Dynamo Models of the Solar Cycle
 5.8k Downloads
 207 Citations
Abstract
This paper reviews recent advances and current debates in modeling the solar cycle as a hydromagnetic dynamo process. Emphasis is placed on (relatively) simple dynamo models that are nonetheless detailed enough to be comparable to solar cycle observations. After a brief overview of the dynamo problem and of key observational constraints, we begin by reviewing the various magnetic field regeneration mechanisms that have been proposed in the solar context. We move on to a presentation and critical discussion of extant solar cycle models based on these mechanisms. We then turn to the origin and consequences of fluctuations in these models, including amplitude and parity modulation, chaotic behavior, intermittency, and predictability. The paper concludes with a discussion of our current state of ignorance regarding various key questions relating to the explanatory framework offered by dynamo models of the solar cycle.
Keywords
Solar Cycle Flux Rope Differential Rotation Meridional Circulation Dynamo Model1 Introduction
1.1 Scope of review
The cyclic regeneration of the Sun’s largescale magnetic field is at the root of all phenomena collectively known as “solar activity”. A nearconsensus now exists to the effect that this magnetic cycle is to be ascribed to the inductive action of fluid motions pervading the solar interior. However, at this writing nothing resembling consensus exists regarding the detailed nature and relative importance of various possible inductive flow contributions.
My assigned task, to review “dynamo models of the solar cycle”, is daunting. I will therefore interpret this task as narrowly as I can get away with. This review will not discuss in any detail solar magnetic field observations, the physics of magnetic flux tubes and ropes, the generation of smallscale magnetic field in the Sun’s nearsurface layers, hydromagnetic oscillator models of the solar cycle, or magnetic field generation in stars other than the Sun. Most of these topics are all worthy of fulllength reviews, and do have a lot to bear on “dynamo models of the solar cycle”, but a line needs to be drawn somewhere. With the exception of recent cycle prediction schemes based explicitly on dynamo models, I also chose to exclude from consideration the voluminous literature dealing with prediction of sunspot cycle amplitudes, including the related literature focusing exclusively on the mathematical modelling of the sunspot number time series, in manner largely or even sometimes entirely decoupled from the underlying physical mechanisms of magnetic field generation.
This review thus focuses on the cyclic regeneration of the largescale solar magnetic field through the inductive action of fluid flows, as described by various approximations and simplifications of the partial differential equations of magnetohydrodynamics. Most current dynamo models of the solar cycle rely heavily on numerical solutions of these equations, and this computational emphasis is reflected throughout the following pages. Many of the mathematical and physical intricacies associated with the generation of magnetic fields in electrically conducting astrophysical fluids are well covered in a few recent reviews (see Hoyng, 2003; Ossendrijver, 2003), and so will not be addressed in detail in what follows. The focus is on models of the solar cycle, seeking primarily to describe the observed spatiotemporal variations of the Sun’s largescale magnetic field.
1.2 What is a “model”?
The review’s very title demands an explanation of what is to be understood by “model”. A model is a theoretical construct used as thinking aid in the study of some physical system too complex to be understood by direct inferences from observed data. A model is usually designed with some specific scientific questions in mind, and asking different questions about a given physical system will, in all legitimacy, lead to distinct model designs. A welldesigned model should be as complex as it needs to be to answer the questions having motivated its inception, but no more than that. Throwing everything into a model — usually in the name of “physical realism” — is likely to produce results as complicated as the data coming from the original physical system under study. Such model results are doubly damned, as they are usually as opaque as the original physical data, and, in addition, are not even realworld data!
Nearly all of the solar dynamo models discussed in this review rely on severe simplifications of the set of equations known to govern the dynamics of the Sun’s turbulent, magnetized fluid interior. Yet all of them are bona fide models, as defined here.
1.3 A brief historical survey
While regular observations of sunspots go back to the early seventeenth century, and discovery of the sunspot cycle to 1843, it is the landmark work of George Ellery Hale and collaborators that, in the opening decades of the twentieth century, demonstrated the magnetic nature of sunspots and of the solar activity cycle. In particular, Hale’s celebrated polarity laws established the existence of a wellorganized toroidal magnetic flux system, residing somewhere in the solar interior, as the source of sunspots. In 1919, Larmor suggested the inductive action of fluid motions as one of a few possible explanations for the origin of this magnetic field, thus opening the path to contemporary solar cycle modelling. Larmor’s suggestion fitted nicely with Hale’s polarity laws, in that the inferred equatorial antisymmetry of the solar internal toroidal fields is precisely what one would expect from the shearing of a largescale poloidal magnetic field by an axisymmetric and equatorially symmetric differential rotation pervading the solar interior. However, two decades later T.S. Cowling placed a major hurdle in Larmor’s path — so to speak — by demonstrating that even the most general purely axisymmetric flows could not, in themselves, sustain an axisymmetric magnetic field against Ohmic dissipation. This result became known as Cowling’s antidynamo theorem.
Serious trouble soon appeared on the horizon, however, and from no less than four distinct directions. First, it was realized that because of buoyancy effects, magnetic fields strong enough to produce sunspots could not be stored in the solar convection zone for sufficient lengths of time to ensure adequate amplification. Second, numerical simulations of turbulent thermallydriven convection in a thick rotating spherical shell produced magnetic field migration patterns that looked nothing like what is observed on the Sun. Third, and perhaps most decisive, the nascent field of helioseismology succeeded in providing the first determinations of the solar internal differential rotation, which turned out markedly different from those needed to produce solarlike dynamo solutions in the context of meanfield electrodynamics. Fourth, the ability of the αeffect and magnetic diffusivity to operate as assumed in meanfield electrodynamics was also called into question by theoretical calculations and numerical simulations.
1.4 Sunspots and the butterfly diagram

Sunspots are restricted to latitudinal bands some ≃ 30° wide, symmetric about the equator.

Sunspots emerge closer and closer to the equator in the course of a cycle, peaking in coverage at about ± 15° of latitude.
1.5 Organization of review
The remainder of this review is organized in five sections. In Section 2 the mathematical formulation of the solar dynamo problem is laid out in some detail, together with the various simplifications that are commonly used in modelling. Section 3 details various possible physical mechanisms of magnetic field generation. In Section 4, a selection of representative models relying on different such mechanisms are presented and critically discussed, with abundant references to the technical literature. Section 5 focuses on the origin of cycle amplitude fluctuations, again presenting some illustrative model results and reviewing recent literature on the topic. The concluding Section 6 offers a somewhat more personal discussion of current challenges and trends in solar dynamo modelling.
A great many review papers have been and continue to be written on dynamo models of the solar cycle, and the solar dynamo is discussed in most recent solar physics textbooks, notably Stix (2002), Foukal (2004), and Schrijver and Siscoe (2009). The series of review articles published in Proctor and Gilbert (1994) and FerrizMas and Núñez (2003) are also essential reading for more indepth reviews of some of the topics covered here. Among the most recent reviews, Petrovay (2000); Tobias (2002); Rüdiger and Arlt (2003); Usoskin and Mursula (2003); Ossendrijver (2003), and Brandenburg and Subramanian (2005) offer (in my opinion) particularly noteworthy alternate and/or complementary viewpoints to those expressed here.
2 Making a Solar Dynamo Model
2.1 Magnetized fluids and the MHD induction equation
2.2 The dynamo problem
The first term on right hand side of Equation (1) represents the inductive action of the flow field, and it can act as a source term for B; the second term, on the other hand, describes the resistive dissipation of the current systems supporting the magnetic field, and is thus always a global sink for B. The relative importances of these two terms is measured by the magnetic Reynolds number Rm = μL/η, obtained by dimensional analysis of Equation (1). Here η, u, and L are “typical” numerical values for the magnetic diffusivity, flow speed, and length scale over which B varies significantly. The latter, in particular, is not easy to estimate a priori, as even laminar MHD flows have a nasty habit of generating their own magnetic length scales (usually ∝ Rm^{1/2} at high Rm). Nonetheless, on length scales comparable to the sun itself, Rm is immense, and so is the usual viscous Reynolds number. This implies that energy dissipation will occur on length scales very much smaller than the solar radius.

cyclic polarity reversals with a ∼ 10 yr halfperiod,

equatorward migration of the sunspotgenerating deep toroidal field and its inferred strength,

poleward migration of the diffuse surface field,

observed phase lag between poloidal and toroidal components,

polar field strength,

observed antisymmetric parity,

predominantly negative (positive) magnetic helicity in the Northern (Southern) solar hemisphere.
Because of the great disparity of time and length scales involved, and the fact that the outer 30% in radius of the Sun are the seat of vigorous, thermallydriven turbulent convective fluid motions, the solar dynamo problem is very hard to tackle as a direct numerical simulation of the full set of MHD equations (but do see Section 4.9 below). Most solar dynamo modelling work has thus relied on simplification — usually drastic — of the MHD equations, as well as assumptions on the structure of the Sun’s magnetic field and internal flows.
2.3 Kinematic models
A first drastic simplification of the MHD system of equations consists in dropping Equation (2) altogether by specifying a priori the form of the flow field u. This kinematic regime remained until relatively recently the workhorse of solar dynamo modelling. Note that with u given, the MHD induction equation becomes truly linear in B. Moreover, helioseismology (ChristensenDalsgaard, 2002) has now pinned down with good accuracy two important solar largescale flow components, namely differential rotation throughout the interior, and meridional circulation in the outer half of the solar convection zone (for reviews, see Gizon, 2004; Howe, 2009). Given the low amplitude of observed torsional oscillations in the solar convective envelope, and the lack of significant cyclerelated changes in the internal solar differential rotation inferred by helioseismology to this date, the kinematic approximation is perhaps not as bad a working assumption as one may have thought, at least for the differential rotation part of the mean flow u.
2.4 Axisymmetric formulation
2.5 Boundary conditions and parity
The axisymmetric dynamo equations are to be solved in a meridional plane, i.e., R_{i} ≤ r ≤ R_{⊙} and 0 ≤ θ ≤ π, where the inner radial extent of the domain (R_{i}) need not necessarily extend all the way to r = 0. It is usually assumed that the deep radiative interior can be treated as a perfect conductor, so that R_{i} is chosen a bit deeper than the lowest extent of the region where dynamo action is taking place; the boundary condition at this depth is then simply A = 0, ∂(rB)/∂r = 0.
3 Mechanisms of Magnetic Field Generation
3.1 Poloidal to toroidal
However, there is no comparable source term in Equation (11). No matter what the toroidal component does, A will inexorably decay. Going back to Equation (12), notice now that once A is gone, the shearing term vanishes, which means that B will in turn inexorably decay. This is the essence of Cowling’s theorem: An axisymmetric flow cannot sustain an axisymmetric magnetic field against resistive decay^{2}.
3.2 Toroidal to poloidal
In view of Cowling’s theorem, we have no choice but to look for some fundamentally nonaxisymmetric process to provide an additional source term in Equation (11). It turns out that under solar interior conditions, there exist various mechanisms that can act as a source of poloidal field. In what follows we introduce and briefly describe the four classes of such mechanisms that appear most promising, but defer discussion of their implementation in dynamo models to Section 4, where illustrative solutions are also presented.
3.2.1 Turbulence and meanfield electrodynamics

Even if 〈B〉 is axisymmetric, the αterm in Equation (14) will effectively introduce source terms in both the A and B equations, so that Cowling’s theorem can be circumvented.

Parker’s idea of helical twisting of toroidal fieldlines by the Coriolis force corresponds to a specific functional form for α, and so finds formal quantitative expression in meanfield electrodynamics.
Other forms of turbulent mean electromotive forces are possible when the largescale magnetic field develops variations on scales comparable to that of largescale flows, notably angular velocity shears (see Rädler et al., 2003; Pipin and Seehafer, 2009, and references therein). This can lead to the appearance of an additional contribution on the RHS of Equation (14), of the general form δ × (∇ × 〈B〉). Such a meanfieldaligned emf cannot contribute to the sustenance of 〈B〉, but operating concurently with other inductive mechanisms, can in principle contribute to dynamo action.
3.2.2 Hydrodynamical shear instabilities
The tachocline is the rotational shear layer uncovered by helioseismology immediately beneath the Sun’s convective envelope, providing smooth matching between the latitudinal differential rotation of the envelope, and the rigidly rotating radiative core (see, e.g., Spiegel and Zahn, 1992; Brown et al., 1989; Tomczyk et al., 1995; Charbonneau et al., 1999, and references therein). Stability analyses of the latitudinal shear within the tachocline carried out in the framework of shallowwater theory suggest that the latitudinal shear can become unstable when vertical fluid displacement is allowed (Dikpati and Gilman, 2001). These authors also find that vertical fluid displacements correlate with the horizontal vorticity pattern in a manner resulting in a net kinetic helicity that can, in principle, impart a systematic twist to an ambient mean toroidal field. This can thus serve as a source for the poloidal component, and, in conjunction with rotational shearing of the poloidal field, lead to cyclic dynamo action. This is a selfexcited T → P mechanism, but it is not entirely clear at this juncture if (and how) it would operate in the strongfield regime (more on this in Section 4.5 below).
3.2.3 MHD instabilities
It has now been demonstrated, perhaps even beyond reasonable doubt, that the toroidal magnetic flux ropes that upon emergence in the photosphere give rise to sunspots can only be stored below the Sun’s convective envelope, more specifically in the thin, weakly subadiabatic overshoot layer conjectured to exist immediately beneath the coreenvelope interface (see, e.g., Schüssler, 1996; Schüssler and FerrizMas, 2003; Fan, 2009, and references therein). Only there are growth rates for the magnetic buoyancy instability sufficiently long to allow field amplification, while being sufficiently short for flux emergence to take place on timescales commensurate with the solar cycle (FerrizMas et al., 1994). These stability studies have also revealed the existence of regions of weak instability, in the sense that the growth rates are numbered in years. The developing instability is then strongly influenced by the Coriolis force, and develops in the form of growing helical waves travelling along the flux rope’s axis. This amounts to twisting a toroidal field in meridional planes, as with the Parker scenario, with the important difference that what is now being twisted is a flux rope rather than an individual fieldline. Nonetheless, an azimuthal electromotive force is produced. This represents a viable T → P mechanism, but one that can only act above a certain field strength threshold; in other words, dynamos relying on this mechanism are not selfexcited, since they require strong fields to operate. On the other hand, they operate without difficulties in the strong field regime.
Another related class of poloidal field regeneration mechanism is associated with the buoyant breakup of the magnetized layer (Matthews et al., 1995). Once again it is the Coriolis force that ends up imparting a net twist to the rising, arching structures that are produced in the course of the instability’s development (see Thelen, 2000a, and references therein). This results in a mean electromotive force that peaks where the magnetic field strength varies most rapidly with height. This could provide yet another form of tachocline αeffect, again subjected to a lower operating threshold. MHD versions of the hydrodynamical shear instability discussed in Section 3.2.2 have also been studied (see, e.g., Arlt et al., 2007b; Cally et al., 2008; Dikpati et al., 2009, and references therein), but the fundamentally nonlinear nature of the flowfield interaction makes it difficult to construct physically credible poloidal source terms to be incoporated into dynamo models.
3.2.4 The BabcockLeighton mechanism
The larger sunspot pairs (“bipolar magnetic regions”, hereafter BMR) often emerge with a systematic tilt with respect to the EW direction, in that the leading sunspot (with respect to the direction of solar rotation) is located at a lower latitude than the trailing sunspot, the more so the higher the latitude of the emerging BMR. This pattern, known as “Joy’s law”, is caused by the action of the Coriolis force on the secondary azimuthal flow that develops within the buoyantly rising magnetic toroidal flux rope that, upon emergence, produces a BMR (see, e.g. Fan et al., 1993; D’Silva and Choudhuri, 1993; Caligari et al., 1995). In conjunction with the antisymmetry of the toroidal field giving rise to sunspots evidenced by Hale’s sunspot laws, this tilt is at the heart of the BabcockLeighton mechanism for polar field reversal, as outlined in cartoon form in Figure 2.
Physically, what happens is that the leading spot of the BMR is located closer to the equator, and therefore experiences greater diffusive cancellation across the equatorial plane with the opposite polarity leading spots of the other hemisphere, than the trailing spots do. Upon decay, the latter’s magnetic flux is preferentially transported to the polar region by supergranular diffusion and the surface meridional flow. The net effect is to take a formerly toroidal magnetic field and convert a fraction of its associated flux into a net dipole moment, i.e., it represents a T → P mechanism. With the polar cap flux amounting to less than 0.1% of the unsigned magnetic flux emerging in active regions throughout a cycle, the efficiency of this socalled BabcockLeighton mechanism needs not be very high. Here again the resulting dynamos are not selfexcited, as the required tilt of the emerging BMR only materializes in a range of toroidal field strength going from a few 10^{4} G to about 2 × 10^{5} G.
4 A Selection of Representative Models
Each and every one of the T → P mechanisms described in Section 3.2 relies on fundamentally nonaxisymmetric physical effects, yet these must be “forced” into axisymmetric dynamo equations for the mean magnetic field. There are a great many different ways of doing so, which explains the wide variety of dynamo models of the solar cycle to be found in the recent literature. The aim of this section is to provide representative examples of various classes of models, to highlight their similarities and differences, and illustrate their successes and failings. In all cases, the model equations are to be understood as describing the evolution of the mean field 〈B〉, namely the largescale, axisymmetric component of the total solar magnetic field. Those wishing to code up their own versions of these (relatively) simple models should take note of the fact that Jouve et al. (2008) have set up a suite of benchmark calculations against which numerical dynamo solutions can be validated.
4.1 Model ingredients
All kinematic solar dynamo models have some basic “ingredients” in common, most importantly (i) a solar structural model, (ii) a differential rotation profile, and (iii) a magnetic diffusivity profile (possibly depthdependent).
It should be noted already that such a solarlike differential rotation profile is quite complex from the point of view of dynamo modelling, in that it is characterized by three partially overlapping shear regions: a strong positive radial shear in the equatorial regions of the tachocline, an even stronger negative radial shear in its the polar regions, and a significant latitudinal shear throughout the convective envelope and extending partway into the tachocline. As shown in panel B of Figure 5, for a tachocline of halfthickness w/R_{⊙} = 0.05, the midlatitude latitudinal shear at ../... = 0.7 is comparable in magnitude to the equatorial radial shear; its potential contribution to dynamo action should not be casually dismissed.
