Skip to main content
Log in

Carbon-Substituted Hematite and Magnetite Nanoparticles

  • Published:
MRS Advances Aims and scope Submit manuscript

Abstract

Graphite-doped hematite and magnetite nanoparticles systems (~50 nm) were prepared by mechanochemical activation for milling times ranging from 2 to 12 hours. Their structural and magnetic properties were studied by 57Fe Mössbauer spectroscopy. The spectra corresponding to the hematite milled samples were analyzed by considering two sextets, corresponding to the incorporation of carbon atoms into the iron oxide structure. For ball milling time of 12 hours a quadrupole split doublet has been added, representing the contribution of ultrafine particles. The Mössbauer spectra of graphite-doped magnetite were resolved considering a sextet and a magnetic hyperfine field distribution, corresponding to the tetrahedral and octahedral sublattices of magnetite, respectively. A quadrupole split doublet was incorporated in the fitting of the 12-hour milled sample. The recoilless fraction for all samples was determined using our previously developed dual absorber method. It was found that the recoilless fraction of the graphite-doped hematite nanoparticles decreases as function of ball milling time. The f factor of graphite-containing magnetite nanoparticles for the tetrahedral sites stays constant, while that of the octahedral sublattice decreases as function of ball milling time. These findings reinforce the idea that carbon atoms exhibit preference for the octahedral sites of magnetite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E.P. Sajitha, V. Prasad, S.V. Subramanyam, A.K. Mishra, S. Sarkar, C. Bansal, J. Magn. Magn. Mater. 313, 329 (2007).

    Article  CAS  Google Scholar 

  2. B. David, N. Pizurova, O. Schneeweiss, P. Bezdicka, I. Morjan, R. Alexandrescu, J. Alloys Comp. 378, 112 (2004).

    Article  CAS  Google Scholar 

  3. R. Snovski, J. Grinblat, M.T. Sougrati, J.C. Jumas, S. Margel, J. Magn. Magn. Mater. 349, 35 (2014).

    Article  CAS  Google Scholar 

  4. I. Morjan, F. Dumitrache, R. Alexandrescu, C. Fleaca, R. Birjega, C.R. Luculescu, I. Soare,.Adv. Powder Tech. 23, 88 (2012).

    Article  CAS  Google Scholar 

  5. F. Dumitrache, I. Morjan, C. Fleaca, R. Birjega, E. Vasile, V. Kuncser, R. Alexandrescu, Appl. Surf. Sci. 257, 5265 (2011).

    Article  CAS  Google Scholar 

  6. H. Zhang, J. Phys. Chem. Sol. 60, 1845 (1999).

    Article  CAS  Google Scholar 

  7. M. Venkatesan, P. Dunne, Y.H. Chen, H.J. Zhang, J.M.D. Coey, Carbon 56, 279 (2013).

    Article  CAS  Google Scholar 

  8. E.C. Vermisoglou, E. Devlin, T. Giannakopoulou, G. Romanos, N. Boukos, V. Psycharis, C. Lei, J. Alloys Comp. 590, 102 (2014).

    Article  CAS  Google Scholar 

  9. A. Concheso, R. Santamaria, R. Menendez, J.M. Jimenez-Mateos, R. Alcantara, P. Lavela, J.L. Tirado, Carbon 44, 1762 (2006).

    Article  CAS  Google Scholar 

  10. Y. Wang, L. Yang, R. Hu, L. Ouyang, M. Zhu, Electrochem. Acta 125, 421 (2014).

    Article  CAS  Google Scholar 

  11. B. Jin, A.H. Liu, G.Y. Liu, Z.Z. Yang, X.B. Zhong, X.Z. Ma, M. Yang, H.Y. Wang, Electrochem. Acta, 90, 426 (2013).

    Article  CAS  Google Scholar 

  12. F. Marquez-Linares, O.N.C. Uwakweh, N. Lopez, E. Chavez, R. Polanco, C. Morant, J.M. Sanz, J. Sol. St. Chem. 184, 655 (2011).

    Article  CAS  Google Scholar 

  13. W. Osterle, G. Orts-Gil, T. Gross, C. Deutsch, R. Hinrichs, M.A.Z. Vasconcellos, Mater. Char. 86, 28 (2013).

    Article  Google Scholar 

  14. M. Sorescu, Mater. Lett, 54, 256 (2002).

    Article  CAS  Google Scholar 

  15. M. Sorescu, Nucl. Intrum. Meth. Phys. Res. B 269, 590 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sorescu, M., Trotta, R. Carbon-Substituted Hematite and Magnetite Nanoparticles. MRS Advances 1, 221–226 (2016). https://doi.org/10.1557/adv.2015.17

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/adv.2015.17

Navigation