Skip to main content
Log in

The Influence of Aluminum on Iron Oxides. Part XVI: Hydroxyl and Aluminum Substitution in Synthetic Hematites

  • Published:
Clays and Clay Minerals

Abstract

Synthetic hematites with Al substitutions between 0 and 18 mol % were synthesized at different temperatures and water activities. The cell-edge lengths a for different synthesis conditions decreased linearly with increasing Al substitution. The regression lines, however, had different slopes and intercepts: the series with the highest synthesis temperature (1270 K) had the most negative slope. With increasing Al substitution, the hematites contained increasing amounts of non-surface water. Significant correlations were found between these chemically determined water contents and the deviations of the unit-cell parameters a, c, and V relative to the corresponding 1270 K regression lines. To explain the measured X-ray peak intensities, structural OH had to be included into the theoretical calculations. From intensity ratios normalized to I113, it is possible to determine the structural OH separately from the Al substitution, which can be assessed by the shift of the cell-edge lengths relative to the 1270 K regression lines. The incorporation of Al and OH into the hematite structure induces strain, which was quantified by X-ray diffraction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, R. R. and Gilkes, R. J. (1987) The association of maghemite and corundum in Darling Range laterites, Western Australia: Aust. J. Soil Res. 25, 303–311.

    Article  Google Scholar 

  • Barron, V., Rendon, J. L., Torrent, J., and Serna, C. J. (1984) Relation of infrared, crystallochemical, and morphological properties of Al-substituted hematites: Clays & Clay Minerals 32, 475–479.

    Article  Google Scholar 

  • Beran, A. (1991) Trace hydrogen in Vemeuil-grown corundum and its colour varieties—An IR spectroscopic study: Eur. J. Mineral. 3, 971–975.

    Article  Google Scholar 

  • Blake, R. L., Hessevick, R. E., Zoltai, T., and Finger, L. W. (1966) Refinement of the hematite structure: Amer. Mineral. 51, 123–129.

    Google Scholar 

  • Bom, E. and Paul, G. (1979) Röntgenbeugung am Realkristall: Thieme Verlag, München, 155 pp.

    Google Scholar 

  • Breithaupt, A. (1847) Handbueh der Mineralogie, Band III: Amoldi, Dresden.

    Google Scholar 

  • Brill, R. (1932) Röntgenographische Untersuchungen an Eisenkatalysatoren fur die Ammoniak-Synthese: Z. Elektrochemie 38, 669–673.

    Google Scholar 

  • Cailliere, S., Gatineau, L., and Hénin, S. (1960) Préparation a basse temperature d’hématite alumineuse: Comptes Rendus Acad. Sci. 250, 3677–3679.

    Google Scholar 

  • Carter, D. L., Heilman, M. D., and Gonzales, C. L. (1965) The ethylene glycol monoethyl ether (EGME) technique for determining soil-surface area: Soil Sci. 100, 409–413.

    Article  Google Scholar 

  • Catlow, C. R. A., Comish, J., Hennesy, J., and Mackrodt, W. C. (1988) Atomistic simulation of defect structures and ion transport in α-Fe2O3 and α-Cr2O3: J. Amer. Ceram. Soc. 71, 42–49.

    Article  Google Scholar 

  • Farmer, V. C. (1974) The anhydrous oxide minerals: in The Infrared Spectra of Minerals, V. C. Farmer, ed., Mineralogical Society, London, 539 pp.

    Chapter  Google Scholar 

  • Forestier, H. and Chaudron, G. (1925) Points de transformation des solutions solides d’alumine ou de sesquioxyde de chrome dans les sesquioxyde de fer: Comptes rendus Acad. Sci. Paris 180, 1264–1266.

    Google Scholar 

  • Gregg, S. J. (1953) The production of active solids by thermal decomposition. Part I. Introduction: J. Chem. Soc. IV, 3940–3944.

    Article  Google Scholar 

  • Gregg, S. J. and Hill, K. J. (1953) The production of active solids by thermal decomposition. Part II. Ferric oxide: J. Chem. Soc. IV, 3945–3951.

    Article  Google Scholar 

  • Guinier, A. (1963) X-ray Diffraction in Crystals, Imperfect Crystals and Amorphous Bodies: Freeman and Company, San Francisco, 378 pp.

    Google Scholar 

  • Helgeson, H. C., Delany, J. M., Nesbitt, H. W., and Bird, D. K. (1978) Summary and critique of the thermodynamic properties of rock-forming minerals: Amer. J. Sci. 278A, 1–229.

    Google Scholar 

  • Hill, R. J. and Madsen, I. C. (1986) The effect of profile step width on the determination of crystal structure parameters and estimated standard deviations by X-ray Rietveld analysis: J. Appl. Crystall. 19, 10–18.

    Article  Google Scholar 

  • Hsu, P.H. (1963) Effect of initial pH, phosphate, and silicate on the determination of aluminum with aluminon: Soil Sci. 96, 230–237.

    Article  Google Scholar 

  • Janik, L. M. and Raupach, M. (1977) An iterative, leastsquares program to separate infrared absorption spectra into their component bands: CSIRO Div. of Soils Tech. Paper 35, 1–37.

    Google Scholar 

  • Klug, H. P. and Alexander, L. E. (1974) X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials: J. Wiley and Sons, New York, 966 pp.

