Skip to main content
Log in

Theoretical study of the hydrogen bonding and infrared spectroscopy in the cis-vacant polymorph of dioctahedral 2:1 phyllosilicates

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

The spatial geometry and local environment of hydroxyl groups of the cis-vacant (cv) crystal polymorph of dioctahedral 2:1 phyllosilicates are studied by computational methods, doing especial emphasis on the hydrogen bonds and electrostatic interactions of the hydroxyl groups with the neighbor atoms. Different types of phyllosilicates are explored: with only tetrahedral charge, with only octahedral charge, with simultaneous octahedral and tetrahedral substitution, and with different interlayer cation (IC). The effect of these interactions on the spectroscopic properties of these hydroxyl groups is also studied. All results are compared with the trans-vacant (tv) crystal forms of these minerals. Frequency differences between cv and tv polymorphs are smaller than those due to the local environments of these OH groups. This means that the changes in the interactions of the different local environments of each OH group are greater than the cv/tv differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Herd CDK, Blinova A, Simkus DN, Huang Y, Tarozo R, Alexander CMOD, Gyngard F, Nittler LR, Cody GD, Fogel ML, Kebukawa Y, Kilcoyne ALD, Hilts RW, Slater GF, Glavin DP, Dworkin JP, Callahan MP, Elsila JE, De Gregorio BT, Stroud RM (2011) Origin and evolution of prebiotic organic matter as inferred from the Tagish Lake Meteorite. Science 332(6035):1304–1307. doi:10.1126/science.1203290

    Article  CAS  Google Scholar 

  2. Hibbitts CA, Szanyi J (2007) Physisorption of CO2 on non-ice materials relevant to icy satellites. Icarus 191(1):371–380. doi:10.1016/j.icarus.2007.04.012

    Article  CAS  Google Scholar 

  3. Mustard JF, Murchie SL, Pelkey SM, Ehlmann BL, Milliken RE, Grant JA, Bibring JP, Poulet F, Bishop J, Dobrea EN, Roach L, Seelos F, Arvidson RE, Wiseman S, Green R, Hash C, Humm D, Malaret E, McGovern JA, Seelos K, Clancy T, Clark R, Marais DD, Izenberg N, Knudson A, Langevin Y, Martin T, McGuire P, Morris R, Robinson M, Roush T, Smith M, Swayze G, Taylor H, Titus T, Wolff M (2008) Hydrated silicate minerals on Mars observed by the Mars Reconnaissance Orbiter CRISM instrument. Nature 454(7202):305–309

    Article  CAS  Google Scholar 

  4. McKeown NK, Bishop JL, Cuadros J, Hillier S, Amador E, Makarewicz HD, Parente M, Silver EA (2011) Interpretation of reflectance spectra of clay mineral-silicate mixtures:implications for Martian clay mineralogy at Mawrth Vallis. Clay Clay Miner 59(4):400–415. doi:10.1346/ccmn.2011.0590404

    Article  CAS  Google Scholar 

  5. Bernal JD (1949) The Physical Basisof live. 357A:537–558

  6. Escamilla-Roa E, Hernández-Laguna A, Sainz-Díaz CI (2013) Cation arrangement in the octahedral and tetrahedral sheets of cis-vacant polymorph of dioctahedral 2:1 phyllosilicates by quantum mechanical calculations. Am Mineral 98(4):724–735

    Article  CAS  Google Scholar 

  7. Drits VA, Lindgreen H, Salyn AL, Ylagan R, McCarty DK (1998) Semiquantitative determination of trans-vacant and cis-vacant 2:1 layers in illites and illite-smectites by thermal analysis and X-ray diffraction. Am Mineral 83(11-12_Part_1):1188–1198

    CAS  Google Scholar 

  8. Cuadros J, Altaner SP (1998) Characterization of mixed-layer illite-smectite from bentonites using microscopic, chemical, and X-ray methods; constraints on the smectite-to-illite transformation mechanism. Am Mineral 83(7–8):762–774