4.2 αΩ meanfield models
4.2.1 Calculating the αeffect and turbulent diffusivity
Meanfield electrodynamics is a subject well worth its own fulllength review, so the foregoing discussion will be limited to the bare essentials. Detailed discussion of the topic can be found in Krause and Rädler (1980), Moffatt (1978), and Rüdiger and Hollerbach (2004), and in the recent review articles by Ossendrijver (2003) and Hoyng (2003).
The cyclonic character of the αeffect also indicates that it is equatorially antisymmetric and positive in the Northern solar hemisphere, except perhaps at the base of the convective envelope, where the rapid variation of the turbulent velocity with depth can lead to a sign change. These expectations have been confirmed in a general sense by theory and numerical simulations (see, e.g., Rüdiger and Kitchatinov, 1993; Brandenburg et al., 1990; Ossendrijver et al., 2001; Käpylä et al., 2006a).
4.2.2 αquenching, diffusivityquenching, and flux loss through buoyancy
Diffusivityquenching is an even more uncertain proposition than αquenching, with various quenching models more complex than Equation (23) having been proposed (e.g., Rüdiger et al., 1994). Measurements of the components of the α and β tensors in the convective turbulence simulations of Brandenburg et al. (2008) do suggest a much stronger magnetic quenching of the αeffect than of the turbulent diffusivity, but many aspects of this problem remain open. One appealing aspect of diffusivity quenching is its potential ability to produce localized concentrations of strong magnetic fields, exceeding equipartition strength under some conditions (Gilman and Rempel, 2005). On the other hand, the stability analyses of Arlt et al. (2007b,a) suggests that there exist a lower limit to the magnetic diffusivity, below which equipartitionstrength toroidal magnetic field beneath the coreenvelope interface become unstable.
Another amplitudelimiting mechanism is the loss of magnetic flux through magnetic buoyancy. Magnetic fields concentrations are buoyantly unstable in the convective envelope, and so should rise to the surface on time scales much shorter than the cycle period (see, e.g., Parker, 1975; Schüssler, 1977; MorenoInsertis, 1983, 1986). This is often incorporated on the righthandside of the dynamo equations by the introduction of an ad hoc loss term of the general form —ƒ(〈B〉) 〈B〉; the function ƒ measures the rate of flux loss, and is often chosen proportional to the magnetic pressure 〈B〉^{2}, thus yielding a cubic damping nonlinearity in the meanfield.
4.2.3 The αΩ dynamo equations
4.2.4 Eigenvalue problems and initial value problems
4.2.5 Dynamo waves
4.2.6 Representative results
Examination of these animations reveals that the dynamo is concentrated in the vicinity of the coreenvelope interface, where the adopted radial profile for the αeffect is maximal (cf. Figure 6). In conjunction with a fairly thin tachocline, the radial shear therein then dominates the induction of the toroidal magnetic component. With an eye on Figure 5, notice also how the dynamo waves propagates along isocontours of angular velocity, in agreement with the ParkerYoshimura sign rule (cf. Section 4.2.5). In the butterfly diagram, this translates a systematic tilt of the isocontours of toroidal magnetic field. Note that even for an equatoriallyconcentrated αeffect (Panels B and C), a strong polar branch is nonetheless apparent in the butterfly diagrams, a direct consequence of the stronger radial shear present at high latitudes in the tachocline (see also corresponding animations). Models using an αeffect operating throughout the whole convective envelope, on the other hand, would feed primarily on the latitudinal shear therein, so that for positive C_{ α } the dynamo mode would propagate radially upward in the envelope (see Lerche and Parker, 1972).
It is noteworthy that coexisting dynamo branches, as in Panel B of Figure 8, can have distinct dynamo periods, which in nonlinearly saturated solutions leads to longterm amplitude modulation. This is typically not expected in dynamo models where the only nonlinearity present is a simple algebraic quenching formula such as Equation (23). Note that this does not occur for the C_{ α } < 0 solution, where both branches propagate away from each other, but share a common latitude of origin and so are phasedlocked at the onset (cf. Panel C of Figure 8).
A common property of all oscillatory αΩ solutions discussed so far is that their period, for given values of the dynamo numbers C_{ α }, C_{Ω}, is inversely proportional to the numerical value adopted for the (turbulent) magnetic diffusivity η_{T}. The ratio of poloidaltotoroidal field strength, in turn, is found to scale as some power (usually close to 1/2) of the ratio C_{ α }/C_{Ω}, at a fixed value of the product C_{ α } × C_{Ω}.
The models discussed above are based on rather minimalistics and partly ad hoc assumptions on the form of the αeffect. More elaborate models have been proposed, relying on calculations of the full αtensor based on some underlying turbulence models (see, e.g., Kitchatinov and Rüdiger, 1993). While this approach usually displaces the ad hoc assumptions into the turbulence model, it has the definite merit of offering an internally consistent approach to the calculation of turbulent diffusivities and largescale flows. Rüdiger and Brandenburg (1995) remain a good example of the current stateoftheart in this area; see also Rüdiger and Arlt (2003), and references therein.
4.2.7 Critical assessment
From a practical point of view, the outstanding success of the meanfield αΩ model remains its robust explanation of the observed equatorward drift of toroidal fieldtracing sunspots in the course of the cycle in terms of a dynamowave. On the theoretical front, the model is also buttressed by meanfield electrodynamics which, in principle, offers a physically sound theory from which to compute the (critical) αeffect and magnetic diffusivity. The models’ primary uncertainties turn out to lie at that level, in that the application of the theory to the Sun in a tractable manner requires additional assumptions that are most certainly not met under solar interior conditions. Those uncertainties are exponentiated when taking the theory into the nonlinear regime, to calculate the dependence of the αeffect and diffusivity on the magnetic field strength. This latter problem remains very much open at this writing.
4.3 Interface dynamos
4.3.1 Strong αquenching and the saturation problem
Tobias (1996a) discusses in detail a related Cartesian model bounded in both horizontal and vertical direction, but with constant magnetic diffusivity η throughout the domain. Like Parker’s original interface configuration, his model includes an αeffect residing in the upper half of the domain, with a purely radial shear in the bottom half. The introduction of diffusivity quenching then reduces the diffusivity in the shear region, “naturally” turning the model into a bona fide interface dynamo, supporting once again oscillatory solutions in the form of dynamo waves travelling in the “latitudinal” xdirection. This basic model was later generalized by various authors (Tobias, 1997; Phillips et al., 2002) to include the nonlinear backreaction of the dynamogenerated magnetic field on the differential rotation; further discussion of such nonlinear models is deferred to Section 5.3.1.
4.3.2 Representative results
In spherical geometry, and especially in conjunction with a solarlike differential rotation profile, making a working interface dynamo model is markedly trickier than if only a radial shear is operating, as in the Cartesian models discussed earlier (see Charbonneau and MacGregor, 1997; Markiel and Thomas, 1999; Zhang et al., 2003a). Panel A of Figure 9 shows a butterfly diagram for a numerical interface solution with C_{Ω} = 2.5 × 10^{5}, C_{ α } = +10, and a coretoenvelope diffusivity contrast Δ_{η} = 10^{2}. The poleward propagating equatorial branch is precisely what one would expect from the combination of positive radial shear and positive αeffect according to the ParkerYoshimura sign rule^{8}. Here the αeffect is (artificially) concentrated towards the equator, by imposing a latitudinal dependency α ∼ sin(4θ) for π/4 ≤ θ ≤ 3π/4, and zero otherwise.
The model does achieve the kind of toroidal field amplification one would like to see in interface dynamos. This can be seen in Panel B of Figure 9, which shows radial cuts of the toroidal field taken at latitude π/8, and spanning half a cycle. Notice how the toroidal field peaks below the coreenvelope interface (vertical dotted line), well below the αeffect region and near the peak in radial shear. Panel C of Figure 9 shows how the ratio of peak toroidal field below and above r_{c} varies with the imposed diffusivity contrast Δ_{ η }. The dashed line is the dependency expected from Equation (32). For relatively low diffusivity contrast, 1.5 ≤ log(Δ_{ η }) ≲ 0, both the toroidal field ratio and dynamo period increase as ∼ (Δ_{ η })^{1/2}. Below log(Δ_{ η }) ∼ 1.5, the max(B)ratio increases more slowly, and the cycle period falls, contrary to expectations for interface dynamos (see, e.g., MacGregor and Charbonneau, 1997). This is basically an electromagnetic skindepth effect; the cycle period is such that the poloidal field cannot diffuse as deep as the peak in radial shear in the course of a half cycle. The dynamo then runs on a weaker shear, thus yielding a smaller field strength ratio and weaker overall cycle; on the energetics of interface dynamos (see Ossendrijver and Hoyng, 1997, also Steiner and FerrizMas, 2005).
4.3.3 Critical assessment
So far the great success of interface dynamos remains their ability to evade αquenching even in its “strong” formulation, and so produce equipartition or perhaps even superequipartition mean toroidal magnetic fields immediately beneath the coreenvelope interface. They represent the only variety of dynamo models formally based on meanfield electrodynamics that can achieve this without additional physical effects introduced into the model. All of the uncertainties regarding the calculations of the αeffect and magnetic diffusivity carry over from αΩ to interface models, with diffusivity quenching becoming a particularly sensitive issue in the latter class of models (see, e.g., Tobias, 1996a).
Interface dynamos suffer acutely from something that is sometimes termed “structural fragility”. Many gross aspects of the model’s dynamo behavior often end up depending sensitively on what one would normally hope to be minor details of the model’s formulation. For example, the interface solutions of Figure 9 are found to behave very differently if the αeffect region is displaced slightly upwards, or assumes other latitudinal dependencies. Moreover, as exemplified by the calculations of Mason et al. (2008), this sensitivity carries over to models in which the coupling between the two source regions is achieved by transport mechanisms other than diffusion. This sensitivity is exacerbated when a latitudinal shear is present in the differential rotation profile; compare, e.g., the behavior of the C_{ α } > 0 solutions discussed here to those discussed in Markiel and Thomas (1999). Often in such cases, a midlatitude αΩ dynamo mode, powered by the latitudinal shear within the tachocline and envelope, interferes with and/or overpowers the interface mode (see also Dikpati et al., 2005).
Because of this structural sensitivity, interface dynamo solutions also end up being annoyingly sensitive to choice of timestep size, spatial resolution, and other purely numerical details. From a modelling point of view, interface dynamos lack robustness.
4.4 Meanfield models including meridional circulation
Meridional circulation is unavoidable in turbulent, compressible rotating convective shells. It basically results from an imbalance between Reynolds stresses and buoyancy forces. The ∼ 15 m s^{1} poleward flow observed at the surface (see, e.g., Hathaway, 1996; Ulrich and Boyden, 2005) has now been detected helioseismically, down to r/R_{⊙} ≃ 0.85 (Schou and Bogart, 1998; Braun and Fan, 1998), without significant departure from the poleward direction except locally and very close to the surface, in the vicinity of active region belts (see Gizon, 2004; Gizon and Rempel, 2008, and references therein), and in polar latitudes at some phases of the solar cycle (Haber et al., 2002). Long considered unimportant from the dynamo point of view, meridional circulation has gained popularity in recent years, initially in the BabcockLeighton context but now also in other classes of models.
4.4.1 Representative results
Meridional circulation can bodily transport the dynamogenerated magnetic field (terms labeled “advective transport” in Equations (11, 12)), and therefore, for a (presumably) solarlike equatorward return flow that is vigorous enough — in the sense of Rm being large enough — overpower the ParkerYoshimura propagation rule embodied in Equation (30). This was nicely demonstrated by Choudhuri et al. (1995), in the context of a meanfield αΩ model with a positive αeffect concentrated near the surface, and a latitudeindependent, purely radial shear at the coreenvelope interface. The behavioral turnover from dynamo wavelike solutions to circulationdominated magnetic field transport sets in when the circulation speed becomes comparable to the propagation speed of the dynamo wave. In the circulationdominated regime, the cycle period loses sensitivity to the assumed turbulent diffusivity value, and becomes determined primarily by the circulation’s turnover time. Models achieving equatorward propagation of the deep toroidal magnetic component in this manner are now often called fluxtransport dynamos.
At Rm = 50, little difference is seen with the circulationfree solutions (cf. Figure 8A), except for an increase in the cycle frequency, due to the Doppler shift experienced by the equatorwardly propagating dynamo wave (see Roberts and Stix, 1972). At Rm = 100 (part B), the cycle frequency has further increased and the poloidal component produced in the highlatitude region of the tachocline is now advected to the equatorial regions on a timescale becoming comparable to the cycle period, so that a cyclic activity, albeit with a longer period, becomes apparent at low latitudes. At Rm = 10^{3} (panel C and animation in Figure 11) the dynamo mode now peaks at midlatitude, a consequence of the inductive action of the latitudinal shear, favored by the significant stretching experienced by the poloidal fieldlines as they get advected equatorward. At Rm = 2000 the original high latitude dynamo mode has all but vanished, and the midlatitude mode is dominant. The cycle period is now set primarily by the turnover time of the meridional flow; this is the telltale signature of fluxtransport dynamos.
All this may look straightforward, but it must be emphasized that not all dynamo models with solarlike differential rotation behave in this (relatively) simple manner. For example, the C_{ α } = 10 solution with α ∼ sin^{2} θ cos θ (Figure 8C) transits to a steady mode as Rm increases above ∼ 10^{2}. Moreover, the sequence of α ∼ cos θ shown in Figure 12 actually presents a narrow window around Rm ∼ 200 where the dynamo is decaying, due to a form of destructive interference between the highlatitude αΩ mode and the midlatitude advectiondominated dynamo mode that dominates at higher values of Rm. Qualitatively similar results were obtained by Küker et al. (2001) using different prescriptions for the αeffect and solarlike differential rotation (see in particular their Figure 11; see also Rüdiger and Elstner, 2002; Bonanno et al., 2003). When field transport by turbulent pumping are included (see Käpylä et al., 2006b), αΩ models including meridional circulation can provide timelatitude “butterfly” diagrams that are reasonably solarlike.
4.4.2 Critical assessment
From the modelling pointofview, in the kinematic regime at least the inclusion of meridional circulation yields a much better fit to observed surface magnetic field evolution, as well as a robust setting of the cycle period. Whether it can provide an equally robust equatorward propagation of the deep toroidal field is less clear. The results presented here in the context of meanfield αΩ models suggest a rather complex overall picture, and in interface dynamos the cartesian solutions obtained by Petrovay and Kerekes (2004) even suggest that dynamo action can be severely hindered. Yet, in other classes of models discussed below (Sections 4.5 and 4.8), circulation does have this desired effect (see also Seehafer and Pipin, 2009, for an intriguing meanfield model calculation not relying on the αeffect).
On the other hand, dynamo models including meridional circulation tend to produce surface polar field strength largely in excess of observed values, unless magnetic diffusion is significantly enhanced in the surface layers, and/or field submergence takes place very efficiently. This is a direct consequence of magnetic flux conservation in the converging poleward flow. This situation carries over to the other types of models to be discussed in Sections 4.5 and 4.8, unless additional modelling assumptions are introduced (e.g., enhanced surface magnetic diffusivity, see Dikpati et al., 2004), or if a counterrotating meridional flow cell is introduced in the high latitude regions (Dikpati et al., 2004; Jiang et al., 2009), a feature that has actually been detected in surface Doppler measurements as well as helioseismically during cycle 22 (see Haber et al., 2002; Ulrich and Boyden, 2005).
A more fundamental and potential serious difficulty harks back to the kinematic approximation, whereby the form and speed of up is specified a priori. Meridional circulation is a relatively weak flow in the bottom half of the solar convective envelope (see Miesch, 2005), and the stochastic fluctuations of the Reynolds stresses powering it are expected to lead to strong spatiotemporal variations, and expectation verified by both analytical models (Rempel, 2005) and numerical simulations (Miesch, 2005). The ability of thus meridional flow to merrily advect equipartitionstrength magnetic fields should not be taken for granted (but do see Rempel, 2006a,b).
Before leaving the realm of meanfield dynamo models it is worth noting that many of the conceptual difficulties associated with calculations of the αeffect and turbulent diffusivity are not unique to the meanfield approach, and in fact carry over to all models discussed in the following sections. In particular, to operate properly all of the upcoming solar dynamo models require the presence of a strongly enhanced magnetic diffusivity, presumably of turbulent origin, at least in the convective envelope. In this respect, the rather low value of the turbulent magnetic diffusivity needed to achieve high enough Rm in flux transport dynamos is also somewhat problematic, since the corresponding turbulent diffusivity ends up some two orders of magnitude below the (uncertain) meanfield estimates. However, the model calculations of MuñozJaramillo et al. (2010a) indicate that magnetic diffusivity quenching may offer a viable solution to this latter quandary.
4.5 Models based on shear instabilities
We now turn to a recently proposed class of flux transport dynamo models relying on the latitudinal shear instability of the angular velocity profiles in the upper radiative portion of the solar tachocline (Dikpati and Gilman, 2001; Dikpati et al., 2004). These authors work with what are effectively the mean field αΩ dynamo equations including meridional circulation. They design their “tachocline αeffect” in the form of a latitudinal parameterization of the longitudinallyaveraged kinetic helicity associated with the planforms they obtain from a linear hydrodynamical stability analysis of the latitudinal differential rotation in the part of the tachocline coinciding with the overshoot region. The analysis is carried out in the framework of shallowwater theory (see Dikpati and Gilman, 2001). In analogy with meanfield theory, the resulting αeffect is assumed to be proportional to kinetic helicity but of opposite sign (see Equation (19)), and ends up predominantly positive at midlatitudes in the Northern solar hemisphere. In their dynamo model, Dikpati and Gilman (2001) use a solarlike differential rotation, depthdependent magnetic diffusivity and meridional circulation pattern much similar to those shown in Figures 5, 6, and 10 herein. The usual ad hoc αquenching formula (cf. Equation (23)) is introduced as the sole amplitudelimiting nonlinearity.
4.5.1 Representative solutions
4.5.2 Critical assessment
While these models are only a recent addition to the current “zoo” of solar dynamo models, they have been found to compare favorably to a number of observed solar cycle features. The model can be adjusted to yield equatorward propagating dominant activity belts, solarlike cycle periods, and correct phasing between the surface polar field and the tachocline toroidal field. These features can be traced primarily to the advective action of the meridional flow. They also yield the correct solution parity, and are selfexcited. Like conventional αΩ models relying on meridional circulation to set the propagation direction of dynamo waves (see Section 4.4.2), the meridional flow must remain unaffected by the dynamogenerated magnetic field at least up to equipartition strength, a potentially serious difficulty also shared by the BabcockLeighton models to be discussed in Section 4.8 below.
