

  • Barrer RM, Klinowski J. 1974. Ion-exchange selectivity and electrolyte concentration. J Chem Soc Faraday Trans 70: 2080–2091.

    Article  Google Scholar 

  • Berman RG. 1988. Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2. J Petrol 29:445–522.

    Article  Google Scholar 

  • Berman RG, Brown TH. 1985. Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: Representation, estimation, and high temperature extrapolation. Contrib Mineral Petrol 89:168–183.

    Article  Google Scholar 

  • Bish DL. 1988. Effects of composition on the dehydration behavior of clinoptilolite and heulandite. In: Kallo D, Sherry HS, editors. Occurrence, properties and utilization of natural zeolites. Budapest: Akademiai Kiado. p 565–576.

    Google Scholar 

  • Bish DL. 1989. Evaluation of past and future alterations in tuff at Yucca Mountain, Nevada, based on the clay mineralogy of drill cores USW G-l, G-2, and G- 3. Los Alamos National Laboratory Report LA-10667-MS. 40 p.

    Google Scholar 

  • Bish DL. 1990. Long-term thermal stability of clinoptilolite: The development of a “B” phase. Eur J Mineral 2:771–777.

    Article  Google Scholar 

  • Bish DL, Aronson JL. 1993. Paleogeothermal and paleohy-drologic conditions in silicic tuff from Yucca Mountain, Nevada. Clays Clay Miner 41:148–161.

    Article  Google Scholar 

  • Bish DL, Chipera SJ. 1989. Revised mineralogic summary of Yucca Mountain, Nevada. Los Alamos National Laboratory Report LA-11497-MS. 68 p.

    Google Scholar 

  • Boles JR. 1971. Synthesis of analcime from natural heulandite and clinoptilolite. Am Mineral 56:1724–1734.

    Google Scholar 

  • Bowers TS, Burns RG. 1990. Activity diagrams for clinoptilolite: Susceptibility of this zeolite to further diagenetic reactions. Am Mineral 75:601–619.

    Google Scholar 

  • Brown TH, Berman RG, Perkins EH. 1989. PTA-SYSTEM: A GeO-Calc software package for the calculation and display of activity-temperature-pressure phase diagrams. Am Mineral 74:485–487.

    Google Scholar 

  • Broxton DE, Bish DL, Warren RG. 1987. Distribution and chemistry of diagenetic minerals at Yucca Mountain, Nye County, Nevada. Clays Clay Miner 35:89–110.

    Article  Google Scholar 

  • Broxton DE, Warren RG, Hagan RC, Luedemann G. 1986. Chemistry of diagenetically altered tuffs at a potential nu-clear waste repository, Yucca Mountain, Nye County, Nevada. Los Alamos National Laboratory Report LA-10802-MS. 160 p.

    Google Scholar 

  • Bruton C, Glassley WE, Viani BE. 1993. Geochemistry. In: Wilder DG, editor. Preliminary near-field environment report, volume II: Scientific overview of near-field environment and phenomena. Lawrence Livermore National Laboratory Report UCRL-LR-107476 vol 2. 37: 122.

    Google Scholar 

  • Buscheck TA, Nitao JJ, Saterlie SF. 1994. Evaluation of ther-mo-hydrological performance in support of the thermal loading systems study. High Level Radioactive Waste Management, Proc 5th Annu Int Conf, vol 2; 22–26 May 1994; Las Vegas, NV. p 592–610.

    Google Scholar 

  • Carey JW, Bish DL. 1996. Equilibrium in the clinoptilolite-H2O system. Am Mineral 81:952–962.

    Article  Google Scholar 

  • Chermak JA, Rimstidt JD. 1989. Estimating the thermodynamic properties (ΔAGìno and ΔHto) of silicate minerals at 298 K from the sum of polyhedral contributions. Am Mineral 74:1023–1031.

    Google Scholar 

  • Chipera SJ, Bish DL. 1988. Mineralogy of drill hole UE-25p#l at Yucca Mountain, Nevada. Los Alamos National Laboratory Report LA-11292-MS. 24 p.