    CAS  Google Scholar 

  9. Drits VA (2003) Structural and chemical heterogeneity of layer silicates and clay minerals. Clay Miner 38(4):403–432. doi:10.1180/0009855033840106

    Article  CAS  Google Scholar 

  10. Tsipursky SI, Drits VA (1984) The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction. Clay Miner 19(2):177–193

    Article  CAS  Google Scholar 

  11. McCarty DK, Reynolds RC (1995) Rotationally disordered illite/smectite in Paleozoic K-bentonites. Clay Clay Miner 43(3):271–284

    Article  CAS  Google Scholar 

  12. Besson G, Drits VA (1997) Refined relationships between chemical composition of dioctahedral fine-grained mica minerals and their infrared spectra within the OH stretching region; Part I, Identification of the OH stretching bands. Clay Clay Miner 45(2):158–169

    Article  CAS  Google Scholar 

  13. Cuadros J, Sainz-Diaz CI, Ramirez R, Hernandez-Laguna A (1999) Analysis of Fe segregation in the octahedral sheet of bentonitic illite-smectite by means of FTIR, 27 Al MAS NMR and reverse Monte Carlo simulations. Am J Sci 299(4):289–308. doi:10.2475/ajs.299.4.289

    Article  CAS  Google Scholar 

  14. Sainz-Diaz CI, Timon V, Botella V, Hernandez-Laguna A (2000) Isomorphous substitution effect on the vibration frequencies of hydroxyl groups in molecular cluster models of the clay octahedral sheet. Am Mineral 85(7–8):1038–1045

    CAS  Google Scholar 

  15. Botella V, Timon V, Escamilla-Roa E, Hernández-Languna A, Sainz-Díaz CI (2004) Hydrogen bonding and vibrational properties of hydroxy groups in the crystal lattice of dioctahedral clay minerals by means of first principles calculations. Phys Chem Miner 31(8):475–486. doi:10.1007/s00269-004-0398-7

    Article  CAS  Google Scholar 

  16. Ortega-Castro J, Hernández-Haro N, Hernández-Laguna A, Sainz-Díaz CI (2008) DFT calculation of crystallographic properties of dioctahedral 2:1 phyllosilicates. Clay Miner 43(3):351–361. doi:10.1180/claymin.2008.043.3.02

    Article  CAS  Google Scholar 

  17. Hernández-Laguna A, Escamilla-Roa E, Timón V, Dove MT, Sainz-Díaz CI (2006) DFT study of the cation arrangements in the octahedral and tetrahedral sheets of dioctahedral 2:1 phyllosilicates. Phys Chem Miner 33(10):655–666. doi:10.1007/s00269-006-0120-z

    Article  Google Scholar 

  18. Ortega-Castro J, Hernandez-Haro N, Dove MT, Hernandez-Laguna A, Sainz-Diaz CI (2010) Density functional theory and Monte Carlo study of octahedral cation ordering of Al/Fe/Mg cations in dioctahedral 2:1 phyllosilicates. Am Mineral 95(2–3):209–220. doi:10.2138/am.2010.3273

    Article  CAS  Google Scholar 

  19. Sainz-Díaz CI, Escamilla-Roa E, Hernández-Laguna A (2005) Quantum mechanical calculations of trans-vacant and cis-vacant polymorphism in dioctahedral 2:1 phyllosilicates. Am Mineral 90(11–12):1827–1834. doi:10.2138/am.2005.1819

    Article  Google Scholar 

  20. Giese RF (1979) Hydroxyl orientations in 2:1 phyllosilicates. Clay Clay Miner 27(3):213–223

    Article  CAS  Google Scholar 

  21. Sainz-Diaz CI, Palin EJ, Hernández-Laguna A, Dove MT (2003) Octahedral cation ordering of illite and smectite. Theoretical exchange potential determination and Monte Carlo simulations. Phys Chem Miner 30(6):382–392. doi:10.1007/s00269-003-0324-4