The primary weakness of these models, in their present form, is their reliance on a linear stability analysis that altogether ignores the destabilizing effect of magnetic fields. Gilman and Fox (1997) have demonstrated that the presence of even a weak toroidal field in the tachocline can very efficiently destabilize a latitudinal shear profile that is otherwise hydrodynamically stable (see also Zhang et al., 2003b). Relying on a purely hydrodynamical stability analysis is then hard to reconcile with a dynamo process producing strong toroidal field bands of alternating polarities migrating towards the equator in the course of the cycle, especially since latitudinally concentrated toroidal fields have been found to be unstable over a very wide range of toroidal field strengths (see Dikpati and Gilman, 1999). Achieving dynamo saturation through a simple amplitudelimiting quenching formula such as Equation (23) is then also hard to justify. Progress has been made in studying nonlinear development of both the hydrodynamical and MHD versions of the shear instability (see, e.g., Cally, 2001; Cally et al., 2003), so that the needed improvements on the dynamo front are hopefully forthcoming.
4.6 Models based on buoyant instabilities of sheared magnetic layers
Dynamo models relying on the buoyant instability of magnetized layers have been presented in Thelen (2000b), the layer being identified with the tachocline. Here also the resulting azimuthal electromotive force is parameterized as a meanfieldlike αeffect, introduced into the standard αΩ dynamo equations. The model is nonlinear, in that it includes the magnetic backreaction on the largescale, purely radial velocity shear within the layer. The analysis of Thelen (2000a) indicates that the αeffect is negative in the upper part of the shear layer. Cyclic solutions are found in substantial regions of parameter space, and, not surprisingly, the solutions exhibit migratory wave patterns compatible with the ParkerYoshimura sign rule.
Representative solutions for this class of dynamo models can be examined in Thelen (2000b). These models are not yet at the stage where they can be meaningfully compared with the solar cycle. They do have a number of attractive features, including their ability to operate in the strong field regime.
4.7 Models based on flux tube instabilities
4.7.1 From instability to αeffect
4.7.2 Representative solutions
Dynamo models relying on the nonaxisymmetric buoyant instability of toroidal magnetic fields were first proposed by Schmitt (1987), and further developed by FerrizMas et al. (1994); Schmitt et al. (1996), and Ossendrijver (2000a) for the case of toroidal flux tubes. These dynamo models are all meanfieldlike, in that the mean azimuthal electromotive force arising from instability of the flux tubes is parametrized as an αeffect, and the dynamo equations solved are then the same as those of the conventional αΩ meanfield model (see Section 4.2.3), including various forms of algebraic αquenching as the sole amplitudelimiting nonlinearity. As with meanfield models, the dynamo period presumably depends sensitively on the assumed value of (turbulent) magnetic diffusivity, and equatorward propagation of the dynamo wave requires a negative αeffect at low latitudes.
4.7.3 Critical assessment
Although it has not yet been comprehensively studied, this dynamo mechanism has a number of very attractive properties. It operates without difficulty in the strong field regime (in fact it requires strong fields to operate). It also naturally yields dynamo action concentrated at low latitudes, so that a solarlike butterfly diagram can be readily produced from a negative αeffect even with a solarlike differential rotation profile, at least judging from the solutions presented in Schmitt et al. (1996) and Ossendrijver (2000a,b).
Difficulties include the need of a relatively finely tuned magnetic diffusivity to achieve a solarlike dynamo period, and a finely tuned level of subadiabaticity in the overshoot layer for the instability to kick on and off at the appropriate toroidal field strengths (compare Figures 1 and 2 in FerrizMas et al., 1994). The nonlinear saturation of the instability is probably less of an issue here than with the αeffect based on purely hydrodynamical shear instability (see Section 4.5 above), since, as the instability grows, the flux ropes leave the site of dynamo action by entering the convection zone and buoyantly rising to the surface.
The effects of meridional circulation in this class of dynamo models has yet to be investigated; this should be particularly interesting, since both analytic calculations and numerical simulations suggest a positive αeffect in the Northern hemisphere, which should then produce poleward propagation of the dynamo wave at low latitude. Meridional circulation could then perhaps produce equatorward propagation of the dynamo magnetic field even with a positive αeffect, as it does in true meanfield models (cf. Section 4.4).
4.8 BabcockLeighton models
Solar cycle models based on what is now called the BabcockLeighton mechanism were first proposed by Babcock (1961) and further elaborated by Leighton (1964, 1969), yet they were all but eclipsed by the rise of meanfield electrodynamics in the mid to late 1960s. Their revival was motivated not only by the mounting difficulties with meanfield models alluded to earlier, but also by the fact that synoptic magnetographic monitoring over solar cycles 21 and 22 has offered strong evidence that the surface polar field reversals are indeed triggered by the decay of active regions (see Wang et al., 1989; Wang and Sheeley Jr, 1991, and references therein). The crucial question is whether this is a mere sideeffect of dynamo action taking place independently somewhere in the solar interior, or a dominant contribution to the dynamo process itself.
Meridional circulation clearly plays a key role in this “conveyor belt” model of the solar cycle, by providing the needed link between the two spatially segregated source regions. Not surprisingly, topologically more complex multicells circulation patterns can lead to markedly different dynamo behavior (see, e.g., Bonanno et al., 2006; Jouve and Brun, 2007), and can also have a profound impact on the evolution of the surface magnetic field (Dikpati et al., 2004; Jiang et al., 2009).
4.8.1 Formulation of a poloidal source term
As with all other dynamo models discussed thus far, the troublesome ingredient in dynamo models relying on the BabcockLeighton mechanism is the specification of an appropriate poloidal source term, to be incorporated into the meanfield axisymmetric dynamo equations. In essence, all implementations discussed here are inspired by the results of numerical simulations of the buoyant rise of thin flux tubes, which, in principle allow to calculate the emergence latitudes and tilts of BMRs, which is at the very heart of the BabcockLeighton mechanism.
The first posthelioseismic dynamo model based on the BabcockLeighton mechanism is due to Wang et al. (1991); these authors developed a coupled twolayer model (2 × 1D), where a poloidal source term is introduced in the upper (surface) layer, and made linearly proportional to the toroidal field strength at the corresponding latitude in the bottom layer. A similar nonlocal approach was later used by Dikpati and Charbonneau (1999), Charbonneau et al. (2005) and Guerrero and de Gouveia Dal Pino (2008) in their 2D axisymmetric model implementation, using a solarlike differential rotation and meridional flow profiles similar to Figures 5 and 10 herein. The otherwise much similar implementation of Nandy and Choudhuri (2001, 2002) and Chatterjee et al. (2004), on the other hand, uses a meanfieldlike local αeffect, concentrated in the upper layers of the convective envelope and operating in conjunction with a “buoyancy algorithm” whereby toroidal fields located at the coreenvelope interface are locally removed and deposited in the surface layers when their strength exceed some preset threshold. The implementation developed by Durney (1995) is probably closest to the essence of the BabcockLeighton mechanism (see also Durney et al., 1993; Durney, 1996, 1997); whenever the deepseated toroidal field exceeds some preset threshold, an axisymmetric “double ring” of vector potential is deposited in the surface layer, and left to spread latitudinally under the influence of magnetic diffusion. As shown by MuñozJaramillo et al. (2010b), this formulation, used in conjunction with the axisymmetric models discussed in what follows, also leads to a good reproduction of the observed synoptic evolution of surface magnetic flux.
In all cases the poloidal source term is concentrated in the outer convective envelope, and, in the language of meanfield electrodynamics, amounts to a positive αeffect, in that a positive dipole moment is being produced from a positive deepseated mean toroidal field. The Dikpati and Charbonneau (1999) and Nandy and Choudhuri (2001) source terms both have an αquenchinglike upper operating threshold on the toroidal field strength. This is motivated by simulations of rising thin flux tubes, indicating that tubes with strengths in excess of about 100 kG emerge without the EW tilt required for the BabcockLeighton mechanism to operate. The Durney (1995), Nandy and Choudhuri (2001), and Charbonneau et al. (2005) implementations also have a lower operating threshold, as suggested by thin flux tubes simulations.
4.8.2 Representative results
Although it exhibits the desired equatorward propagation, the toroidal field butterfly diagram in Panel A of Figure 18 peaks at much higher latitude (∼ 45°) than the sunspot butterfly diagram (∼ 15° – 20°, cf. Figure 3). This occurs because this is a solution with high magnetic diffusivity contrast, where meridional circulation closes at the coreenvelope interface, so that the latitudinal component of differential rotation dominates the production of the toroidal field, a situation that persists in models using more realistic differential profiles taken from helioseismic inversions (see MuñozJaramillo et al., 2009). This difficulty can be alleviated by letting the meridional circulation penetrate below the coreenvelope interface. Solutions with such flows are presented, e.g., in Dikpati and Charbonneau (1999) and Nandy and Choudhuri (2001, 2002). These latter authors have argued that this is in fact essential for a solarlike butterfly diagram to materialize, but this conclusion appears to be modeldependent at least to some degree (Guerrero and Muñoz, 2004; Guerrero and de Gouveia Dal Pino, 2007; MuñozJaramillo et al., 2009). From the hydrodynamical standpoint, the boundary layer analysis of Gilman and Miesch (2004) (see also Rüdiger et al., 2005) indicates no significant penetration below the base of the convective envelope, although this conclusion has not gone unchallenged (see Garaud and Brummell, 2008), leaving the whole issue somewhat muddled at this juncture. The presentday observed solar abundances of Lithium and Beryllium restrict the penetration depth to r/R ≃ 0.62 (Charbonneau, 2007b), which is unfortunately too deep to pose very useful constraints on dynamo models, so that the final word will likely come from helioseismology, hopefully in the not too distant future.
4.8.3 Critical assessment
As with most models including meridional circulation published to date, BabcockLeighton dynamo models usually produce excessively strong polar surface magnetic fields. While this difficulty can be fixed by increasing the magnetic diffusivity in the outermost layers, in the context of the BabcockLeighton models this then leads to a much weaker poloidal field being transported down to the tachocline, which can be problematic from the dynamo pointofview. On this see Dikpati et al. (2004) for illustrative calculations, and Mason et al. (2002) on the closely related issue of competition between surface and deepseated αeffect. The model calculations of Guerrero and de Gouveia Dal Pino (2008) suggest that downward turbulent pumping may be a better option to reduce the strength of the polar field without impeding dynamo action.
Because of the strong amplification of the surface poloidal field in the polewardconverging meridional flow, BabcockLeighton models tend to produce a significant — and often dominant — polar branch in the toroidal field butterfly diagram. Many of the models explored to date tend to produce symmetricparity solutions when computed poletopole over a full meridional plane (see, e.g., Dikpati and Gilman, 2001), but it is not clear how serious a problem this is, as relatively minor changes to the model input ingredients may flip the dominant parity (see Chatterjee et al., 2004; Charbonneau, 2007a, for specific examples). Nonetheless, in the advectiondominated regime there is definitely a tendency for the quadrupolar symmetry of the meridional flow to imprint itself on the dynamo solutions. A related difficulty, in models operating in the advectiondominated regime, is the tendency for the dynamo to operate independently in each solar hemisphere, so that crosshemispheric synchrony is lost (Charbonneau, 2005, 2007a; Chatterjee and Choudhuri, 2006).
Because the BabcockLeighton mechanism is characterized by a lower operating threshold, the resulting dynamo models are not selfexcited. On the other hand, the BabcockLeighton mechanism is expected to operate even for toroidal fields exceeding equipartition, the main uncertainties remaining the level of amplification taking place when sunspotforming toroidal flux ropes form from the dynamogenerated mean magnetic field. The nonlinear behavior of this class of models, at the level of magnetic backreaction on the differential rotation and meridional circulation, remains largely unexplored.
4.9 Numerical simulations of solar dynamo action
Ultimately, the solar dynamo problem should be tackled as a (numerical) solution of the complete set of MHD partial differential equations in a rotating, stratified spherical domain undergoing thermallydriven turbulent convection in its outer 30% in radius. The first fullfledged attempts to do so go back some some thirty years, to the simulations of Gilman and Miller (1981); Gilman (1983); Glatzmaier (1985a,b). These epochmaking simulations did produce cyclic dynamo action and latitudinal migratory patterns suggestive of the dynamo waves of meanfield theory. However, the associated differential rotation profile turned out nonsolar, as did the magnetic field’s spatiotemporal evolution. In retrospect this is perhaps not surprising, as limitations in computing resources forced these simulations to be carried out in a parameter regime far removed from solar interior conditions. Later simulations taking advantages of massively parallel computing architectures did managed to produce tolerably solarlike mean internal differential rotation (see, e.g., Miesch and Toomre, 2009, and references therein), as well as copious smallscale magnetic field, but failed to generate a spatially wellorganized largescale magnetic component (see Brun et al., 2004). Towards this end the inclusion of a stably stratified fluid layer below the convecting layers is now believed to be advantageous (although not strictly necessary, see Brown et al., 2010) as it allows the development of a tachoclinelike shear layer where magnetic field produced within the convection zone can accumulate in response to turbulent pumping from above, and be further amplified by the rotational shear (see Browning et al., 2006, also Tobias et al., 2001, 2008, and references therein, for related behavior in local cartesian simulations).
Although much remains to be investigated regarding the mode of dynamo action in these simulations, some encouraging links to meanfield theory (Section 3.2.1) do emerge. The fact that a positive toroidal component breeds here a positive dipole moment is what one would expect from a turbulent αeffect (more precisely, the α_{ φφ } tensor component) positive in the Northern hemisphere. A posteriori calculation of the mean electromotive force \(\mathcal{E} = \left\langle {u' \times B'} \right\rangle\) does reveal a clear hemispheric pattern, with ε_{φ} having the same sign in both hemisphere, but changing sign from one cycle to the next, again consistent with the idea that the turbulent ..effect is the primary source of the largescale poloidal component. Likewise, having a welldefined axisymmetric dipolar component being sheared by an axisymmetric differential rotation is consistent with the buildup of a largescale toroidal component antisymmetric about the equatorial plane.
On the other hand, calculation of the r and θcomponents of the mean electromotive force indicates that the latter contributes to the production of the toroidal field at a level comparable to shearing of the poloidal component by differential rotation, suggestive of what, in meanfield electrodynamics parlance, is known as an α^{2}Ω dynamo. Calculation of the αtensor components also reveals that the latter do not undergo significant variations between maximal and minimal phases of the cycle, suggesting that αquenching is not the primary amplitudelimiting mechanism in this specific simulation run. Although it would premature to claim that these simulations vindicate the predictions of meanfield theory, to the level at which they have been analyzed thus far, they do not appear to present outstanding departures from the meanfield Weltanschau.
5 Amplitude Fluctuations, Multiperiodicity, and Grand Minima
Since the basic physical mechanism(s) underlying the operation of the solar cycle are not yet agreed upon, attempting to understand the origin of the observed fluctuations of the solar cycle may appear to be a futile undertaking. Nonetheless, work along these lines continues at full steam in part because of the high stakes involved; varying levels of solar activity may contribute significantly to climate change (see Haigh, 2007, and references therein). Moreover, the frequencies of all eruptive phenomena relevant to space weather are strongly modulated by the amplitude of the solar cycle. Finally, certain aspects of the observed fluctuations may actually hold important clues as to the physical nature of the dynamo process.
5.1 The observational evidence: An overview
At any rate, the notion of a nicely regular 11/22year cycle does not hold long upon even cursory scrutiny, as the amplitude of successive cycles is clearly not constant, and their overall shape often differs significantly from one cycle to another (cf. cycles 14 and 15 in Panel A of Figure 22). Closer examination of Figure 22 also reveals that even the cycle’s duration is not uniform, spanning in fact a range going from 9 yr (cycle 2) to nearly 14 yr (cycles 4 and 23). These amplitude and duration variations are not a sunspotspecific artefact; similar variations are in fact observed in other activity proxies with extended records, most notably the 10.7 cm radio flux (Tapping, 1987), polar faculae counts (Sheeley Jr, 1991), and the cosmogenic radioisotopes ^{14}C and ^{10}Be (Beer et al., 1991; Beer, 2000).
Equally striking is the pronounced dearth of sunspots in the interval 1645 – 1715 (see Panel C of Figure 22); this is not due to lack of observational data (see Ribes and NesmeRibes, 1993; Hoyt and Schatten, 1996), but represents instead a phase of strongly suppressed activity now known as the Maunder Minimum (Eddy, 1976, 1983, and references therein). Evidence from cosmogenic radioisotopes indicates that similar periods of suppressed activity have taken place in ca. 1282 – 1342 (Wolf Minimum) and ca. 1416 – 1534 (Spörer Minimum), as well as a period of enhanced activity in ca. 1100 – 1250 (the Medieval Maximum), and have recurred irregularly over the more distant past (Usoskin, 2008).
The various incarnations of the sunspot number time series (monthly SSN, 13month smoothed SSN, yearly SSN, etc.) are arguably the most intensely studied time series in astrophysics, as measured by the number of published research paper pages per data points. Various correlations and statistical trends have been sought in these datasets. Panels D and E of Figure 22 present two such classical trends. The “Waldmeier Rule”, illustrated in Panel D of Figure 22, refers to a statistically significant anticorrelation between cycle amplitude and rise time (linear correlation coefficient r = 0.68). A similar anticorrelation exists between cycle amplitude and duration, but is statistically more dubious (r = 0.37). The “GnevyshevOhl” rule, illustrated in Panel E of Figure 22, refers to a marked tendency for odd (even) numbered cycles to have amplitudes above (below) their running mean (blue line in Panel E of Figure 22), a pattern that seems to have held true without interruption between cycles 9 and 21 (see also Mursula et al., 2001). For more on these empirical sunspot “Rules”, see Hathaway (2010).
A number of longtimescale modulations have also been extracted from these data, most notably the socalled Gleissberg cycle (period = 88 yr), but the length of the sunspot number record is insufficient to firmly establish the reality of these periodicities. One must bring into the picture additional solar cycle proxies, primarily cosmogenic radioisotopes, but difficulties in establishing absolute amplitudes of production rates introduce additional uncertainties into what is already a complex endeavour (for more on these matters, see Beer, 2000; Usoskin and Mursula, 2003). Likewise, the search for chaotic modulation in the sunspot number time series has produced a massive literature (see, e.g., Feynman and Gabriel, 1990; Mundt et al., 1991; Carbonell et al., 1994; Rozelot, 1995, and references therein), but without really yielding firm, statistically convincing conclusions, again due to the insufficient lengths of the datasets.
