Skip to main content
Log in

Electrostatic Potential at the Basal (001) Surface of Talc and Pyrophyllite as Related to Tetrahedral Sheet Distortions

  • Published:
Clays and Clay Minerals

Abstract

Maps of the electrostatic potentials at the basal plane of talc and pyrophyllite, computed using a two-dimensional Ewald lattice-sum, reveal the effects caused by structural distortion of the phyllosilicate layer. Rotation and tilting of basal tetrahedra in phyllosilicates dramatically perturb the electrostatic potential near the (001) surface. A potential high exists at the center of each six-fold ring of the talc (001) surface. Concerted counter-rotations of basal tetrahedra by 10°, as are typical in pyrophyllite, cause the potential lows above basal oxygens rotated into the ring to overlap, eliminating the ring-centered potential highs. Expansion of the vacant site in dioctahedral minerals tilts the basal tetrahedra by 4° and moves one-third of the basal oxygens about 0.2 Å toward the center of each phyllosilicate layer and away from the (001) surface, thereby producing corrugations of the basal surface. This shift dramatically reduces the contribution of these displaced basal oxygens to the (001) surface potential. Rotation and tilting of basal tetrahedra may influence the arrangement of interlayer water molecules on smectites and other swelling phyllosilicates by the effect that these distortions have on the (001) surface potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alcover, J. F. and Giese, R. F. (1986) Energie de laison des feuillets de talc, pyrophyllite, muscovite et phlogopite: Clay Miner. 21, 159–169.

    Article  Google Scholar 

  • Appelo, C. A. (1978) Layer deformation and crystal energy of micas and related minerals. I. Structural models for M and 2Af, polytypes: Amer. Mineral. 63, 782–792.

    Google Scholar 

  • Appelo, C. A. (1979) Layer deformation and crystal energy of micas and related minerals. II. Deformation of the coordination units: Amer. Mineral. 64, 424–431.

    Google Scholar 

  • Bailey, S. W. (1966) The status of clay mineral structures: in Clays and Clay Minerals, Proc. 14th Natl. Conf, Berkeley, California, 1965, S. W. Bailey, ed., Pergamon Press, New York, 1–23.

    Google Scholar 

  • Bailey, S. W. (1980) Structures of layer silicates: in Crystal Structures of Clay Minerals and their X-ray Identification, G. W. Brindley and G. Brown, eds., Mineralogical Society, London, 2–123.

    Google Scholar 

  • Bleam, W. F. and Hoffmann, R. (1988) Orbital interactions in phyllosilicates: Perturbations of an idealized two-dimensional, infinite silicate frame: Phys. Chem. Minerals 15, 398–408.

    Article  Google Scholar 

  • Brown, I. D. (1978) Bond valences—A simple structural model for inorganic chemistry: Chem. Soc. Rev. 7, 359–376.

    Article  Google Scholar 

  • Brown, I. D. and Shannon, R. D. (1973) Empirical bond-strength-bond-length curves for oxides: Acta Crystallogr. A29, 266–282.

    Article  Google Scholar 

  • Foot, J. D. and Colburn, E. A. (1988) Electrostatic potentials for surfaces of inorganic and molecular crystals: J. Mol. Graphics 6, 93–99.

    Article  Google Scholar 

  • Giese, R. F. (1975) Interlayer bonding in talc and pyrophyllite: Clays & Clay Minerals 23, 165–166.

    Article  Google Scholar 

  • Grim, R. E. (1968) Clay Mineralogy: McGraw-Hill Book Co., New York, 506 pp.

    Google Scholar 

  • Heyes, D. M. and van Swol, F. (1981) The electrostatic potential and field in the surface region of lamina and semi-infinite point charge lattices: J. Chem. Phys. 75, 5051–5058.

    Article  Google Scholar 

  • Jenkins, H. D. B. and Hartman, P. (1979) A new approach to the calculation of electrostatic energy relations in minerals: The dioctahedral and trioctahedral phyllosilicates: Philos. Trans. Royal Soc. London Ser. A 293, 169–208.

    Article  Google Scholar 

  • Lee, W. W. and Choi, S.-I. (1980) Determination of the Madelung potential of ionic crystals with a polar surface by the Ewald method: J. Chem. Phys. 72, 6164–6168.

    Article  Google Scholar 

  • Newham, R. E. (1961) A refinement of the dickite structure and some remarks on polymorphism in kaolinite minerals: Mineral. Mag. 32, 683–704.

    Google Scholar 

  • Parry, D. E. (1975) The electrostatic potential in the surface region of an ionic crystal: Surface Sci. 49, 433–440.

    Article  Google Scholar 

  • Parry, D. E. (1976) Errata: The electrostatic potential in the surface region of an ionic crystal: Surface Sci. 54, 195.

    Article  Google Scholar 

  • Pauling, L. (1930) The structure of the micas and related minerals: Proc. Natl. Acad. Sci. U.S.A. 16, 123–129.

    Article  Google Scholar 

  • Pentinghaus, H. (1975) Hexacelsian: Fortschr. Mineral. Suppl. 753, 65.

    Google Scholar 

  • Radoslovich, E. W. (1963) The cell dimensions and symmetry of layer-lattice silicates. IV. Interatomic forces: A mer. Mineral. 48, 76–99.

    Google Scholar 

  • Smith, E. R. (1983) Electrostatic potential at a plane surface of a point ionic crystal: Physica 120A, 327–338.

    Article  Google Scholar 

  • Smith, J. V. (1977) Enumeration of 4-connected 3-dimen-sional nets and classification of framework silicates. I. Perpendicular linkage from simple hexagonal net: Amer. Mineral. 62, 703–709.

    Google Scholar 

  • Takéuchi, Y. (1958) A detailed investigation of the structure of hexagonal BaAl2Si2O8 with reference to its a-ß inversion: Mineral. J. 2, 311–332.

    Article  Google Scholar 

  • Takéuchi, Y. and Donnay, G. (1959) The crystal structure of hexagonal CaAl2Si,O8: Acta Crystallogr. 12, 465–470.

    Article  Google Scholar 

  • Zvyagin, B. B., Mishchenko, K. S., and Soboleva, S. V. (1969) Structure of pyrophyllite and talc in relation to polytypes of mica-type minerals: Soviet Phys. Crystallogr. (Engl, trans.) 13, 511–515.

    Google Scholar 

  • Zvyagin, B. B., Soboleva, S. V., Vrublevskaya, Z. V., Zhu-khlistov, A. P., and Fedotov, A. F. (1972) Factors in the di trigonal rotation of the tetrahedra in the structures of layer silicates: Soviet Phys. Crystallogr. (Engl, trans.) 17, 466–469.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bleam, W.F. Electrostatic Potential at the Basal (001) Surface of Talc and Pyrophyllite as Related to Tetrahedral Sheet Distortions. Clays Clay Miner. 38, 522–526 (1990). https://doi.org/10.1346/CCMN.1990.0380509

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1346/CCMN.1990.0380509

Key Words

Navigation