Skip to main content
Log in

Effect of the Precursor and Synthesis Regime on the Properties of Hematite for Preparing Promoted Iron Oxide Catalysts

  • CATALYSIS IN CHEMICAL AND PETROCHEMICAL INDUSTRY
  • Published:
Catalysis in Industry Aims and scope Submit manuscript

Abstract

The fine crystal structure of hematite samples used for preparing potassium promoted iron oxide catalysts of dehydrogenation is studied via X-ray diffraction and scanning electron microscopy. α-Fe2O3 samples are synthesized under non-equilibrium conditions from several precursors in different regimes of thermolysis. The most important characteristic of hematite that causes the activity and selectivity of a hematite-based catalyst is its fine crystal structure (FCS). The fine crystal structure of hematite predetermines the phase composition of the catalyst. The fine crystal structure of hematite forms during its synthesis and is determined by the nature of the precursor, the temperature of synthesis, the temperature gradient, and the rate of the removal of gaseous thermolysis products. The highest activity is displayed by the catalyst prepared on the basis of hematite with mosaic blocks 70–90 nm in size and a minimum SF concentration caused by half and quaternary dislocations. Such hematite was synthesized via the thermolysis of iron sulfate at 950 K under fluidized bed and low temperature gradient conditions. Hematite from iron carbonate is not recommended for use in synthesizing a catalyst due to the high concentration of low-temperature SFs, which result in the formation of catalytically low-active potassium β-polyferrite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Gobara, H.M., Aboutaleb, W.A., Hashem, K.M., Hassan, S.A., and Henein, S.A., J. Mater. Sci., 2017, vol. 52, no. 1, pp. 550–568. https://doi.org/10.1007/s10853-016-0353-2

    Article  CAS  Google Scholar 

  2. Mousavi, S.E., Younesi, H., Bahramifar, N., Tamunaidu, P., and Karimi-Male, H., Chemosphere, 2022, vol. 297, article no. 133992. https://doi.org/10.1016/j.chemosphere.2022.133992

    Article  CAS  PubMed  Google Scholar 

  3. Bugaeva, A.Yu., Loukhina, I.V., Kazakova, E.G., Nazarova, L.Yu., and Ryabkov, Yu.I., Russ. J. Appl. Chem., 2019, vol. 92, no. 10, pp. 1366–1376. https://doi.org/10.1134/S1070427219100069

    Article  CAS  Google Scholar 

  4. Lamberov, A.A., Gil’manov, Kh.Kh., Dement’eva, O.V., Shatokhina, E.V., Nurgaliev, D.K., and Yasonov, P.G., Katal. Prom-sti, 2008, no. 2, pp. 42–49.

  5. Il'in, A.A., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2019, vol. 62, no. 5, pp. 62–70.

    CAS  Google Scholar 

  6. Lamberov, A.A., Gilmanov, Kh.Kh., Dement’eva, O.V., and Kuz’mina, E.V., Catal. Ind., 2012, vol. 4, no. 4, pp. 308–316. https://doi.org/10.1134/S2070050412040113

    Article  Google Scholar 

  7. Yatsenko, D.A., Pakharukova, V.P., Tsybulya, S.V., Matvienko, A.A., and Sidel’nikov, A.A., J. Struct. Chem., 2012, vol. 53, no. 3, pp. 548–556. https://doi.org/10.1134/S0022476612030195

    Article  CAS  Google Scholar 

  8. Fadeeva, V.I., Itogi Nauki Tekh., Ser.: Khim. Termodin. Ravnovesiya, 1984, vol. 6, pp. 44–76.

    Google Scholar 

  9. Dvoretskii, N.V., Stepanov, E.G., Sudzilovskaya, T.N., and Kotel’nikov, G.R., Kinet. Katal., 1990, vol. 31, no. 4, pp. 939–944.

    Google Scholar 

  10. Dvoretskii, N.V., Stepanov, E.G., Sudzilovskaya, T.N., Kotel’nikov, G.R., and Yun, V.V., Izv. Akad. Nauk SSSR, Neorg. Mater., 1989, vol. 25, no. 2, pp. 284–288.

    CAS  Google Scholar 

  11. Dvoretskii, N.V., Anikanova, L.G., and Malysheva, Z.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2018, vol. 61, no. 6, pp. 61–68.

    Article  Google Scholar 

  12. Dvoretskii, N.V. and Anikanova, L.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2002, vol. 45, no. 2, pp. 147–148.

    CAS  Google Scholar 

  13. Lamberov, A.A. and Gil’manov, Kh.Kh., Modernizatsiya katalizatorov i tekhnologii sinteza izoprena na OAO “Nizhnekamskneftekhim” (Modernization of Isoprene Synthesis Catalysts and Technology at JSC “Niznekamskneftekhim”), Kazan: KFU, 2012.

  14. Fadeeva, V.I. and Panchenko, L.A., Izv. Akad. Nauk SSSR, Neorg. Mater., 1982, vol. 18, no. 8, pp. 1399–1401.

    CAS  Google Scholar 

  15. Fadeeva, V.I., Panchenko, L.A., Winkel, A.P., et al., Zavod. Lab., 1983, vol. 49, no. 4, pp. 57–58.

    CAS  Google Scholar 

  16. Anikanova, L.G. and Dvoretskii, N.V., Catal. Ind., 2013, vol. 5, no. 1, pp. 74–79. https://doi.org/10.1134/S2070050412040022

    Article  Google Scholar 

  17. Dvoretskii, N.V. and Anikanova, L.G., Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol., 2002, vol. 45, no. 7, pp. 50–52.

    CAS  Google Scholar 

  18. Lopatina, M.M., Kosheleva, K.A., Khanmurzina, E.A., D’yakonov, V.A., and Nefedova, N.V., Usp. Khim. Khim. Tekhnol., 2020, vol. 34, no. 4, pp. 34–39.

    Google Scholar 

  19. Yamaguchi, T. and Takahashi, T., J. Am. Ceram. Soc., 1982, vol. 65, no. 6, pp. c83. https://doi.org/10.1111/j.1151-2916.1982.tb10455.x

    Article  CAS  Google Scholar 

  20. Levin, B.E., Tret’yakov, Yu.D., and Letyuk, L.M., Fiziko-khimicheskie osnovy polucheniya, svoistva i primenenie ferritov (Physicochemical Foundations of Synthesis, Properties, and Application of Ferrites), Moscow: Metallurgiya, 1979.

  21. Mozhaev, A.P., Oleinikov, N.N., Pershin, V.I., and Tret’yakov, Yu.D., Izv. Akad. Nauk SSSR, Neorg. Mater., 1977, vol. 13, no. 10, pp. 1856–1860.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Anikanova.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dvoretskaya, A.N., Anikanova, L.G. & Dvoretskii, N.V. Effect of the Precursor and Synthesis Regime on the Properties of Hematite for Preparing Promoted Iron Oxide Catalysts. Catal. Ind. 15, 144–151 (2023). https://doi.org/10.1134/S2070050423020046

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S2070050423020046

Keywords:

Navigation