The aim in this section is to examine in some detail the types of fluctuations that can be produced in the various dynamo models discussed in the preceding section^{9}. After going briefly over the potential consequences of fossil fields (Section 5.2), dynamical nonlinearities are first considered (Section 5.3), followed by timedelay effects (Section 5.4). We then turn to stochastic forcing (Section 5.5), which leads naturally to the issue of intermittency (Section 5.6).
5.2 Fossil fields and the 22yr cycle
The presence of a largescale, quasisteady magnetic field of fossil origin in the solar interior has long been recognized as a possible explanation of the GnevyshevOhl rule (Panel E of Figure 22). The basic idea is quite simple: The slowlydecaying, deep fossil field being effectively steady on solar cycle timescales, its superposition with the 11yr polarity reversal of the overlying dynamogenerated field will lead to a 22yr modulation, whereby the cycle is stronger when the fossil and dynamo field have the same polarity, and weaker when these polarities are opposite (see, e.g., Boyer and Levy, 1984; Boruta, 1996). The magnitude of the effect is directly related to the strength of the fossil field, versus that of the dynamogenerated magnetic field. All of this, however, presumes that flows and dynamical effects within the tachocline still allow “coupling” between the deep fossil field below, and the cyclic dynamogenerated field above. However, models of the solar tachocline taking into account its interaction with an underlying fossil field (see, e.g., Kitchatinov and Rüdiger, 2006) suggest that it is unlikely for this coupling to take place in the simple manner implicitly assumed in dynamo models, that typically incorporate the effect of fossil fields via the lower boundary condition (see also Dikpati et al., 2005).
One strong prediction is associated with this explanation of the GnevyshevOhl rule: While the pattern may become occasionally lost due to large amplitude fluctuations of other origin, whenever it is present evennumbered cycles should always be of lower amplitudes and oddnumbered cycles of higher amplitude (under Wolf’s cycle numbering convention). Evidently, this prediction can be tested observationally, provided one can establish a measure of sunspot cycle amplitude that is truly characteristic of the strength of the underlying dynamo magnetic field. Taken at face value, the analysis of Mursula et al. (2001), based on cycleintegrated group sunspot numbers, indicates that the odd/even pattern has reversed between the time periods 1700 – 1800 and 1850 – 1990 (see their Figure 1). This would then rule out the fossil field hypothesis unless, as argued by some authors (see Usoskin et al., 2009a, and references therein), a sunspot cycle has been “lost” around 1790, at the onset of the socalled Dalton minimum.
5.3 Dynamical nonlinearity
5.3.1 Backreaction on largescale flows

Lorentz force associated with the mean magnetic field directly affecting largescale flow (sometimes called the “MalkusProctor effect”, after the groudbreaking numerical investigations of Malkus and Proctor, 1975).

Largescale magnetic field indirectly affecting largescale flow via effects on smallscale turbulence and associated Reynolds stresses (sometimes called “Λquenching”, see, e.g., Kitchatinov and Rüdiger, 1993).

Maxwell stresses associated with smallscale magnetic field directly affecting flows at all scales.
The majority of studies published thus far and using this approach have only considered the nonlinear magnetic backreaction on differential rotation. This has been shown to lead to a variety of behaviors, including amplitude and parity modulation, periodic or aperiodic, as well as intermittency (more on the latter in Section 5.6).
It is not clear, at this writing, to what degree these behaviors are truly generic, as opposed to modeldependent. The analysis of Knobloch et al. (1998) suggests that generic behaviors do exist. On the other hand, a number of counterexamples have been published, showing that even in a qualitative sense, the nonlinear behavior can be strongly dependent on what one would have hoped to be minor modelling details (see, e.g., Moss and Brooke, 2000; Phillips et al., 2002).
The differential rotation can also be suppressed indirectly by magnetic backreaction on the smallscale turbulent flows that produce the Reynolds stresses driving the largescale mean flow. Inclusion of this socalled “Λquenching” in meanfield dynamo models, alone or in conjunction with other amplitudelimiting nonlinearities, has also been shown to lead to a variety of periodic and aperiodic amplitude modulations, provided the magnetic Prandtl number is small (see Küker et al., 1999; Pipin, 1999; Rempel, 2006b). This type of models stand or fall with the turbulence model used to compute the various meanfield coefficients, and it is not yet clear which aspects of the results are truly generic to Λquenching. Gizon and Rempel (2008) do show that information is present in subsurface measurements of the timevarying component of largescale flows, which can be used to constrain the Λeffect and its cyclerelated variations.
To date, dynamical backreaction on largescale flows has only been studied in detail in the context of dynamo models based on meanfield electrodynamics. Equivalent studies must be carried out in the other classes of solar cycle models discussed in Section 4. In particular, it is essential to model the effect of the Lorentz force on meridional circulation in models based on the Babcock Leighton mechanism and/or hydrodynamical instabilities in the tachocline, since in these models the circulation is the primary determinant of the cycle period and enforces equatorward propagation in the butterfly diagram.
5.3.2 Dynamical αquenching
A number of authors have attempted to bypass the shortcomings of αquenching by introducing into dynamo models an additional, physicallyinspired partial differential equation for the αcoefficient itself (e.g., Kleeorin et al., 1995; Blackman and Brandenburg, 2002, and references therein). The basic physical idea is that magnetic helicity must be conserved in the highRm regime, so that production of helicity in the mean field implies a corresponding production of helicity of opposite sign at the scales of the fluctuating components of the flow and field, which ends up acting in such a way as to reduce the αeffect. Most investigations published to date have made used of severely truncated models, and/or models in one spatial dimensions (see, e.g., Weiss et al., 1984; Schmalz and Stix, 1991; Jennings and Weiss, 1991; Roald and Thomas, 1997; Covas et al., 1997; Blackman and Brandenburg, 2002), so that the model results can only be compared to solar data in some general qualitative sense. Rich dynamical behavior definitely arises in such models, including multiperiodicity, amplitude modulation, and chaos, and some of these behaviors do carry over to into a twodimensional spherical axisymmetric meanfield dynamo model (see Covas et al., 1998).
5.4 Timedelay dynamics
The introduction of ad hoc timedelays in dynamo models is long known to lead to pronounced cycle amplitude fluctuations (see, e.g., Yoshimura, 1978). Models including nonlinear backreaction on differential rotation can also exhibit what essentially amounts to timedelay dynamics in the low Prandtl number regime, with the largescale flow perturbations lagging behind the Lorentz force because of inertial effects. Finally, timedelay effects can arise in dynamo models where the source regions for the poloidal and toroidal magnetic components are spatially segregated. This is a type of time delay we now turn to, in the context of dynamo models based on the BabcockLeighton mechanism.
5.4.1 Timedelays in BabcockLeighton models
It was already noted that in solar cycle models based on the BabcockLeighton mechanism of poloidal field generation, meridional circulation effectively sets — and even regulates — the cycle period (cf. Section 4.8.2; see also Dikpati and Charbonneau, 1999; Charbonneau and Dikpati, 2000; MuñozJaramillo et al., 2009). In doing so, it also introduces a long time delay in the dynamo mechanism, “long” in the sense of being comparable to the cycle period. This delay originates with the time required for circulation to advect the surface poloidal field down to the coreenvelope interface, where the toroidal component is produced (A→C in Figure 16). In contrast, the production of poloidal field from the deepseated toroidal field (C→D), is a “fast” process, growth rates and buoyant rise times for sunspotforming toroidal flux ropes being of the order of a few months (see MorenoInsertis, 1986; Fan et al., 1993; Caligari et al., 1995, and references therein). The first, long time delay turns out to have important dynamical consequences.
5.4.2 Reduction to an iterative map
A bifurcation diagram for the resulting iterative map is presented in Panel A of Figure 24. For a given value of the map parameter α, the diagram gives the locus of the amplitude iterate p_{ n } for successive n values. The “critical dynamo number” above which dynamo action becomes possible, is here α = 0.851 (p_{ n } = 0 for smaller α values). For 0.851 ≤ α ≤ 1.283, the iterate is stable at some finite value of p_{ n }, which increases gradually with α. This corresponds to a constant amplitude cycle. As α reaches 1.283, period doubling occurs, with the iterate p_{ n } alternating between high and low values (e.g., p_{ n } = 0.93 and p_{ n } = 1.41 at α = 1.4). Further period doubling occurs at α = 1.488, then at α = 1.531, then again at α = 1.541, and ever faster until a point is reached beyond which the amplitude iterate seems to vary without any obvious pattern (although within a bounded range); this is in fact a chaotic regime.
As in any other dynamo model where the source regions for the poloidal and toroidal magnetic field components are spatially segregated, the type of time delay considered here is unavoidable. The BL model is just a particularly clearcut example of such a situation. One is then led to anticipate that the map’s rich dynamical behavior should find its counterpart in the original, arguably more realistic spatiallyextended, diffusive axisymmetric model that inspired the map formulation. Remarkably, this is indeed the case.
5.5 Stochastic forcing
Another means of producing amplitude fluctuations in dynamo models is to introduce stochastic forcing in the governing equations. Sources of stochastic “noise” certainly abound in the solar interior; largescale flows in the convective envelope, such as differential rotation and meridional circulation, are observed to fluctuate, an unavoidable consequence of dynamical forcing by the surrounding, vigorous turbulent flow. Ample observational evidence now exists that a substantial portion of the Sun’s surface magnetic flux is continuously being reprocessed on a timescale commensurate with convective motions (see Schrijver et al., 1997; Hagenaar et al., 2003). The culprit is most likely the generation of smallscale magnetic fields by these turbulent fluid motions (see, e.g., Cattaneo, 1999; Cattaneo et al., 2003, and references therein). This amounts to a form of zeromean “noise” superimposed on the slowlyevolving mean magnetic field. In addition, the azimuthal averaging implicit in all models of the solar cycle considered above will yield dynamo coefficients showing significant deviations about their mean values, as a consequence of the spatiotemporally discrete nature of the physical events (e.g., cyclonic updrafts, sunspot emergences, flux rope destabilizations, etc.) whose collective effects add up to produce a mean azimuthal electromotive force.
The (relative) geometrical and dynamical simplicity of the various types of dynamo models considered earlir severely restricts the manner in which such stochastic effects can be modeled. Perhaps the most straightforward is to let the dynamo number fluctuate randomly in time about some preset mean value. By most statistical estimates, the expected magnitude of these fluctuations is quite large, i.e., many times the mean value (Hoyng, 1988, 1993), a conclusion also supported by numerical simulations (see, e.g., OtmianowskaMazur et al., 1997; Ossendrijver et al., 2001). One typically also introduces a coherence time during which the dynamo number retains a fixed value. At the end of this time interval, this value is randomly readjusted. Depending on the dynamo model at hand, the coherence time can be physically related to the lifetime of convective eddies (αeffectbased meanfield models), to the decay time of sunspots (BabcockLeighton models), or to the growth rate of instabilities (hydrodynamical shear or buoyant MHD instabilitybased models).
Stochastic forcing of the dynamo number can also produce a significant spread in cycle period, although in the model run used to produce Figure 25 the very weak positive correlation between cycle amplitude and rise time is antisolar (the Waldmeier rule has r = 0.68, based on smoothed monthly SSN, cf. Figure 22D), and the positive correlation between rise time and cycle duration (r = +0.27, not shown) is comparable to solar (r = +0.4). It must be kept in mind that these inferences are all predicated on the use of total magnetic energy as a SSN proxy; different choices can lead to varying degrees of correlation.
The effect of noise has been investigated in most detail in the context of classical meanfield models (see Choudhuri, 1992; Hoyng, 1993; Ossendrijver and Hoyng, 1996; Ossendrijver et al., 1996; Mininni and Gómez, 2002, 2004; Moss et al., 2008). A particularly interesting consequence of random variations of the dynamo number, in meanfield models at or very close to criticality, is the coupling of the cycle’s duration and amplitude (Hoyng, 1993; Ossendrijver and Hoyng, 1996; Ossendrijver et al., 1996), leading to a pronounced anticorrelation between these two quantities that is reminiscent of the Waldmeier Rule (cf. Panel D of Figure 22), and hard to produce by purely nonlinear effects (cf. Ossendrijver and Hoyng, 1996). However, this behavior does not carry over to the supercritical regime, so it is not clear whether this can indeed be accepted as a robust explanation of the observed amplitudeduration anticorrelation. In the supercritical regime, αquenched meanfield models are less sensitive to noise (Choudhuri, 1992), unless of course they happen to operate close to a bifurcation point, in which case large amplitude and/or parity fluctuations can be produced (see, e.g., Moss et al., 1992).
In the context of BabcockLeighton models, introducing stochastic forcing of the dynamo numbers leads to amplitude fluctuation patterns qualitatively similar to those plotted in Figure 25: long timescale amplitude modulation, spread in cycle period, (nonsolar) positive correlations between cycle amplitude and rise time, and (solarlike) positive correlation between duration and rise time, with the interesting addition that in some model formulations cycletocycle amplitude variation patterns reminiscent of the GnevyshevOhl Rule are also produced (see Charbonneau et al., 2007). Charbonneau and Dikpati (2000) have presented a series of dynamo simulations including stochastic fluctuations in the dynamo number as well as in the meridional circulation. Working in the supercritical regime with a form of algebraic αquenching as the sole amplitudelimiting nonlinearity, they succeed in producing a solarlike weak anticorrelation between cycle amplitude and duration for fluctuations in the dynamo numbers in excess of 200% of its mean value, with coherence time of one month. However, these encouraging results did not prove very robust across the model’s parameter space.
5.6 Intermittency
5.6.1 The Maunder Minimum and intermittency
The term “intermittency” was originally coined to characterize signals measured in turbulent fluids, but has now come to refer more generally to systems undergoing apparently random, rapid switching from quiescent to bursting behaviors, as measured by the magnitude of some suitable system variable (see, e.g., Platt et al., 1993). Intermittency thus requires at least two distinct dynamical states available to the system, and a means of transiting from one to the other.
In the context of solar cycle model, intermittency refers to the existence of quiescent epochs of strongly suppressed activity randomly interspersed within periods of “normal” cyclic activity. Observationally, the Maunder Minimum is usually taken as the exemplar for such quiescent epochs. It should be noted, however, that dearth of sunspots does not necessarily mean a halted cycle; as noted earlier, flux ropes of strengths inferior to ∼ 10 kG will not survive their rise through the convective envelope, and the process of flux rope formation from the dynamogenerated mean magnetic field may itself be subjected to a threshold in field strength. The same basic magnetic cycle may well have continued unabated all the way through the Maunder Minimum, but at an amplitude just below one of these thresholds. This idea finds support in the ^{10}Be radioisotope record, which shows a clear and uninterrupted cyclic signal through the Maunder Minimum (see Panels B and C of Figure 22; also Beer et al., 1998). Strictly speaking, thresholding a variable controlled by a single dynamical state subject to amplitude modulation is not intermittency, although the resulting time series for the variable may well look quite intermittent.
Much effort has already been invested in categorizing intermittencylike behavior observed in solar cycle models in terms of the various types of intermittency known to characterize dynamical systems (see Ossendrijver and Covas, 2003, and references therein). In what follows, we attempt to pin down the physical origin of intermittent behavior in the various types of solar cycle models discussed earlier.
5.6.2 Intermittency from stochastic noise
Intermittency has been shown to occur through stochastic fluctuations of the dynamo number in linear meanfield dynamo models operating at criticality (see, e.g., Hoyng, 1993). Such models also exhibit a solarlike anticorrelation between cycle amplitude and phase. However there is no strong reason to believe that the solar dynamo is running just at criticality, so that it is not clear how good an explanation this is of Maundertype Grand Minima.
Mininni and Gómez (2004) have presented a stochasticallyforced 1D (in latitude) αΩ meanfield model, including algebraic αquenching as the amplitudelimiting nonlinearity, that exhibits a form of intermittency arising from the interaction of dynamo modes of opposite parity. The solution aperiodically produces episodes of markedly reduced cycle amplitude, and often showing strong hemispheric asymmetry. This superficially resembles the behavior associated with the nonlinear amplitude modulation discussed in Section 5.3.1 (compare the top panel in Figure 23 herein to Figure 7 in Mininni and Gómez, 2004). However, here it is the stochastic forcing that occasionally excites the higherorder modes that perturb the normal operation of the otherwise dominant dynamo mode. Moss et al. (2008) and Usoskin et al. (2009a) present more elaborate versions of such models, that do reproduce many salient features of observed grand activity minima.
5.6.3 Intermittency from nonlinearities
Another way to trigger intermittency in a dynamo model, deterministically this time, is to let nonlinear dynamical effects, for example a reduction of the differential rotation amplitude, push the effective dynamo number below its critical value; dynamo action then ceases during the subsequent time interval needed to reestablish differential rotation following the diffusive decay of the magnetic field; in the low Pm regime, this time interval can amount to many cycle periods, but P_{m} must not be too small, otherwise Grand Minima become too rare (see, e.g., Küker et al., 1999). Values P_{m} ∼ 10^{2} seem to work best. Such intermittency is most readily produced when the dynamo is operating close to criticality. For representative models, see Tobias (1996b, 1997); Brooke et al. (1998); Küker et al. (1999); Brooke et al. (2002).
Intermittency of this type has some attractive properties as a Maunder Minimum scenario. First, the strong hemispheric asymmetry in sunspots distributions in the final decades of the Maunder Minimum (Ribes and NesmeRibes, 1993) can occur naturally via parity modulation (see Figure 23 herein). Second, because the same cycle is operating at all times, cyclic activity in indicators other than sunspots (such as radioisotopes, see Beer et al., 1998) is easier to explain; the dynamo is still operating and the solar magnetic field is still undergoing polarity reversal, but simply fails to reach the amplitude threshold above which the sunspotforming flux ropes can be generated from the mean magnetic field, or survive their buoyant rise through the envelope.
There are also important difficulties with this explanatory scheme. Grand Minima tend to have similar durations and recur in periodic or quasiperiodic fashion, while the sunspot and radioisotope records, taken at face value, suggest a pattern far more irregular (Usoskin, 2008). Moreover, the dynamo solutions in the small P_{m} regime are characterized by large, nonsolar angular velocity fluctuations. In such models, solarlike, lowamplitude torsional oscillations do occur, but for P_{m} ∼ 1. Unfortunately, in this regime the solutions then lack the separation of timescales needed for Maunderlike Grand Minima episodes. One is stuck here with two conflicting requirements, neither of which easily evaded (but do see Bushby, 2006).