    Article  CAS  Google Scholar 

  22. Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43(3):1993–2006

    Article  CAS  Google Scholar 

  23. Soler JM, Artacho E, Gale JD, García A, Junquera J, Ordejón P, Sánchez-Portal D (2002) The SIESTA method for ab initio order- N materials simulation. J Phys Condens Matter 14(11):2745

    Article  CAS  Google Scholar 

  24. Sainz-Diaz CI, Palin EJ, Dove MT, Hernandez-Laguna A (2003) Monte Carlo simulations of ordering of Al, Fe, and Mg cations in the octahedral sheet of smectites and illites. Am Mineral 88(7):1033–1045

    CAS  Google Scholar 

  25. Palin EJ, Dove MT, Hernández-Laguna A, Sainz-Díaz CI (2004) A computational investigation of the Al/Fe/Mg order–disorder behavior in the dioctahedral sheet of phyllosilicates. Am Mineral 89(1):164–175

    CAS  Google Scholar 

  26. Vedder W, McDonald RS (1963) Vibrations of the OH ions in muscovite. Journal of Chemical Physics 38(7):1583–1590. doi:10.1063/1.1776925

    Article  CAS  Google Scholar 

  27. Tokiwai K, Nakashima S (2010) Integral molar absorptivities of OH in muscovite at 20 to 650 °C by in-situ high-temperature IR microspectroscopy. Am Mineral 95(7):1052–1059. doi:10.2138/am.2010.3235

    Article  CAS  Google Scholar 

  28. Fialips C-I, Huo D, Yan L, Wu J, Stucki JW (2002) Infrared Study of Reduced and Reduced-Reoxidized Ferruginous Smectite. Clay Clay Miner 50(4):455–469

    Article  CAS  Google Scholar 

  29. Komadel P, Madejova J, Stucki JW (1995) Reduction and reoxidation of nontronite; questions of reversibility. Clay Clay Miner 43(1):105–110

    Article  CAS  Google Scholar 

  30. Bishop JL, Gates WP, Makarewicz HD, McKeown NK, Hiroi T (2011) Reflectance spectroscopy of beidellites and their importance for Mars. Clay Clay Miner 59(4):378–399. doi:10.1346/ccmn.2011.0590403

    Article  Google Scholar 

  31. Drits VA, Derkowski A, McCarty DK (2011) New insight into the structural transformation of partially dehydroxylated pyrophyllite. Am Mineral 96(1):153–171. doi:10.2138/am.2011.3605

    Article  CAS  Google Scholar 

  32. Lantenois S, Beny JM, Muller F, Champallier R (2007) Integration of Fe in natural and synthetic Al-pyrophyllites: an infrared spectroscopic study. Clay Miner 42(1):129–141. doi:10.1180/claymin.2007.042.1.09

    Article  CAS  Google Scholar 

  33. Emmerich K, Kahr G (2001) The cis- and trans-vacant variety of a montmorillonite: an attempt to create a model smectite. Appl Clay Sci 20(3):119–127. doi:10.1016/s0169-1317(01)00065-5

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are thankful to the “Centro Técnico de Informática” of CSIC and the “Centro de Supercomputación de la Universidad de Granada” for allowing the use of its computational facilities. E.E.-R. is thankful to Agencia Española de Cooperación Internacional (AECI) for financial support. This work was supported by Spanish Ministerio de Educación y Ciencia (MEC) and European FEDER grants FIS2010-22322-C02-02, CGL2005-02681 and CGL2008-02850 grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Escamilla-Roa.

Additional information

This paper belongs to Topical Collection QUITEL 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Escamilla-Roa, E., Hernández-Laguna, A. & Sainz-Díaz, C.I. Theoretical study of the hydrogen bonding and infrared spectroscopy in the cis-vacant polymorph of dioctahedral 2:1 phyllosilicates. J Mol Model 20, 2404 (2014). https://doi.org/10.1007/s00894-014-2404-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-014-2404-4

Keywords

Navigation