    Google Scholar 

  • Königsberger, J. and Reichenheim, O. (1906) Ueber die Elektrizitätsleitung einiger natürlich kristallisierter Oxyde and Sulfide und des Graphits: N. Jb. Min. Geol. Pal. 1906

    Google Scholar 

  • Kosmas, C. S., Franzmeier, D. P., and Schulze, D. G. (1986) Relationship among derivative spectroscopy, color, crystallite dimensions and A1 substitution of synthetic goethites and hematites: Clays & Clay Minerals 34, 625–634.

    Article  Google Scholar 

  • Koutler-Anderson, E. (1953) The sulfosalicylic method for iron determination and its use in certain soil analysis: Ann. Roy. Agric. Sweden 20, 297–308.

    Google Scholar 

  • Lindsay, W.L. (1979) Chemical Equilibria in Soils: J. Wiley & Sons, New York, 449 pp.

    Google Scholar 

  • Mackrodt, W. C., Davey, R. J., Black, S. N., and Docherty, R. (1987) The morphology of α-Al2O3 and α-Fe2O3: The importance of surface relaxation: J. Cryst. Growth 80, 441–446.

    Article  Google Scholar 

  • Murad, E. (1984) High-precision determination of magnetic hyperfine fields by Mossbauer spectroscopy using an internal standard: J. Phys. E. Sci. Instrum. 17, 736–737.

    Article  Google Scholar 

  • Okamoto, G., Furuichi, R., and Sato, N. (1967) Chemical reactivity and electrical conductivity of hydrous ferric oxide: Electrochim. Acta 12, 1287–1299.

    Article  Google Scholar 

  • Passerini, L. (1930) Soluzione solide, isomorfismo e simmorfismo tra gli ossidi dei metalli trivalenti. I sistema: Al2O3-Cr2O3; Al2O3-Fe2O3: Cr2O3-Fe2O3: Gazz. Chim. Ital. 60, 544–558.

    Google Scholar 

  • Perinet, G. and Lafont, R. (1972) Sur les parametres cristallographiques des hematites alumineuses: Comptes Rendus Acad. Sci. Paris 275 C, 1021–1025.

    Google Scholar 

  • Rochester, C. H. and Topham, S. A. (1979) Infrared study of surficial hydroxyl groups on haematite: J. Chem. Soc., Faraday Trans. I 75, 1073–1088.

    Article  Google Scholar 

  • Schulze, D. G. (1982) The identification of iron oxides by differential X-ray diffraction and the influence of aluminum substitution on the structure of goethite: Ph.D. thesis, Technische Universitat Munchen, University Microfilms International, Ann Arbor, Michigan, 167 pp.

    Google Scholar 

  • Schwertmann, U. (1964) DifferenzierungderEisenoxidedes Bodens durch photochemische Extraktion mit saurer Ammoniumoxalat-Lösung: Z. Pflanzenernähr. Bodenkde. 105, 194–202.

    Article  Google Scholar 

  • Schwertmann, U. (1984) Aluminiumsubstitution in pedogenen Eisenoxiden—eine Übersicht: Z. Pflanzenernähr. Bodenkde. 147, 385–399.

    Article  Google Scholar 

  • Schwertmann, U. (1988) Goethite and hematite formation in the presence of clay minerals and gibbsite at 25°C: Soil Sci. Soc. Amer. J. 52, 288–291.

    Article  Google Scholar 

  • Schwertmann, U., Fitzpatrick, R. W., Taylor, R. M., and Lewis, D. G. (1979) The influence of aluminium on iron oxides. Part II. Preparation and properties of Al-substituted hematites: Clays & Clay Minerals 27, 105–112.

    Article  Google Scholar 

  • Stanjek, H. (1987) The formation of maghemite and hematite from lepidocrocite and goethite in a Cambisol from Corsica: Z. Pflanzenernähr. Bodenkde. 150, 314–318.

    Article  Google Scholar 

  • Stanjek, H. (1991) Aluminium- und Hydroxylsubstitution in synthetischen und natürlichen Hämatiten: Ph.D. thesis, Technische Universität München, Maria Leidorf, Buch am Erlbach, 200 pp.

    Google Scholar 

  • von Steinwehr, H. E. (1967) Gitterkonstanten im System α-(Al,Fe,Cr)2O3 und ihr Abweichen von der Vegardregel: Z. Kristallographie 125, 377–403.

    Article  Google Scholar 

  • Wefers, K. (1967) Phasenbeziehungen im System Al2O3-Fe2O3-H2O: Erzmetall 20, 13–19.

    Google Scholar 

  • Wolska, E. (1977) Die Bedeutung von Aluminiumspuren im Alterungsvorgang von amorphem Eisen(III)-hydroxid fur die Eliminierung der Goethitphase: Monatshefte Chemie 108, 819–828.

    Article  Google Scholar 

  • Wolska, E. (1981) The structure of hydrohematite: Z. Kristallographie 154, 69–75.

    Google Scholar 

  • Wolska, E. and Szajda, W. (1985) Structural and spectroscopic characteristics of synthetic hydrohematite: J. Mater. Sci. 20, 4407–4412.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stanjek, H., Schwertmann, U. The Influence of Aluminum on Iron Oxides. Part XVI: Hydroxyl and Aluminum Substitution in Synthetic Hematites. Clays Clay Miner. 40, 347–354 (1992). https://doi.org/10.1346/CCMN.1992.0400316

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1992.0400316

Key Words

Navigation