Intermittency has also been observed in strongly supercritical model including αquenching as the sole amplitudelimiting nonlinearity. Such solutions can enter Grand Minimalike epochs of reduced activity when the dynamogenerated magnetic field completely quenches the αeffect. The dynamo cycle restarts when the magnetic field resistively decays back to the level where the αeffect becomes operational once again. The physical origin of the “long” timescale governing the length of the “typical” time interval between successive Grand Minima episodes is unclear, and the physical underpinning of intermittency harder to identify. For representative models exhibiting intermittency of this type, see Tworkowski et al. (1998).
5.6.4 Intermittency from threshold effects
The model does produce irregularlyspaced quiescent phases, as well as an occasional “failed minimum” (e.g., at t ≃ 11), in qualitative agreement with the solar record. Note here how the onset of a Grand Minimum is preceded by a gradual decrease in the cycle’s amplitude, while recovery to normal, cyclic behavior is quite abrupt. The fluctuating behavior of this promising class of dynamo models clearly requires further investigation.
5.6.5 Intermittency from time delays
Dynamo models exhibiting amplitude modulation through timedelay effects are also liable to show intermittency in the presence of stochastic noise. This was demonstrated in Charbonneau (2001) in the context of BabcockLeighton models, using the iterative map formalism described in Section 5.4.2. The intermittency mechanism hinges on the fact that the map’s attractor has a finite basin of attraction (indicated by gray shading in Panel A of Figure 24). Stochastic noise acting simultaneously with the map’s dynamics can then knock the solution out of this basin of attraction, which then leads to a collapse onto the trivial solution p_{ n } = 0, even if the map parameter remains supercritical. Stochastic noise eventually knocks the solution back into the attractor’s basin, which signals the onset of a new active phase (see Charbonneau, 2001, for details).
With its strong polar branch often characteristic of dynamo models with meridional circulation, Figure 28 is not a particularly good fit to the solar butterfly diagram, yet its fluctuating behavior is solarlike in a number of ways, including epochs of alternating higherthanaverage and lowerthanaverage cycle amplitudes (the GnevyshevOhl rule, cf. Panel E of Figure 22), and residual pseudocyclic variations during quiescent phases, as suggested by ^{10}Be data, cf. Panel B of Figure 22. This later property is due at least in part to meridional circulation, which continues to advect the (decaying) magnetic field after the dynamo has fallen below threshold (see Charbonneau et al., 2004, for further discussion). Note also in Figure 28 how the onset of Grand Minima is quite sudden, while recovery to normal activity is more gradual, which is the opposite behavior to the Grand Minima in Figure 27.
5.7 Solar cycle predictions based on dynamo models
The idea that measurements of the solar surface magnetic field in the descending phase of a cycle can be used to forecast the amplitude (and/or timing) of the next cycle goes back many decades, but it is Schatten et al. (1978) who explicitly justified this procedure on the basis of dynamo models, which led to a wide variety of dynamoinspired precursor schemes (see Hathaway et al., 1999, for a review).
This dynamo logic has recently been pushed further, by using dynamo models to actually advance in time measurements of the solar surface magnetic field in order to produce a cycle forecast. This approach is justified if the surface magnetic field is indeed a significant source of the poloidal field to be sheared into a toroidal component in the upcoming cycle, so that using this approach to forecasting already amounts to a strong assumption on the mode of solar dynamo action. In the stochasticallyforced fluxtransport αΩ dynamo solution of Figure 25, a strong correlation materializes between the peak polar field at cycle minimum, and amplitude of the subsequent cycle (see panel C). This occurs because in this model the surface polar field is advected down by the meridional flow to the dynamo source region at the base of the convection, and ends up feeding back into the dynamo loop. In other types of dynamo models where this feedback of the surface field does not occur, no such correlation materializes. For more on these matters see Charbonneau and Barlet (2010).
It is particularly instructive to compare and contrast the forecast schemes (and cycle 24 predictions) of Dikpati et al. 2006 (see also Dikpati and Gilman, 2006) and Choudhuri et al. 2007 (see also Jiang et al., 2007). Both groups use a dynamo model of the BabcockLeighton variety (Section 4.8), in conjunction with input of solar magnetic field observations in a manner often (and incorrectly) described as “data assimilation”. The model parameters are adjusted to reproduce the known amplitudes of previous sunspot cycles, and the model is then integrated forward in time beyond this calibration interval to provide a forecast.
Much criticism has been leveled at these dynamo modelbased cycle forecasting schemes, and sometimes unfairly so. To dismiss the whole idea on the grounds that the solar dynamo is a chaotic system is likely too extreme a stance, especially since (1) even chaotic systems can be amenable to prediction over a finite temporal window, and (2) input of data (even if not via true data assimilation) can in principle lead to some correction of the system’s trajectory in phase space. More relevant (in my opinion) has been the explicit demonstration that (1) very small changes in some unobservable and poorly constrained input parameters to the dynamo model used for the forecast can introduce significant errors already for nextcycle amplitude forecasts (see Bushby and Tobias, 2007, also Yeates et al., 2008); (2) the exact manner in which surface data drives the model can have a huge impact on the forecasting skill (Cameron and Schüssler, 2007). Consequently, the discrepant forecasts of Table 1 indicate mostly that current dynamo modelbased predictive schemes still lack robustness. True data assimilation has been carried out using highly simplified dynamo models (Kitiashvili and Kosovichev, 2008), and clearly this must be carried over to more realistic dynamo models.
Finally, one must also keep in mind that other plausible explanations exist for the relatively good precursor potential of the solar surface magnetic field. In particular, Cameron and Schüssler (2008) have argued that the wellknown spatiotemporal overlap of cycles in the butterfly diagram (see Figure 3), taken in conjunction with the empirical anticorrelation between cycle amplitude and rise time embodied in the Waldmeier Rule (Figure 22D; also Hathaway, 2010, Section 4.6), could in itself explain the precursor performance of the polar field strength at solar activity minimum. Given the unusually extended minimum phase between cycles 23 and 24, it will be very interesting to revisit all these model results once cycle 24 reaches its peak amplitude.
6 Open Questions and Current Trends
I close this review with the following discussion of a few open questions that, in my opinion, bear particularly heavily on our understanding (or lack thereof) of the solar cycle.
6.1 What is the primary poloidal field regeneration mechanism?
Given the amount of effort having gone into building detailed dynamo models of the solar cycle, it is quite sobering to reflect upon the fact that the physical mechanism responsible for the regeneration of the poloidal component of the solar magnetic field has not yet been identified with confidence. As discussed at some length in Section 4, current models relying on distinct mechanisms all have their strengths and weaknesses, in terms of physical underpinning as well as comparison with observations.
Something akin to the αeffect of meanfield electrodynamics has been measured in a number of local and global numerical simulations including rotation and stratification, so this certainly remains a favored magnetic field generation mechanism. Modelling of the evolution of the Sun’s surface magnetic flux has abundantly confirmed that the BabcockLeighton mechanism is operating on the Sun, in the sense that magnetic flux liberated by the decay of tilted bipolar active regions does accumulate in the polar regions, where it triggers polarity reversal of the poloidal component (see Wang and Sheeley Jr, 1991; Schrijver et al., 2002; Wang et al., 2002; Baumann et al., 2004, and references therein). The key question is whether this is an active component of the dynamo cycle, or a mere sideeffect of active region decay. Likewise, the buoyant instability of magnetic flux tubes (Section 4.7) is, in some sense, unavoidable; here again the question is whether or not the associated azimuthal mean electromotive force contributes significantly to dynamo action in the Sun.
6.2 What limits the amplitude of the solar magnetic field?
The amplitude of the dynamogenerated magnetic field is almost certainly restricted by the backreaction of Lorentz forces on the driving fluid motions. However, as outlined in Section 5.3.1, this backreaction can occur in many ways.
Helioseismology has revealed only small variations of the differential rotation profile in the course of the solar cycle. The observed variations amount primarily to an extension in depth of the pattern of lowamplitude torsional oscillations long known from surface Doppler measurements (but see also Basu and Antia, 2001; Toomre et al., 2003; Howe, 2009). Taken at face value, these results suggest that quenching of differential rotation is not the primary amplitudelimiting mechanism, unless the dynamo is operating very close to criticality. Once again the hope is that in the nottoodistant future, helioseismology will have mapped accurately enough cycleinduced variations of differential rotation in the convective envelope and tachocline, to settle this issue.
Algebraic quenching of the αeffect (or αeffectlike source terms) is the mechanism most often incorporated in dynamo models. However, this state of affairs usually has much more to do with computational convenience than commitment to a specific physical quenching mechanism. There is little doubt that the αeffect will be affected once the mean magnetic field reaches equipartition; the critical question is whether it becomes quenched long before that, for example by the smallscale component of the magnetic field. The issue hinges on helicity conservation and flux through boundaries, and subtleties of flowfield interaction in MHD turbulence. For recent entry points into this very active area of current research, see Cattaneo and Hughes (1996), Blackman and Field (2000), Brandenburg and Dobler (2001), and Brandenburg (2009).
Flux loss through magnetic buoyancy is the primary reason why most contemporary dynamo models of the solar cycle rely on the rotational shear in the tachocline to achieve toroidal field amplification. If the dynamo were to reside entirely in the convective envelope, then this would be an important, perhaps even dominant, amplitude limiting mechanism (see Schmitt and Schüssler, 1989; Moss et al., 1990). If, on the other hand, toroidal field amplification takes place primarily at or beneath the coreenvelope interface, then it is less clear whether or not this mechanism plays a dominant role. In fact, it may even be that rising flux ropes amplify the deepseated magnetic field, as nicely demonstrated by the numerical calculations of Rempel and Schüssler (2001). Magnetic flux loss through buoyancy can also have a large impact on the cycle period (see, e.g. Kitchatinov et al., 2000), and the model calculations of Lopes and Passos (2009) indicate that combined with fluctuations in the meridional flow speed, very solarlike cycle amplitude variations can be produced. The impact of this amplitude limiting mechanism clearly requires further investigation.
6.3 Flux tubes versus diffuse fields
The foregoing discussion has implicitly assumed that the dynamo process produces a mean, largescale magnetic field that then concentrates itself into the flux ropes that subsequently give rise to sunspots. Highresolution observations of the photospheric magnetic field show that even outside of sunspots, the field is concentrated in flux tubes (see, e.g., Parker, 1982, and references therein), presumably as a consequence of convective collapse of magnetic flux concentrations too weak to block convection and form sunspots. In this picture, which is basically the framework of all dynamo models discussed above, the mean magnetic field is the dominant player in the cycle.
An alternate viewpoint is to assume that the solar magnetic field is a fibril state from beginning to end, throughout the convection zone and tachocline, and that whatever largescale field there may be in the photosphere is a mere byproduct of the decay of sunspots and other flux tubelike smallscale magnetic structures. The challenge is then to devise a dynamo process that operates entirely on flux tubes, rather than on a diffuse mean field. Some exploratory calculations have been made (e.g., DeLuca et al., 1993; Schatten, 2009), but this intriguing question has received far less attention than it deserves.
6.4 How constraining is the sunspot butterfly diagram?
The shape of the sunspot butterfly diagram (see Figure 3) continues to play a dominant constraining role in many dynamo models of the solar cycle. Yet caution is in order on this front. Calculations of the stability of toroidal flux ropes stored in the overshoot region immediately beneath the coreenvelope interface indicate that instability is much harder to produce at high latitudes, primarily because of the stabilizing effect of the magnetic tension force; thus strong fields at high latitudes may well be there, but not produce sunspots. Likewise, the process of flux rope formation from the dynamogenerated mean magnetic field is currently not understood. Are flux ropes forming preferentially in regions of most intense magnetic fields, in regions of strongest magnetic helicity, or in regions of strongest hydrodynamical shear? Is a stronger diffuse toroidal field forming more strongly magnetized flux ropes, or a larger number of flux ropes always of the same strength?
These are all crucial questions from the point of view of comparing results from dynamo models to sunspot data. Until they have been answered, uncertainty remains as to the degree to which the sunspot butterfly diagram can be compared in all details to timelatitude diagrams of the toroidal field, as produced by this or that dynamo model.
6.5 Is meridional circulation crucial?
The main question regarding meridional circulation is not whether it is there or not, but rather what role it plays in the solar cycle. The answer hinges on the value of the turbulent diffusivity η_{T}, which is notoriously difficult to estimate with confidence. It is probably essential in meanfield and meanfieldlike dynamo models characterized by positive αeffects in the Northern hemisphere, in order to ensure equatorward transport of the sunspotforming, deepseated toroidal magnetic field (see Sections 4.4, 4.5, and 4.7), unless the latitudinal turbulent pumping speeds turn out significantly larger than currently estimated (Käpylä et al., 2006a). It also appears to be a major determinant in the evolution of the surface magnetic field in the course of the solar cycle. Something like it is certainly needed in dynamo models based on the BabcockLeighton mechanism, to carry the poloidal field generated at the surface down to the tachocline, where production of the toroidal field is taking place (see Section 4.8).
The primary unknown at this writing is the degree to which meridional circulation is affected by the Lorentz force associated with the dynamogenerated magnetic field. Recent calculations (Rempel, 2006a,b) suggest that the backreaction is limited to regions of strongest toroidal fields, so that the “conveyor belt” is still operating in the bulk of the convective envelope, but this issue requires further study. Another important related issue is the advective role of turbulent pumping, which may well compete and/or complement the advective effect of the meridional flow.
6.6 Is the mean solar magnetic field really axisymmetric?
While the largescale solar magnetic field is axisymmetric about the Sun’s rotation axis to a good first approximation, various lines of observational evidence point to a persistent, lowlevel nonaxisymmetric component; such evidence includes the socalled active longitudes (see Henney and Harvey, 2002, and references therein), rotationallybased periodicity in cyclerelated eruptive phenomena (Bai, 1987), and the shape of the whitelight corona in the descending phase of the cycle.
Various meanfieldbased dynamo models are known to support nonaxisymmetric modes over a substantial portion of their parameter space (see, e.g., Moss et al., 1991; Moss, 1999; Bigazzi and Ruzmaikin, 2004, and references therein). At high Rm, strong differential rotation (in the sense that C_{Ω} ≪ C_{ α }) is known to favor axisymmetric modes, because it efficiently destroys any nonaxisymmetric component on a timescale much faster than diffusive (∝ Rm1/3 at high Rm, instead of ∝ Rm). Although it is not entirely clear that the Sun’s differential rotation is strong enough to place it in this regime (see, e.g., Rüdiger and Elstner, 1994), some 3D models do show this symmetrizing effect of differential rotation (see, e.g., Zhang et al., 2003a). Likewise, the recent numerical 3D MHD simulations of solarlike cycles by Ghizaru et al. (2010) do produce a largescale magnetic field with a dominant axisymmetric component. These types of simulations will probably offer the best handle on this question.
6.7 What causes Maundertype Grand Minima?
The origin of Grand Minima in solar activity also remains a question subjected to intense scrutiny. Broadly speaking, Grand Minima can occur either through amplitude modulation of a basic underlying dynamo cycle, or through intermittency. In this latter case, the transition from one state to another can take place via the system’s internal dynamics, or through the influence of external stochastic noise, or both. Not surprisingly, a large number of plausible Grand Minima models can now be found in the extant literature (cf. Section 5.6).
Historical researches have shown that the Sun climbed out of the Maunder Minimum gradually, and showing strongly asymmetric activity, with nearly all sunspots observed between 1670 and 1715 located in the Southern solar hemisphere (see Ribes and NesmeRibes, 1993). Some historical reconstructions of the butterfly diagram in the prephotographic era also suggest the presence of what could be interpreted as a quadrupolar component (Arlt, 2009). These are the kind of pattern that can be readily produced by nonlinear parity modulation (cf. Figure 23 herein; see also Beer et al., 1998; Sokoloff and NesmeRibes, 1994; Usoskin et al., 2009b). Then again, in the context of an intermittencybased model, it is quite conceivable that one hemisphere can pull out of a quiescent epoch before the other, thus yielding sunspot distributions compatible with the aforecited observations in the late Maunder Minimum. Such scenarios, relying on crosshemispheric coupling, have hardly begun to be explored (Charbonneau, 2005, 2007a; Chatterjee and Choudhuri, 2006).
Another possible avenue for distinguishing between these various scenarios is the persistence of the primary cycle’s phase through Grand Minima. Generally speaking, models relying on amplitude modulation can be expected to exhibit good phase persistence across such minima, because the same basic cycle is operating at all times (cf. Figure 23). Intermittency, on the other hand, should not necessarily lead to phase persistence, since the active and quiescent phases are governed by distinct dynamics. One can but hope that careful analysis of cosmogenic radioisotope data may soon indicate the degree to which the solar cycle’s phase persisted through the Maunder, Spörer, and Wolf Grand Minima, in order to narrow down the range of possibilities.
6.8 Where do we go from here?
Recent years have witnessed a number of significant advances in solar cycle modelling. Local magnetohydrodynamical simulations of thermallydriven convection have now allowed measurements of the αtensor, and of its variation with depth and latitude in the solar interior, and with rotation rate; and global magnetohydrodynamical simulation of solar convection are now producing largescale magnetic fields, in some cases even undergoing polarity reversals on decadal timescales. Such simulations are ideally suited for investigating a number of important issues, such as the mechanism(s) responsible for regulating the amplitude of the solar cycle, the magneticallydriven temporal variations of the largescale flows important for the solar cycle, and the possible impact of a cycling largescale magnetic field on convective energy transport, to mention but a few.
Despites continuing advances in computing power, global MHD simulations remain extremely demanding, and proper capture of important solar cycle elements — most notably the formation, emergence and surface decay sunspots and active regions— are certainly not forthcoming. Nonetheless, comparison between cyclic solutions arising in full numerical simulations and those characterizing simpler meanfieldlike models should also allow to test the validity limit of the kinematic approximation and of the simple algebraic amplitudelimiting nonlinearities still so prevalent in the latter class of solar cycle models. It appears likely that in the foreseeable future, the simpler, meanfield and meanfieldlike solar cycle models reviewed here will remain the workhorses of research on long timescale phenomena such as grand activity minima and maxima, on the evolution of surface magnetic flux, on dynamomodelbased solar cycle prediction, and on the modelling and interpretation of stellar activity cycles.
Footnotes
 1.
^{1} Equation (2) is written here in a frame of reference rotating with angular velocity Ω, so that a Coriolis force term appears explicitly, while the centrifugal force has been subsumed into the gravitational term.
 2.
^{2} Note, however, that an axisymmetric flow can sustain a nonaxisymmetric magnetic field against resistive decay.
 3.
^{3} Helioseismology has also revealed the existence of a significant radial shear in the outermost layers of the solar convective envelope. Even if the storage problem could be somehow bypassed, it does not appear possible to construct a viable solar dynamo model relying exclusively on this angular velocity gradient (see, e.g., Dikpati et al., 2002; Brandenburg, 2005, for illustrative calculations).