    Google Scholar 

  • Chipera SJ, Bish DL, Carlos BA. 1995. Equilibrium mod-eling of the formation of zeolites in fractures at Yucca Mountain, Nevada. In: Ming DW, Mumpton FA, editors. Natural zeolites ’93: Occurrence, properties, use. Broekport, NY: Int Committee on Natural Zeolites. p 565–577.

    Google Scholar 

  • Codell RB, Murphy WM. 1992. Geochemical model for 14C transport in unsaturated rock. Proc 3rd Annu High Level Radioactive Waste Management Meeting; Las Vegas, NV. 1959–1965.

    Google Scholar 

  • Delany JM. 1985. Reactions of Topopah Spring Tuff with J-13 water: A geochemical modeling approach using the EQ3/6 reaction path code. Lawrence Livermore National Laboratory Report UCRL- 53631. 46 p.

    Google Scholar 

  • Duffy CJ. 1993a. Preliminary conceptual model for mineral evolution in Yucca Mountain. Los Alamos National Laboratory Report LA-12708-MS. 46 p.

    Google Scholar 

  • Duffy CJ. 1993b. Kinetics of silica-phase transitions. Los Alamos National Laboratory Report LA-12564-MS. 22 p.

    Google Scholar 

  • Gottardi G, Galli E. 1985. Natural zeolites. New York: Springer-Verlag. 409 p.

    Book  Google Scholar 

  • Hay RL. 1966. Zeolites and zeolitic reactions in sedimentary rocks. Geol Soc Am Spec Pap 85. 130 p.

    Google Scholar 

  • Hay RL. 1978. Geologie occurrence of zeolites. In: Sand LB, Mumpton FA, editors. Natural zeolites: Occurrence, properties, use. New York: Pergamon Pr. p 135–143.

    Google Scholar 

  • Hazen RM. 1985. Comparative crystal chemistry and the polyhedral approach. In: Kieffer SW, Navrotsky A, editors. Microscopic to macroscopic: Atomic environments to mineral thermodynamics. Rev Mineral 14. Washington DC: Mineral Soc Am. p 317–345.

    Chapter  Google Scholar 

  • Helgeson HC, Kirkham DH, Flowers GC. 1981. Theoretical prediction of the thermodynamic behavior of aqueous elec-trolytes at high pressures and temperatures: IV. Calculation of activity coefficients, osmotic coefficients, and apparent molal and Standard and relative partial molal properties to 600°C and 5kb. Am J Sci 281:1249–1516.

    Article  Google Scholar 

  • Hemingway BS, Robie RA. 1984. Thermodynamic properties of zeolites: Low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low temperature. Am Mineral 69:692–700.

    Google Scholar 

  • Holland TJB. 1989. Dependence of entropy on volume for silicate and oxide minerals: A review and a predictive model. Am Mineral 74:5–13.

    Google Scholar 

  • Honda A, Muffier LJP. 1970. Hydrotriermal alteration in core from research drill hole Y-l, Upper Geyser Basin, Yellow-stone National Park, Wyoming. Am Mineral 55:1714–1737.

    Google Scholar 

  • Howell DA, Johnson GK, Tasker IR, O’Hare PAG, Wise WS. 1990. Thermodynamic properties of the zeolite stilbite. Zeolites 10:525–531.

    Article  Google Scholar 

  • Iijima A. 1975. Effect of pore water to clinoptilolite-analcime-albite reaction series. J Fac Sci, Univ Tokyo, Sec II 19:133–147.

    Google Scholar 

  • Iijima A. 1978. Geologie occurrences of zeolites in marine environments. In: Sand LB, Mumpton FA, editors. Natural zeolites: Occurrence, properties, use. New York: Pergamon Pr. p 175–198.

    Google Scholar 

  • Johnson GK, Flotow HE, O’Hare PAG, Wise WS. 1982. Thermodynamic studies of zeolites: Analcime and dehy-drated analcime. Am Mineral 67:736–748.