 4.
^{4} Models retaining both αterms are dubbed α^{2}Ω dynamos, and may be relevant to the solar case even in the C_{α} ≪ C_{Ω} regime, if the latter operates in a very thin layer, e.g. the tachocline (see, e.g., DeLuca and Gilman, 1988; Gilman et al., 1989; Choudhuri, 1990); this is because the αeffect gets curled in Equation (25) for the mean toroidal field. Models relying only on the αterms are said to be α^{2} dynamos. Such models are relevant to dynamo action in planetary cores and convective stars with vanishing differential rotation (if such a thing exists).
 5.
^{5} These are not “waves” in usual sense of the word, although they are described by modal solutions of the form exp(ik · x  ωt).
 6.
^{6} Although some turbulence model predict such higherorder latitudinal dependencies, the functional forms adopted here are largely ad hoc, and are made for strictly illustrative purposes.
 7.
^{7} Mea culpa on this one...
 8.
^{8} For this particular choice of α, η, and Ω profiles, solutions with negative C_{ α } are nonoscillatory in most of the [C_{ α },C_{Ω},Δ_{ η }] parameter space. This is in agreement with the results of Markiel and Thomas (1999).
 9.
^{9} We largely exclude from the foregoing discussion mathematical toymodels that aim exclusively at reproducing the shape of the sunspot number time series. For recent entry points in this literature, see, e.g., Mininni et al. (2002).
 10.
^{10} Dynamo saturation can also occur by magneticallymediated changes in the “topological” properties of a turbulent flow, without significant decrease in the turbulent flow amplitudes; see Cattaneo et al. (1996) for a nice, simple example.
 11.
Notes
Acknowledgement
I wish to thank Jürg Beer, John Brooke, Mausumi Dikpati, Antonio FerrizMas, Mihai Ghizaru, Gustavo Guerrero, David Hathaway, Mathieu Ossendrijver, Dário Passos, and Steve Tobias for providing data and/or graphical material for inclusion in this review; its original 2005 version also benefited from the constructive criticism of Peter Gilman and Michael Stix. At this point, usually all that would normally be left for me to do is to assure readers and colleagues that any error, omission or misrepresentation of their work is not intentional, and to offer general advanced apologies to all slighted. Here however, the organic format of Living Reviews allows actual amendments and additions. Please send your comments/suggestions/criticisms to the above email address. And for this I offer advanced thanks to all future correspondents.
Supplementary material
References
 Arlt, R., 2009, “The Butterfly Diagram in the Eighteenth Century”, Solar Phys., 255, 143–153. [DOI], [ADS], [arXiv:0812.2233] (Cited on page 72.)ADSCrossRefGoogle Scholar
 Arlt, R., Sule, A. and Filter, R., 2007a, “Stability of the solar tachocline with magnetic fields”, Astron. Nachr., 328, 1142. [DOI], [ADS] (Cited on page 22.)ADSzbMATHCrossRefGoogle Scholar
 Arlt, R., Sule, A. and Rüdiger, G., 2007b, “Stability of toroidal magnetic fields in the solar tachocline”, Astron. Astrophys., 461, 295–301. [DOI], [ADS] (Cited on pages 18 and 22.)ADSzbMATHCrossRefGoogle Scholar
 Babcock, H.W., 1961, “The Topology of the Sun’s Magnetic Field and the 22Year Cycle”, Astrophys. J., 133, 572–589. [DOI], [ADS] (Cited on pages 9 and 41.)ADSCrossRefGoogle Scholar
 Bai, T., 1987, “Distribution of flares on the sun: superactive regions and active zones of 19801985”, Astrophys. J., 314, 795–807. [DOI], [ADS] (Cited on page 72.)Google Scholar
 Basu, S. and Antia, H.M., 2001, “A study of possible temporal and latitudinal variations in the properties of the solar tachocline”, Mon. Not. R. Astron. Soc., 324, 498–508. [DOI], [ADS], [astroph/0101314] (Cited on page 70.)ADSCrossRefGoogle Scholar
 Baumann, I., Schmitt, D., Schüssler, M. and Solanki, S., 2004, “Evolution of the largescale magnetic field on the solar surface: a parameter study”, Astron. Astrophys., 426, 1075–1091. [DOI], [ADS] (Cited on page 70.)ADSCrossRefGoogle Scholar
 Beer, J., 2000, “Longterm indirect indices of solar variability”, Space Sci. Rev., 94, 53.66. [ADS] (Cited on pages 51 and 53.)CrossRefGoogle Scholar
 Beer, J., Raisbeck, G.M. and Yiou, F., 1991, “Time variation of 10Be and solar activity”, in The Sun in Time, (Eds.) Sonett, C.P., Giampapa, M.S., Matthews, M.S., pp. 343–359, University of Arizona Press, Tucson (Cited on page 51.)Google Scholar
 Beer, J., Tobias, S.M. and Weiss, N.O., 1998, “An Active Sun Throughout the Maunder Minimum”, Solar Phys., 181, 237–249. [DOI], [ADS] (Cited on pages 55, 64, and 72.)ADSCrossRefGoogle Scholar
 Bigazzi, A. and Ruzmaikin, A., 2004, “The sun’s preferred longitudes and the coupling of magnetic dynamo modes”, Astrophys. J., 604, 944–959. [DOI], [ADS] (Cited on page 72.)ADSCrossRefGoogle Scholar
 Blackman, E.G. and Brandenburg, A., 2002, “Dynamical nonlinearity in largescale dynamo with shear”, Astrophys. J., 579, 359–373. [DOI], [ADS] (Cited on pages 22 and 57.)ADSCrossRefGoogle Scholar
 Blackman, E.G. and Field, G.B., 2000, “Constraints on the magnitude of α in dynamo theory”, Astrophys. J., 534, 984–988. [DOI], [ADS] (Cited on page 70.)ADSCrossRefGoogle Scholar
 Bonanno, A., Elstner, D., Rüdiger, G. and Belvedere, G., 2003, “Parity properties of an advectiondominated solar α^{2}Ωdynamo”, Astron. Astrophys., 390, 673–680. [ADS] (Cited on page 34.)ADSCrossRefGoogle Scholar
 Bonanno, A., Elstner, D. and Belvedere, G., 2006, “Advectiondominated solar dynamo model with twocell meridional flow and a positive αeffect in the tachocline”, Astron. Nachr., 327, 680. [DOI], [ADS] (Cited on page 41.)ADSzbMATHCrossRefGoogle Scholar
 Boruta, N., 1996, “Solar dynamo surface waves in the presence of a primordial magnetic field: a 30 Gauss upper limit in the solar core”, Astrophys. J., 458, 832–849. [DOI], [ADS] (Cited on page 53.)ADSCrossRefGoogle Scholar
 Boyer, D.W. and Levy, E.H., 1984, “Oscillating dynamo magnetic field in the presence of an external nondynamo field: the influence of a solar primordial field”, Astrophys. J., 277, 848–861. [DOI], [ADS] (Cited on page 53.)ADSCrossRefGoogle Scholar
 Brandenburg, A., 2005, “The Case for a Distributed Solar Dynamo Shaped by NearSurface Shear”, Astrophys. J., 625, 539–547. [DOI], [ADS], [astroph/0502275] (Cited on page 19.)ADSCrossRefGoogle Scholar
 Brandenburg, A., 2009, “Advances in Theory and Simulations of LargeScale Dynamos”, Space Sci. Rev., 144, 87–104. [DOI], [ADS], [arXiv:0901.0329] (Cited on pages 54 and 70.)ADSCrossRefGoogle Scholar
 Brandenburg, A. and Dobler, W., 2001, “Large scale dynamos with helicity loss through boundaries”, Astron. Astrophys., 369, 329–338. [DOI], [ADS] (Cited on page 70.)ADSzbMATHCrossRefGoogle Scholar
 Brandenburg, A. and Schmitt, D., 1998, “Simulations of an alphaeffect due to magnetic buoyancy”, Astron. Astrophys., 338, L55–L58. [ADS] (Cited on page 40.)ADSGoogle Scholar
 Brandenburg, A. and Subramanian, K., 2005, “Astrophysical magnetic fields and nonlinear dynamo theory”, Phys. Rep., 417, 1–209. [DOI], [ADS], [astroph/0405052] (Cited on page 11.)ADSMathSciNetCrossRefGoogle Scholar
 Brandenburg, A., Tuominen, I., Nordlund, Å., Pulkkinen, P. and Stein, R.F., 1990, “3D simulations of turbulent cyclonic magnetoconvection”, Astron. Astrophys., 232, 277–291. [ADS] (Cited on page 21.)ADSGoogle Scholar
 Brandenburg, A., Rädler, K.H., Rheinhardt, M. and Subramanian, K., 2008, “Magnetic Quenching of α and Diffusivity Tensors in Helical Turbulence”, Astrophys. J. Lett., 687, L49–L52. [DOI], [ADS], [arXiv:0805.1287] (Cited on page 22.)ADSCrossRefGoogle Scholar
 Braun, D.C. and Fan, Y., 1998, “Helioseismic measurements of the subsurface meridional flow”, Astrophys. J. Lett., 508, L105–L108. [DOI], [ADS] (Cited on page 31.)ADSCrossRefGoogle Scholar
 Brooke, J.M., Pelt, J., Tavakol, R. and Tworkowski, A., 1998, “Grand minima and equatorial symmetry breaking in axisymmetric dynamo models”, Astron. Astrophys., 332, 339–352. [ADS] (Cited on pages 55 and 64.)ADSGoogle Scholar
 Brooke, J.M., Moss, D. and Phillips, A., 2002, “Deep minima in stellar dynamos”, Astron. Astrophys., 395, 1013–1022. [DOI], [ADS] (Cited on page 64.)ADSzbMATHCrossRefGoogle Scholar
 Brown, B.P., Browning, M.K., Miesch, M.S., Brun, A.S. and Toomre, J., 2009, “Wreathes of Magnetism in Rapidly Rotating Suns”, arXiv, eprint. [ADS], [arXiv:0906.2407] (Cited on page 48.)Google Scholar
 Brown, B.P., Browning, M.K., Brun, A.S., Miesch, M.S. and Toomre, J., 2010, “Persistent Magnetic Wreaths in a Rapidly Rotating Sun”, Astrophys. J., 711, 424–438. [DOI], [ADS] (Cited on page 48.)ADSCrossRefGoogle Scholar
 Brown, T.M., ChristensenDalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O. and Morrow, C.A., 1989, “Inferring the Sun’s internal angular velocity from observed pmode frequency splittings”, Astrophys. J., 343, 526–546. [DOI], [ADS] (Cited on page 17.)ADSCrossRefGoogle Scholar
 Browning, M.K., Miesch, M.S., Brun, A.S. and Toomre, J., 2006, “Dynamo Action in the Solar Convection Zone and Tachocline: Pumping and Organization of Toroidal Fields”, Astrophys. J. Lett., 648, L157–L160. [DOI], [ADS], [astroph/0609153] (Cited on page 48.)ADSCrossRefGoogle Scholar
 Brun, A.S., Miesch, M.S. and Toomre, J., 2004, “Globalscale turbulent convection and magnetic dynamo action in the solar envelope”, Astrophys. J., 614, 1073–1098. [DOI], [ADS] (Cited on page 48.)ADSCrossRefGoogle Scholar
 Bushby, P.J., 2006, “Zonal flows and grand minima in a solar dynamo model”, Mon. Not. R. Astron. Soc., 371, 772–780. [DOI], [ADS] (Cited on pages 55 and 65.)ADSCrossRefGoogle Scholar
 Bushby, P.J. and Tobias, S.M., 2007, “On Predicting the Solar Cycle Using MeanField Models”, Astrophys. J., 661, 1289–1296. [DOI], [ADS], [arXiv:0704.2345] (Cited on page 69.)ADSCrossRefGoogle Scholar
 Caligari, P., MorenoInsertis, F. and Schüssler, M., 1995, “Emerging flux tubes in the solar convection zone. I. Asymmetry, tilt, and emergence latitudes”, Astrophys. J., 441, 886–902. [DOI], [ADS] (Cited on pages 18 and 57.)ADSCrossRefGoogle Scholar
 Cally, P.S., 2001, “Nonlinear Evolution of 2D Tachocline Instability”, Solar Phys., 199, 231–249. [DOI], [ADS] (Cited on page 38.)ADSCrossRefGoogle Scholar
 Cally, P.S., Dikpati, M. and Gilman, P.A., 2003, “Clamshell and Tipping Instabilities in a Twodimensional Magnetohydrodynamic Tachocline”, Astrophys. J., 582, 1190–1205. [DOI], [ADS] (Cited on page 38.)ADSCrossRefGoogle Scholar
 Cally, P.S., Dikpati, M. and Gilman, P.A., 2008, “Threedimensional magnetoshear instabilities in the solar tachocline. II. Axisymmetric case”, Mon. Not. R. Astron. Soc., 391, 891–900. [DOI], [ADS] (Cited on page 18.)ADSCrossRefGoogle Scholar
 Cameron, R. and Schüssler, M., 2007, “Solar Cycle Prediction Using Precursors and Flux Transport Models”, Astrophys. J., 659, 801–811. [DOI], [ADS], [astroph/0612693] (Cited on page 69.)ADSCrossRefGoogle Scholar
 Cameron, R. and Schüssler, M., 2008, “A Robust Correlation between Growth Rate and Amplitude of Solar Cycles: Consequences for Prediction Methods”, Astrophys. J., 685, 1291–1296. [DOI], [ADS] (Cited on page 69.)ADSCrossRefGoogle Scholar
 Carbonell, M., Oliver, R. and Ballester, J.L., 1994, “A search for chaotic behaviour in solar activity”, Astron. Astrophys., 290, 983–994. [ADS] (Cited on page 53.)ADSGoogle Scholar
 Cattaneo, F., 1999, “On the origin of magnetic fields in the quiet photosphere”, Astrophys. J. Lett., 515, L39–L42. [DOI], [ADS] (Cited on page 60.)ADSCrossRefGoogle Scholar
 Cattaneo, F. and Hughes, D.W., 1996, “Nonlinear saturation of the turbulent αeffect”, Phys. Rev. E, 54, R4532–R4535. [ADS] (Cited on pages 28 and 70.)ADSCrossRefGoogle Scholar
 Cattaneo, F. and Hughes, D.W., 2009, “Problems with kinematic mean field electrodynamics at high magnetic Reynolds numbers”, Mon. Not. R. Astron. Soc., 395, L48–L51. [DOI], [ADS], [arXiv:0805.2138] (Cited on page 54.)ADSCrossRefGoogle Scholar
 Cattaneo, F., Hughes, D.W. and Kim, E.J., 1996, “Suppression of Chaos in a Simplified Nonlinear Dynamo Model”, Phys. Rev. Lett., 76, 2057–2060. [DOI], [ADS] (Cited on page 54.)ADSCrossRefGoogle Scholar
 Cattaneo, F., Emonet, T. and Weiss, N.O., 2003, “On the interaction between convection and magnetic fields”, Astrophys. J., 588, 1183–1198. [DOI], [ADS] (Cited on page 60.)ADSCrossRefGoogle Scholar
 Charbonneau, P., 2001, “Multiperiodicity, Chaos, and Intermittency in a Reduced Model of the Solar Cycle”, Solar Phys., 199, 385–404. [ADS] (Cited on pages 57, 58, and 65.)ADSCrossRefGoogle Scholar
 Charbonneau, P., 2005, “A Maunder Minimum Scenario Based on CrossHemispheric Coupling and Intermittency”, Solar Phys., 229, 345–358. [DOI], [ADS] (Cited on pages 47 and 73.)ADSCrossRefGoogle Scholar
 Charbonneau, P., 2007a, “Crosshemispheric coupling in a BabcockLeighton model of the solar cycle”, Adv. Space Res., 40, 899–906. [DOI], [ADS] (Cited on pages 47 and 73.)ADSCrossRefGoogle Scholar
 Charbonneau, P., 2007b, “BabcockLeighton models of the solar cycle: Questions and issues”, Adv. Space Res., 39, 1661–1669. [DOI], [ADS] (Cited on page 45.)ADSCrossRefGoogle Scholar
 Charbonneau, P. and Barlet, G., 2010, “The dynamo basis of solar cycle precursor schemes”, J. Atmos. Sol.Terr. Phys., 2010, in press. [DOI] (Cited on page 68.)Google Scholar
 Charbonneau, P. and Dikpati, M., 2000, “Stochastic Fluctuations in a BabcockLeighton Model of the Solar Cycle”, Astrophys. J., 543, 1027–1043. [DOI], [ADS] (Cited on pages 57 and 62.)ADSCrossRefGoogle Scholar
 Charbonneau, P. and MacGregor, K.B., 1996, “On the generation of equipartitionstrength magnetic fields by turbulent hydromagnetic dynamos”, Astrophys. J. Lett., 473, L59–L62. [DOI], [ADS] (Cited on page 29.)ADSCrossRefGoogle Scholar
 Charbonneau, P. and MacGregor, K.B., 1997, “Solar Interface Dynamos. II. Linear, Kinematic Models in Spherical Geometry”, Astrophys. J., 486, 502–520. [DOI], [ADS] (Cited on page 29.)ADSCrossRefGoogle Scholar
 Charbonneau, P., ChristensenDalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J. and Tomczyk, S., 1999, “Helioseismic Constraints on the Structure of the Solar Tachocline”, Astrophys. J., 527, 445–460. [DOI], [ADS] (Cited on page 17.)ADSCrossRefGoogle Scholar
 Charbonneau, P., BlaisLaurier, G. and StJean, C., 2004, “Intermittency and Phase Persistence in a BabcockLeighton Model of the Solar Cycle”, Astrophys. J. Lett., 616, L183–L186. [DOI], [ADS] (Cited on pages 65, 67, and 68.)ADSCrossRefGoogle Scholar
 Charbonneau, P., StJean, C. and Zacharias, P., 2005, “Fluctuations in BabcockLeighton models of the solar cycle. I. period doubling and transition to chaos”, Astrophys. J., 619, 613–622. [DOI], [ADS] (Cited on pages 42, 43, and 58.)ADSCrossRefGoogle Scholar
 Charbonneau, P., Beaubien, G. and StJean, C., 2007, “Fluctuations in BabcockLeighton Dynamos. II. Revisiting the GnevyshevOhl Rule”, Astrophys. J., 658, 657–662. [DOI], [ADS] (Cited on page 62.)ADSCrossRefGoogle Scholar
 Chatterjee, P. and Choudhuri, A.R., 2006, “On Magnetic Coupling Between the Two Hemispheres in Solar Dynamo Models”, Solar Phys., 239, 29–39. [DOI], [ADS] (Cited on pages 47 and 73.)ADSCrossRefGoogle Scholar
 Chatterjee, P., Nandy, D. and Choudhuri, A.R., 2004, “Fullsphere simulations of a circulation dominated solar dynamo: exploring the parity issue”, Astron. Astrophys., 427, 1019–1030. [DOI], [ADS] (Cited on pages 42, 47, 62, and 63.)ADSCrossRefGoogle Scholar
 Choudhuri, A.R., 1990, “On the possibility of αΩtype dynamo in a thin layer inside the sun”, Astrophys. J., 355, 733–744. [DOI], [ADS] (Cited on page 23.)ADSCrossRefGoogle Scholar
 Choudhuri, A.R., 1992, “Stochastic fluctuations of the solar dynamo”, Astron. Astrophys., 253, 277–285. [ADS] (Cited on pages 60 and 62.)ADSzbMATHGoogle Scholar
 Choudhuri, A.R., Schüssler, M. and Dikpati, M., 1995, “The solar dynamo with meridional circulation”, Astron. Astrophys., 303, L29–L32. [ADS] (Cited on page 32.)ADSGoogle Scholar
 Choudhuri, A.R., Chatterjee, P. and Jiang, J., 2007, “Predicting Solar Cycle 24 With a Solar Dynamo Model”, Phys. Rev. Lett., 98, 131103. [DOI], [ADS], [astroph/0701527] (Cited on pages 68 and 69.)ADSCrossRefGoogle Scholar
 ChristensenDalsgaard, J., 2002, “Helioseismology”, Rev. Mod. Phys., 74, 1073–1129. [ADS] (Cited on page 13.)ADSCrossRefGoogle Scholar
 Covas, E., Tavakol, R., Tworkowski, A. and Brandenburg, A., 1997, “Robustness of truncated αΩ dynamos with a dynamic alpha”, Solar Phys., 172, 3–13. [DOI], [ADS] (Cited on page 57.)ADSCrossRefGoogle Scholar
 Covas, E., Tavakol, R., Tworkowski, A. and Brandenburg, A., 1998, “Axisymmetric mean field dynamos with dynamic and algebraic αquenching”, Astron. Astrophys., 329, 350–360. [ADS] (Cited on page 57.)ADSGoogle Scholar
 Davidson, P.A., 2001, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge; New York. [Google Books] (Cited on page 12.)Google Scholar
 DeLuca, E.E. and Gilman, P.A., 1988, “Dynamo theory for the interface between the convection zone and the radiative interior of a star”, Geophys. Astrophys. Fluid Dyn., 43, 119–148. [DOI] (Cited on pages 23 and 54.)ADSzbMATHCrossRefGoogle Scholar
 DeLuca, E.E., Fisher, G.H. and Patten, B.M., 1993, “The dynamics of magnetic flux rings”, Astrophys. J., 411, 383–393. [DOI], [ADS] (Cited on page 71.)ADSCrossRefGoogle Scholar
 Dikpati, M. and Charbonneau, P., 1999, “A BabcockLeighton Flux Transport Dynamo with Solarlike Differential Rotation”, Astrophys. J., 518, 508–520. [DOI], [ADS] (Cited on pages 42, 43, 45, and 57.)ADSCrossRefGoogle Scholar
 Dikpati, M. and Gilman, P.A., 1999, “Joint instability of latitudinal differential rotation and concentrated toroidal fields below the solar convection zone”, Astrophys. J., 512, 417–441. [DOI], [ADS] (Cited on page 38.)ADSCrossRefGoogle Scholar
 Dikpati, M. and Gilman, P.A., 2001, “FluxTransport Dynamos with..Effect from Global Instability of Tachocline Differential Rotation: A Solution for Magnetic Parity Selection in the Sun”, Astrophys. J., 559, 428–442. [DOI], [ADS] (Cited on pages 17, 37, 39, and 47.)ADSCrossRefGoogle Scholar
 Dikpati, M. and Gilman, P.A., 2006, “Simulating and Predicting Solar Cycles Using a Flux Transport Dynamo”, Astrophys. J., 649, 498–514. [DOI], [ADS] (Cited on page 68.)ADSCrossRefGoogle Scholar
 Dikpati, M., Corbard, T., Thompson, M.J. and Gilman, P.A., 2002, “Flux Transport Solar Dynamos with NearSurface Radial Shear”, Astrophys. J. Lett., 575, L41–L45. [DOI], [ADS] (Cited on page 19.)ADSCrossRefGoogle Scholar
 Dikpati, M., De Toma, G., Gilman, P.A., Arge, C.N. and White, O.R., 2004, “Diagnostic of polar field reversal in solar cycle 23 using a flux transport dynamo model”, Astrophys. J., 601, 1136–1151. [DOI], [ADS] (Cited on pages 37, 41, and 47.)ADSCrossRefGoogle Scholar
 Dikpati, M., Gilman, P.A. and MacGregor, K.B., 2005, “Constraints on the Applicability of an Interface Dynamo to the Sun”, Astrophys. J., 631, 647–652. [DOI], [ADS] (Cited on pages 31 and 53.)ADSCrossRefGoogle Scholar
 Dikpati, M., de Toma, G. and Gilman, P.A., 2006, “Predicting the strength of solar cycle 24 using a fluxtransport dynamobased tool”, Geophys. Res. Lett., 33, L05102. [DOI], [ADS] (Cited on pages 68 and 69.)ADSCrossRefGoogle Scholar
 Dikpati, M., Gilman, P.A., Cally, P.S. and Miesch, M.S., 2009, “Axisymmetric MHD Instabilities in Solar/Stellar Tachoclines”, Astrophys. J., 692, 1421–I, [ADS] (Cited on page 18.)ADSCrossRefGoogle Scholar
 D’Silva, S. and Choudhuri, A.R., 1993, “A theoretical model for tilts of bipolar magnetic regions”, Astron. Astrophys., 272, 621–633. [ADS] (Cited on page 18.)ADSGoogle Scholar
 Durney, B.R., 1995, “On a BabcockLeighton dynamo model with a deepseated generating layer for the toroidal magnetic field”, Solar Phys., 160, 213–235. [DOI], [ADS] (Cited on pages 42 and 43.)ADSCrossRefGoogle Scholar
 Durney, B.R., 1996, “On a BabcockLeighton dynamo model with a deepseated generating layer for the toroidal magnetic field, II”, Solar Phys., 166, 231–260. [DOI], [ADS] (Cited on page 42.)ADSCrossRefGoogle Scholar
 Durney, B.R., 1997, “On a BabcockLeighton solar dynamo model with a deepseated generating layer for the toroidal magnetic field. IV”, Astrophys. J., 486, 1065–1077. [DOI], [ADS] (Cited on page 42.)ADSCrossRefGoogle Scholar
 Durney, B.R., 2000, “On the differences between odd and even solar cycles”, Solar Phys., 196, 421–426. [ADS] (Cited on page 57.)ADSCrossRefGoogle Scholar
 Durney, B.R., De Young, D.S. and Roxburgh, I.W., 1993, “On the generation of the largescale and turbulent magnetic field in solartype stars”, Solar Phys., 145, 207–225. [DOI], [ADS] (Cited on pages 22, 42, and 54.)ADSCrossRefGoogle Scholar
 Eddy, J.A., 1976, “The Maunder Minimum”, Science, 192, 1189–1202. [DOI], [ADS] (Cited on page 51.)ADSCrossRefGoogle Scholar
 Eddy, J.A., 1983, “The Maunder Minimum: A reappraisal”, Solar Phys., 89, 195–207. [DOI], [ADS] (Cited on page 51.)ADSCrossRefGoogle Scholar
 Fan, Y., 2009, “Magnetic Fields in the Solar Convection Zone”, Living Rev. Solar Phys., 6, lrsp–2009–4. [ADS]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp20094(Cited on pages 10, 17, and 28.)CrossRefGoogle Scholar
 Fan, Y., Fisher, G.H. and Deluca, E.E., 1993, “The origin of morphological asymmetries in bipolar active regions”, Astrophys. J., 405, 390–401. [DOI], [ADS] (Cited on pages 18 and 57.)ADSCrossRefGoogle Scholar
 FerrizMas, A. and Núñez, M. (Eds.), 2003, Advances in Nonlinear Dynamos, vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, Taylor & Francis, London, New York (Cited on page 11.)Google Scholar
 FerrizMas, A., Schmitt, D. and Schüssler, M., 1994, “A dynamo effect due to instability of magnetic flux tubes”, Astron. Astrophys., 289, 949–956. [ADS] (Cited on pages 17, 40, and 41.)ADSGoogle Scholar
 Feynman, J. and Gabriel, S.B., 1990, “Period and phase of the 88year solar cycle and the Maunder minimum: Evidence for a chaotic Sun”, Solar Phys., 127, 393–403. [DOI], [ADS] (Cited on page 53.)ADSCrossRefGoogle Scholar
 Foukal, P.V., 2004, Solar Astrophysics, WileyVCH, Weinheim, 2nd edn. (Cited on page 11.) Garaud, P. and Brummell, N.H., 2008, “On the Penetration of Meridional Circulation below the Solar Convection Zone”, Astrophys. J., 674, 498–510. [DOI], [ADS], [arXiv:0708.0258] (Cited on page 45.)Google Scholar
 Ghizaru, M., Charbonneau, P. and Smolarkiewicz, P.K., 2010, “Magnetic cycles in global largeeddy simulations of solar convection”, Astrophys. J. Lett., 715, L133–L137. [DOI], [ADS] (Cited on pages 48, 49, and 72.)ADSCrossRefGoogle Scholar
 Gilman, P.A., 1983, “Dynamically consistent nonlinear dynamos driven by convection on a rotating spherical shell. II. Dynamos with cycles and strong feedback”, Astrophys. J. Suppl. Ser., 53, 243–268. [DOI], [ADS] (Cited on pages 47 and 54.)ADSCrossRefGoogle Scholar
 Gilman, P.A. and Fox, P.A., 1997, “Joint instability of latitudinal differential rotation and toroidal magnetic fields below the solar convection zone”, Astrophys. J., 484, 439–454. [DOI], [ADS] (Cited on page 38.)ADSCrossRefGoogle Scholar
 Gilman, P.A. and Miesch, M.S., 2004, “Limits to penetration of meridional circulation below the solar convection zone”, Astrophys. J., 611, 568–574. [DOI], [ADS] (Cited on page 45.)ADSCrossRefGoogle Scholar
 Gilman, P.A. and Miller, J., 1981, “Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell”, Astrophys. J. Suppl. Ser., 46, 211–238. [DOI], [ADS] (Cited on page 47.)ADSCrossRefGoogle Scholar
 Gilman, P.A. and Rempel, M., 2005, “Concentration of Toroidal Magnetic Field in the Solar Tachocline by ηQuenching”, Astrophys. J., 630, 615–622. [DOI], [ADS], [astroph/0504003] (Cited on page 22.)ADSCrossRefGoogle Scholar
 Gilman, P.A., Morrow, C.A. and Deluca, E.E., 1989, “Angular momentum transport and dynamo action in the sun. Implications of recent oscillation measurements”, Astrophys. J., 46, 528–537. [DOI], [ADS] (Cited on page 23.)ADSCrossRefGoogle Scholar
 Gizon, L., 2004, “Helioseismology of TimeVarying Flows Through The Solar Cycle”, Solar Phys., 224, 217–228. [DOI], [ADS] (Cited on pages 13 and 31.)ADSCrossRefGoogle Scholar
 Gizon, L. and Rempel, M., 2008, “Observation and Modeling of the SolarCycle Variation of the Meridional Flow”, Solar Phys., 251, 241–250. [DOI], [ADS], [arXiv:0803.0950] (Cited on pages 31 and 55.)ADSCrossRefGoogle Scholar
 Glatzmaier, G.A., 1985a, “Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone”, Astrophys. J., 291, 300–307. [DOI], [ADS] (Cited on page 47.)ADSCrossRefGoogle Scholar
 Glatzmaier, G.A., 1985b, “Numerical simulations of stellar convective dynamos. III. At the base of the convection zone”, Geophys. Astrophys. Fluid Dyn., 31, 137–150. [DOI], [ADS] (Cited on page 47.)ADSCrossRefGoogle Scholar
 Guerrero, G. and de Gouveia Dal Pino, E.M., 2007, “How does the shape and thickness of the tachocline affect the distribution of the toroidal magnetic fields in the solar dynamo?”, Astron. Astrophys., 464, 341–349. [DOI], [ADS], [astroph/0610703] (Cited on page 45.)ADSCrossRefGoogle Scholar
 Guerrero, G. and de Gouveia Dal Pino, E.M., 2008, “Turbulent magnetic pumping in a Babcock Leighton solar dynamo model”, Astron. Astrophys., 485, 267–273. [DOI], [ADS], [arXiv:0803.3466] (Cited on pages 42, 45, 46, and 47.)ADSCrossRefGoogle Scholar
 Guerrero, G.A. and Muñoz, J.D., 2004, “Kinematic solar dynamo models with a deep meridional flow”, Mon. Not. R. Astron. Soc., 350, 317–322. [DOI], [ADS] (Cited on page 45.)ADSCrossRefGoogle Scholar
 Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M. and Hill, F., 2002, “Evolving Submerged Meridional Circulation Cells within the Upper Convection Zone Revealed by Ring Diagram Analysis”, Astrophys. J., 570, 855–864. [DOI], [ADS] (Cited on pages 31 and 37.)ADSCrossRefGoogle Scholar
 Hagenaar, H.J., Schrijver, C.J. and Title, A.M., 2003, “The Properties of Small Magnetic Regions on the Solar Surface and the Implications for the Solar Dynamo(s)”, Astrophys. J., 584, 1107–1119. [DOI], [ADS] (Cited on page 60.)ADSCrossRefGoogle Scholar
 Haigh, J.D., 2007, “The Sun and the Earth’s Climate”, Living Rev. Solar Phys., 4, lrsp–2007–2.[ADS]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp20072(Cited on page 51.)MathSciNetCrossRefGoogle Scholar
 Hathaway, D.H., 1996, “Doppler measurements of the sun’s meridional flow”, Astrophys. J., 460, 1027–1033. [DOI], [ADS] (Cited on page 31.)ADSCrossRefGoogle Scholar
 Hathaway, D.H., 2010, “The Solar Cycle”, Living Rev. Solar Phys., 7, lrsp–2010–1. [ADS]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp20101 (Cited on pages 51, 53, and 69.)CrossRefGoogle Scholar
 Hathaway, D.H., Wilson, R.M. and Reichmann, E.J., 1999, “A Synthesis of Solar Cycle Prediction Techniques”, J. Geophys. Res., 104, 22,375–22,388. [DOI], [ADS] (Cited on page 68.)ADSCrossRefGoogle Scholar
 Hathaway, D.H., Wilson, R.M. and Reichmann, E.J., 2002, “Group sunspot numbers: sunspot cycle characteristics”, Solar Phys., 211, 357–370. [ADS] (Cited on page 52.)ADSCrossRefGoogle Scholar
 Hathaway, D.H., Nandy, D., Wilson, R.M. and Reichmann, E.J., 2003, “Evidence that a deep meridional flow sets the sunspot cycle period”, Astrophys. J., 589, 665–670. [DOI], [ADS] (Cited on page 45.)ADSCrossRefGoogle Scholar
 Henney, C.J. and Harvey, J.W., 2002, “Phase coherence analysis of solar magnetic activity”, Solar Phys., 207, 199–218. [DOI], [ADS] (Cited on page 72.)ADSCrossRefGoogle Scholar
 Howe, R., 2009, “Solar Interior Rotation and its Variation”, Living Rev. Solar Phys., 6, lrsp–2009–1. [ADS], [arXiv:0902.2406]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp20091 (Cited on pages 13 and 70.)CrossRefGoogle Scholar
 Hoyng, P., 1988, “Turbulent transport of magnetic fields. III. Stochastic excitation of global magnetic modes”, Astrophys. J., 332, 857–871. [DOI], [ADS] (Cited on page 60.)ADSCrossRefGoogle Scholar
 Hoyng, P., 1993, “Helicity fluctuations in mean field theory: an explanation for the variability of the solar cycle?”, Astron. Astrophys., 272, 321–339. [ADS] (Cited on pages 21, 60, and 64.)ADSMathSciNetGoogle Scholar
 Hoyng, P., 2003, “The field, the mean and the meaning”, in Advances in Nonlinear Dynamos, (Eds.) FerrizMas, A., Núñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 1–36, Taylor & Francis, London, New York. [Google Books] (Cited on pages 7 and 21.)CrossRefGoogle Scholar
 Hoyt, D.V. and Schatten, K., 1998, “Group Sunspot Numbers: A New Solar Activity Reconstruction”, Solar Phys., 179, 189–219. [ADS] (Cited on page 52.)ADSCrossRefGoogle Scholar
 Hoyt, D.V. and Schatten, K.H., 1996, “How Well Was the Sun Observed during the Maunder Minimum?”, Solar Phys., 165, 181–192. [DOI], [ADS] (Cited on page 51.)ADSCrossRefGoogle Scholar
 Jennings, R.L. and Weiss, N.O., 1991, “Symmetry breaking in stellar dynamos”, Mon. Not. R. Astron. Soc., 252, 249–260. [ADS] (Cited on page 57.)ADSzbMATHCrossRefGoogle Scholar
 Jiang, J., Chatterjee, P. and Choudhuri, A.R., 2007, “Solar activity forecast with a dynamo model”, Mon. Not. R. Astron. Soc., 381, 1527–1542. [DOI], [ADS], [arXiv:0707.2258] (Cited on page 68.)ADSCrossRefGoogle Scholar