    Google Scholar 

  • Johnson GK, Flotow HE, O’Hare PAG, Wise WS. 1985. Thermodynamic studies of zeolites: ai]Heulandite. Am Mineral 70:1065–1071.

    Google Scholar 

  • Johnson GK, Tasker IR, Jurgens R, O’Hare PAG. 1991. Thermodynamic studies of zeolites: Clinoptilolite. J Chem Thermodynamics 23:475–484.

    Article  Google Scholar 

  • Johnson GK, Tasker IR, Flotow HE, O’Hare PAG, Wise WS. 1992. Thermodynamic studies of mordenite, dehydrated mordenite, and gibbsite. Am Mineral 77:85–93.

    Google Scholar 

  • Johnson JW, Oelkers EH, Helgeson HC. 1991. SUPCRT92: A software package for calculating the Standard molal thermodynamic properties of minerals, gases, aqueous species, and reaction from 1 to 5000 bars and 0° to 1000°C: Earth Sciences Dept, L-219, Lawrence Livermore National Lab-oratory, Livermore, CA. 80 p.

    Google Scholar 

  • Johnstone JK, Peters RR, Gnirk PE 1984. Unit evaluation at Yucca Mountain, Nevada Test Site: Summary report and recommendations. Sandia National Laboratory Report SAND83-0372.

    Google Scholar 

  • Jones BF, Rettig SL, Eugster HP. 1967. Silica in alkaline brines. Science 158:1310–1314.

    Article  Google Scholar 

  • Keith TEC, White DE, Beeson MH. 1978. Hydrothermal al-teration and self-sealing in Y-7 and Y-8 in northern part of Upper Geyser Basin, Yellowstone National Park, Wyoming. USGS Prof Paper 1054-A. 26 p.

    Google Scholar 

  • Kerrisk JE 1983. Reaction-path calculations of groundwater chemistry and mineral formation at Rainier Mesa, Nevada. Los Alamos National Laboratory Report LA-9912-MS. 41 p.

    Google Scholar 

  • Kerrisk JE 1987. Groundwater chemistry at Yucca Mountain, Nevada, and vicinity. Los Alamos National Laboratory Report LA-10929-MS. 118 p.

    Google Scholar 

  • Knauss KG, Beiriger WJ, Peifer DW. 1985. Hydrothermal interaction of crushed Topopah Spring Tuff and J-13 water at 90, 150, and 250°C using Dickson-type, gold-bag rocking autoclaves. Lawrence Livermore National Laboratory Report UCRL- 53630. 27 p.

    Google Scholar 

  • Knauss KG, Beiriger WJ, Peifer DW. 1987. Hydrothermal interaction of solid wafers of Topopah Spring Tuff with J-13 water at 90 and 150°C using Dickson-type, gold-bag rocking autoclaves: Long-term experiments. Lawrence Livermore National Laboratory Report UCRL- 53722. 21 p.

    Google Scholar 

  • Knauss KG, Beiriger WJ, Peifer DW, Piwinskii AJ. 1985. Hydrothermal interaction of solid wafers of Topopah Spring Tuff with J-13 and distilled water at 90, 150, and 250°C, using Dickson-type, gold-bag rocking autoclaves. Lawrence Livermore National Laboratory Report UCRL- 53645. 55 p.

    Google Scholar 

  • Knauss KG, Peifer DW. 1986. Reaction of vitric Topopah Spring Tuff and J-13 ground water under hydrothermal conditions using Dickson-type, gold-bag rocking autoclaves. Lawrence Livermore National Laboratory Report UCRL- 53795. 39 p.

    Google Scholar 

  • Mumpton FA. 1960. Clinoptilolite redefined. Am Mineral 45:351–369.

    Google Scholar 

  • Murphy WM. 1994. Geochemical models for gas-water-rock interactions in a proposed nuclear waste repository at Yucca Mountain, Nevada. Proc Site Characterization and Model Validation Focus 93: American Nuclear Society, p 115–121.

    Google Scholar 

  • Murphy WM, Pabalan RT. 1994. Geochemical investigations related to the Yucca Mountain environment and potential nuclear waste repository. US Nuclear Regulatory Commission Report NUREG/CR- 6288. 190 p.

    Google Scholar 

  • Pabalan RT, Bertetti FP. 1994. Thermodynamics of ion-ex-change between Na+/Sr2+ solutions and the zeolite mineral clinoptilolite. Mat Res Soc Symp Proc 333:731–738.

    Article  Google Scholar 

  • Pabalan RT, Murphy WM. 1990. Progress in experimental studies on the thermodynamic and ion exchange properties of clinoptilolite. Center for Nuclear Waste Regulatory Analyses, CNWRA 89-006, San Antonio, TX. 39 p.

    Google Scholar 

  • Perry E, Hower J. 1970. Burial diagenesis in Gulf Coast pelitic sediments. Clays Clay Miner 18:165–177.

    Article  Google Scholar 

  • Perfect DL, Faunt CC, Steinkampf WC, Turner AK. 1995. Hydrochemical data base for the Death Valley Region, California and Nevada. USGS Open File Report 94-305. 10 p.

    Google Scholar 

  • Robinson GR Jr, Haas JL Jr. 1983. Heat capacity, relative enthalpy, and calorimetric entropy of silicate minerals: An empirical method of prediction. Am Mineral 68:541–553.

    Google Scholar 

  • Sheppard RA, Gude AJ 3rd. 1968. Distribution and genesis of authigenic silicate minerals in tuffs of Pleistocene Lake Tecopa, Inyo County, California. USGS Prof Pap 597. 38 p.

    Google Scholar 

  • Sheppard RA, Gude AJ 3rd. 1969. Diagenesis of tuffs in the Barstow Formation, Mud Hills, San Bernardino County, California. USGS Prof Pap 634. 35 p.

    Google Scholar 

  • Sheppard RA, Gude AJ 3rd. 1973. Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona. USGS Prof Pap 830. 36 p.

    Google Scholar 

  • Smyth JR. 1982. Zeolite stability constraints on radioactive waste isolation in zeolite-bearing volcanic rocks. J Geol 90: 195–202.

    Article  Google Scholar 

  • Smyth JR, Caporuscio FA. 1981. Review of the thermal stability and cation exchange properties of the zeolite minerals clinoptilolite, mordenite, and analcime: Applications to radioactive waste isolation in silicic tuff. Los Alamos National Laboratory Report LA-8841-MS. 30 p.

    Google Scholar 

  • Surdam RC, Sheppard RA. 1978. Zeolites in saline, alkaline-lake deposits. In: Sand LB, Mumpton FA, editors. Natural zeolites: Occurrence, properties, use. New York: Pergamon Pr. p 145–174.

    Google Scholar 

  • Vaughan DEW. 1978. Properties of natural zeolites. In: Sand LB, Mumpton FA, editors. Natural zeolites: Occurrence, properties, use. New York: Pergamon Pr. p 353–371.

    Google Scholar 

  • White AF, Claassen HC, Benson LV. 1980. The effect of dissolution of volcanic glass on the water chemistry in a tuffaceous aquifer, Rainier Mesa, Nevada. USGS Geol Sur-vey Water-Supply Pap 1535-Q. 34 p.

    Google Scholar 

  • Wilkin RT, Barnes HL. 1995. Solubilities of the zeolites analcime and Na-clinoptilolite in hydrothermal solutions. In: Barnes HL, editor. V. M. Goldschmidt Conf, Program and Abstracts. 97 p.

  • Yang IC. 1992. Flow and transport through unsaturated rock—data from two test holes, Yucca Mountain, Nevada. Proc 3rd Annu High Level Radioactive Waste Management Meeting; Las Vegas, NV. p 732–737.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chipera, S.J., Bish, D.L. Equilibrium Modeling of Clinoptilolite-Analcime Equilibria at Yucca Mountain, Nevada, USA. Clays Clay Miner. 45, 226–239 (1997). https://doi.org/10.1346/CCMN.1997.0450211

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1997.0450211

Key Words

Navigation