 Jiang, J., Cameron, R., Schmitt, D. and Schüssler, M., 2009, “Countercell Meridional Flow and Latitudinal Distribution of the Solar Polar Magnetic Field”, Astrophys. J., 693, L96–L99. [DOI], [ADS] (Cited on pages 37 and 41.)ADSCrossRefGoogle Scholar
 Jouve, L. and Brun, A.S., 2007, “On the role of meridional flows in flux transport dynamo models”, Astron. Astrophys., 474, 239–250. [DOI], [ADS], [arXiv:0712.3200] (Cited on page 41.)ADSCrossRefGoogle Scholar
 Jouve, L., Brun, A.S., Arlt, R., Brandenburg, A., Dikpati, M., Bonanno, A., Käpylä, P.J., Moss, D., Rempel, M., Gilman, P., Korpi, M.J. and Kosovichev, A.G., 2008, “A solar mean field dynamo benchmark”, Astron. Astrophys., 483, 949–960. [DOI], [ADS] (Cited on page 19.)ADSCrossRefGoogle Scholar
 Jouve, L., Brown, B.P. and Brun, A.S., 2010, “Exploring the P_{cyc} vs. P_{rot} relation with flux transport dynamo models of solarlike stars”, Astron. Astrophys., 509, A32. [DOI], [ADS], [arXiv:0911.1947] (Cited on page 45.)ADSCrossRefGoogle Scholar
 Käpylä, P.J., Korpi, M.J., Ossendrijver, M. and Stix, M., 2006a, “Magnetoconvection and dynamo coefficients. III. αeffect and magnetic pumping in the rapid rotation regime”, Astron. Astrophys., 455, 401–412. [DOI], [ADS], [astroph/0602111] (Cited on pages 21, 22, and 72.)ADSCrossRefGoogle Scholar
 Käpylä, P.J., Korpi, M.J. and Tuominen, I., 2006b, “Solar dynamo models with αeffect and turbulent pumping from local 3D convection calculations”, Astron. Nachr., 327, 884. [DOI], [ADS], [astroph/0606089] (Cited on page 34.)ADSzbMATHCrossRefGoogle Scholar
 Käpylä, P.J., Korpi, M.J., Brandenburg, A., Mitra, D. and Tavakol, R., 2010, “Convective dynamos in spherical wedge geometry”, Astron. Nachr., 331, 73. [DOI], [ADS] (Cited on page 48.)ADSzbMATHCrossRefGoogle Scholar
 Kitchatinov, L.L. and Rüdiger, G., 1993, “Λeffect and differential rotation in stellar convection zones”, Astron. Astrophys., 276, 96–102. [ADS] (Cited on pages 28 and 54.)ADSGoogle Scholar
 Kitchatinov, L.L. and Rüdiger, G., 2006, “Magnetic field confinement by meridional flow and the solar tachocline”, Astron. Astrophys., 453, 329–333. [DOI], [ADS], [astroph/0603417] (Cited on page 53.)ADSzbMATHCrossRefGoogle Scholar
 Kitchatinov, L.L., Rüdiger, G. and Küker, M., 1994, “Λquenching as the nonlinearity in stellarturbulence dynamos”, Astron. Astrophys., 292, 125–132. [ADS] (Cited on page 54.)ADSGoogle Scholar
 Kitchatinov, L.L., Mazur, M.V. and Jardine, M., 2000, “Magnetic field escape from a stellar convection zone and the dynamocycle period”, Astron. Astrophys., 359, 531–538. [ADS] (Cited on page 71.)ADSGoogle Scholar
 Kitiashvili, I. and Kosovichev, A.G., 2008, “Application of Data Assimilation Method for Predicting Solar Cycles”, Astrophys. J., 688, L49–L52. [DOI], [ADS], [arXiv:0807.3284] (Cited on page 69.)ADSCrossRefGoogle Scholar
 Kleeorin, N., Rogachevskii, I. and Ruzmaikin, A., 1995, “Magnitude of the dynamogenerated magnetic field in solartype convective zones”, Astron. Astrophys., 297, 159–167. [ADS] (Cited on page 57.)ADSGoogle Scholar
 Knobloch, E., Tobias, S.M. and Weiss, N.O., 1998, “Modulation and symmetry changes in stellar dynamos”, Mon. Not. R. Astron. Soc., 297, 1123–1138. [DOI], [ADS] (Cited on page 55.)ADSCrossRefGoogle Scholar
 Krause, F. and Rädler, K.H., 1980, MeanField Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford; New York (Cited on page 21.)zbMATHGoogle Scholar
 Küker, M., Arlt, R. and Rüdiger, R., 1999, “The Maunder minimum as due to magnetic Λquenching”, Astron. Astrophys., 343, 977–982. [ADS] (Cited on pages 55 and 64.)ADSGoogle Scholar
 Küker, M., Rüdiger, G. and Schulz, M., 2001, “Circulationdominated solar shell dynamo models with positive alpha effect”, Astron. Astrophys., 374, 301–308. [DOI], [ADS] (Cited on page 34.)ADSCrossRefGoogle Scholar
 Leighton, R.B., 1964, “Transport of magnetic fields on the sun”, Astrophys. J., 140, 1547–1562. [DOI], [ADS] (Cited on page 41.)ADSzbMATHCrossRefGoogle Scholar
 Leighton, R.B., 1969, “A magnetokinematic model of the solar cycle”, Astrophys. J., 156, 1–26. [DOI], [ADS] (Cited on page 41.)ADSCrossRefGoogle Scholar
 Lerche, I. and Parker, E.N., 1972, “The Generation of Magnetic Fields in Astrophysical Bodies. IX. A Solar Dynamo Based on Horizontal Shear”, Astrophys. J., 176, 213. [DOI], [ADS] (Cited on page 25.)ADSCrossRefGoogle Scholar
 Lopes, I. and Passos, D., 2009, “Solar Variability Induced in a Dynamo Code by Realistic Meridional Circulation Variations”, Solar Phys., 257, 1–12. [DOI], [ADS] (Cited on pages 62, 63, and 71.)ADSCrossRefGoogle Scholar
 MacGregor, K.B. and Charbonneau, P., 1997, “Solar interface dynamos. I. Linear, kinematic models in cartesian geometry”, Astrophys. J., 486, 484–501. [DOI], [ADS] (Cited on pages 29 and 31.)ADSCrossRefGoogle Scholar
 Malkus, W.V.R. and Proctor, M.R.E., 1975, “The macrodynamics of αeffect dynamos in rotating fluids”, J. Fluid Mech., 67, 417–443 (Cited on page 54.)ADSzbMATHCrossRefGoogle Scholar
 Markiel, J.A and Thomas, J.H., 1999, “Solar interface dynamo models with a realistic rotation profile”, Astrophys. J., 523, 827–837. [DOI], [ADS] (Cited on pages 29 and 31.)ADSCrossRefGoogle Scholar
 Mason, J., Hughes, D.W. and Tobias, S.M., 2002, “The competition in the solar dynamo between surface and deepseated αeffect”, Astrophys. J. Lett., 580, L89–L92. [DOI], [ADS] (Cited on page 47.)ADSCrossRefGoogle Scholar
 Mason, J., Hughes, D.W. and Tobias, S.M., 2008, “The effects of flux transport on interface dynamos”, Mon. Not. R. Astron. Soc., 391, 467–480. [DOI], [ADS], [arXiv:0812.0199] (Cited on page 31.)ADSCrossRefGoogle Scholar
 Matthews, P.C., Hughes, D.W. and Proctor, M.R.E., 1995, “Magnetic Buoyancy, Vorticity, and Threedimensional FluxTube Formation”, Astrophys. J., 448, 938–941. [DOI], [ADS] (Cited on page 18.)ADSCrossRefGoogle Scholar
 Miesch, M.S., 2005, “LargeScale Dynamics of the Convection Zone and Tachocline”, Living Rev. Solar Phys., 2, lrsp–2005–1. URL (accessed 1 May 2005): http://www.livingreviews.org/lrsp20051 (Cited on page 37.)CrossRefGoogle Scholar
 Miesch, M.S. and Toomre, J., 2009, “Turbulence, Magnetism, and Shear in Stellar Interiors”, Annu. Rev. Fluid Mech., 41, 317–345. [DOI], [ADS] (Cited on page 48.)ADSCrossRefGoogle Scholar
 Mininni, P.D. and Gómez, D.O., 2002, “Study of Stochastic Fluctuations in a Shell Dynamo”, Astrophys. J., 573, 454–463. [DOI], [ADS] (Cited on page 60.)ADSCrossRefGoogle Scholar
 Mininni, P.D. and Gómez, D.O., 2004, “A new technique for comparing solar dynamo models and observations”, Astron. Astrophys., 426, 1065–1073. [DOI], [ADS] (Cited on pages 60 and 64.)ADSCrossRefGoogle Scholar
 Mininni, P.D., Gómez, D.O. and Mindlin, G.B., 2002, “Instantaneous phase and amplitude correlation in the solar cycle”, Solar Phys., 208, 167–179. [DOI], [ADS] (Cited on page 53.)ADSCrossRefGoogle Scholar
 Moffatt, H.K., 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge; New York (Cited on page 21.)Google Scholar
 MorenoInsertis, F., 1983, “Rise time of horizontal magnetic flux tubes in the convection zone of the Sun”, Astron. Astrophys., 122, 241–250. [ADS] (Cited on page 22.)ADSGoogle Scholar
 MorenoInsertis, F., 1986, “Nonlinear timeevolution of kinkunstable magnetic flux tubes in the convective zone of the sun”, Astrophys. J., 166, 291–305. [ADS] (Cited on pages 22 and 57.)ADSzbMATHGoogle Scholar
 Moss, D., 1999, “Nonaxisymmetric solar magnetic fields”, Mon. Not. R. Astron. Soc., 306, 300–306. [DOI], [ADS] (Cited on page 72.)ADSCrossRefGoogle Scholar
 Moss, D. and Brooke, J.M., 2000, “Towards a model of the solar dynamo”, Mon. Not. R. Astron. Soc., 315, 521–533. [DOI], [ADS] (Cited on pages 54 and 55.)ADSCrossRefGoogle Scholar
 Moss, D., Tuominen, I. and Brandenburg, A., 1990, “Buoyancylimited thinshell dynamos”, Astron. Astrophys., 240, 142–149. [ADS] (Cited on page 71.)ADSMathSciNetGoogle Scholar
 Moss, D., Brandenburg, A. and Tuominen, I., 1991, “Properties of mean field dynamos with nonaxisymmetric αeffect”, Astron. Astrophys., 347, 576–579. [ADS] (Cited on page 72.)ADSGoogle Scholar
 Moss, D., Brandenburg, A., Tavakol, R. and Tuominen, I., 1992, “Stochastic effects in meanfield dynamos”, Astron. Astrophys., 265, 843–849. [ADS] (Cited on page 62.)ADSGoogle Scholar
 Moss, D., Sokoloff, D., Usoskin, I. and Tutubalin, V., 2008, “Solar Grand Minima and Random Fluctuations in Dynamo Parameters”, Solar Phys., 250, 221–234. [DOI], [ADS], [arXiv:0806.3331] (Cited on pages 60 and 64.)ADSCrossRefGoogle Scholar
 Mundt, M.D., Maguire II, W.B. and Chase, R.R.P., 1991, “Chaos in the Sunspot Cycle: Analysis and Prediction”, J. Geophys. Res., 96, 1705–1716. [DOI], [ADS] (Cited on page 53.)ADSCrossRefGoogle Scholar
 MuñozJaramillo, A., Nandy, D. and Martens, P.C.H., 2009, “Helioseismic Data Inclusion in Solar Dynamo Models”, Astrophys. J., 698, 461–478. [DOI], [ADS], [arXiv:0811.3441] (Cited on pages 45 and 57.)ADSCrossRefGoogle Scholar
 MuñozJaramillo, A., Nandy, D. and Martens, P.C.H., 2010a, “Magnetic Quenching of Turbulent Diffusivity: Reconciling Mixinglength Theory Estimates with Kinematic Dynamo Models of the Solar Cycle”, arXiv, eprint. [ADS], [arXiv:1007.1262] (Cited on page 37.)Google Scholar
 MuñozJaramillo, A., Nandy, D., Martens, P.C.H. and Yeates, A.R., 2010b, “A DoubleRing Algorithm for Modeling Solar Active Regions: Unifying Kinematic Dynamo Models and Surface FluxTransport Simulations”, arXiv, eprint. [ADS], [arXiv:1006.4346] (Cited on page 42.)Google Scholar
 Mursula, K., Usoskin, I.G. and Kovaltsov, G.A., 2001, “Persistent 22year cycle in sunspot activity: Evidence for a relic solar magnetic field”, Solar Phys., 198, 51–56. [DOI], [ADS] (Cited on page 53.)ADSCrossRefGoogle Scholar
 Nandy, D. and Choudhuri, A.R., 2001, “Toward a meanfield formulation of the BabcockLeighton type solar dynamo. I. αcoefficient versus Durney’s doublering approach”, Astrophys. J., 551, 576–585. [DOI], [ADS] (Cited on pages 42, 43, and 45.)ADSCrossRefGoogle Scholar
 Nandy, D. and Choudhuri, A.R., 2002, “Explaining the latitudinal distribution of sunspots with deep meridional flow”, Science, 296, 1671–1673. [DOI], [ADS] (Cited on pages 42 and 45.)ADSCrossRefGoogle Scholar
 Ossendrijver, A.J.H., Hoyng, P. and Schmitt, D., 1996, “Stochastic excitation and memory of the solar dynamo”, Astron. Astrophys., 313, 938–948. [ADS] (Cited on page 60.)ADSGoogle Scholar
 Ossendrijver, M., 2003, “The solar dynamo”, Astron. Astrophys. Rev., 11, 287–367. [DOI], [ADS] (Cited on pages 7, 11, and 21.)ADSCrossRefGoogle Scholar
 Ossendrijver, M.A.J.H., 2000a, “Grand minima in a buoyancydriven solar dynamo”, Astron. Astrophys., 359, 364–372. [ADS] (Cited on pages 40, 41, and 65.)ADSGoogle Scholar
 Ossendrijver, M.A.J.H., 2000b, “The dynamo effect of magnetic flux tubes”, Astron. Astrophys., 359, 1205–1210. [ADS] (Cited on page 41.)ADSGoogle Scholar
 Ossendrijver, M.A.J.H. and Covas, E., 2003, “Crisisinduced intermittency due to attractorwidening in a buoyancydriven solar dynamo”, Int. J. Bifurcat. Chaos, 13, 2327–2333. [DOI], [ADS] (Cited on page 64.)zbMATHCrossRefGoogle Scholar
 Ossendrijver, M.A.J.H. and Hoyng, P., 1996, “Stochastic and nonlinear fluctuations in a mean field dynamo”, Astron. Astrophys., 313, 959–970. [ADS] (Cited on page 60.)ADSGoogle Scholar
 Ossendrijver, M.A.J.H. and Hoyng, P., 1997, “Mean magnetic field and energy balance of Parker’s surfacewave dynamo”, Astron. Astrophys., 324, 329–343. [ADS] (Cited on page 31.)ADSGoogle Scholar
 Ossendrijver, M.A.J.H., Stix, M. and Brandenburg, A., 2001, “Magnetoconvection and dynamo coefficients: dependence of the αeffect on rotation and magnetic fields”, Astron. Astrophys., 376, 713–726. [DOI], [ADS] (Cited on pages 21 and 60.)ADSCrossRefGoogle Scholar
 Ossendrijver, M.A.J.H., Stix, M., Brandenburg, A. and Rüdiger, G., 2002, “Magnetoconvection and dynamo coefficients. II. Fielddirection dependent pumping of magnetic field”, Astron. Astrophys., 394, 735–745. [ADS] (Cited on page 22.)ADSzbMATHCrossRefGoogle Scholar
 OtmianowskaMazur, K., Rüdiger, G., Elstner, D. and Arlt, R., 1997, “The turbulent EMF as a time series and the ‘equality’ of dynamo cycles”, Geophys. Astrophys. Fluid Dyn., 86, 229–247. [DOI] (Cited on page 60.)ADSCrossRefGoogle Scholar
 Parker, E.N., 1955, “Hydromagnetic Dynamo Models”, Astrophys. J., 122, 293–314. [DOI], [ADS] (Cited on pages 8 and 24.)ADSMathSciNetCrossRefGoogle Scholar
 Parker, E.N., 1975, “The Generation of Magnetic Fields in Astrophysical Bodies. X. Magnetic Buoyancy and the Solar Dynamo”, Astrophys. J., 198, 205–209. [DOI], [ADS] (Cited on page 22.)ADSCrossRefGoogle Scholar
 Parker, E.N., 1982, “The dynamics of fibril magnetic fields. I. Effect of flux tubes on convection”, Astrophys. J., 256, 292–301. [DOI], [ADS] (Cited on page 71.)ADSCrossRefGoogle Scholar
 Parker, E.N., 1993, “A solar dynamo surface wave at the interface between convection and nonuniform rotation”, Astrophys. J., 408, 707–719. [DOI], [ADS] (Cited on page 28.)ADSCrossRefGoogle Scholar
 Passos, D. and Lopes, I., 2008, “A LowOrder Solar Dynamo Model: Inferred Meridional Circulation Variations Since 1750”, Astrophys. J., 686, 1420–1425. [DOI], [ADS] (Cited on pages 62 and 63.)ADSCrossRefGoogle Scholar
 Passos, D. and Lopes, I.P., 2009, “Grand Minima Under the Light of a Low Order Dynamo Model”, arXiv, eprint. [ADS], [arXiv:0908.0496] (Cited on page 62.)Google Scholar
 Petrovay, K., 2000, “What makes the Sun tick?”, in The Solar Cycle and Terrestrial Climate, Proceedings of the 1st Solar and Space Weather Euroconference: 2529 September 2000, Instituto de Astrofísica de Canarias, Santa Cruz de Tenerife, Tenerife, Spain, (Eds.) Vázquez, M., Schmieder, B., vol. SP463 of ESA Conference Proceedings, pp. 3–14, European Space Agency, Nordwijk (Cited on page 11.)Google Scholar
 Petrovay, K. and Kerekes, A., 2004, “The effect of a meridional flow on Parker’s interface dynamo”, Mon. Not. R. Astron. Soc., 351, L59–L62. [DOI], [ADS], [astroph/0404607] (Cited on page 34.)ADSCrossRefGoogle Scholar
 Petrovay, K. and Szakály, G., 1999, “Transport effects in the evolution of the global solar magnetic field”, Solar Phys., 185, 1–13. [ADS] (Cited on page 10.)ADSCrossRefGoogle Scholar
 Phillips, J.A., Brooke, J.M. and Moss, D., 2002, “The importance of physical structure in solar dynamo models”, Astron. Astrophys., 392, 713–727. [DOI], [ADS] (Cited on pages 29 and 55.)ADSzbMATHCrossRefGoogle Scholar
 Pipin, V.V., 1999, “The Gleissberg cycle by a nonlinear αΛ dynamo”, Astron. Astrophys., 346, 295–302. [ADS] (Cited on page 55.)ADSGoogle Scholar
 Pipin, V.V. and Seehafer, N., 2009, “Stellar dynamos with Ω × J effect”, Astron. Astrophys., 493, 819–828. [DOI], [ADS], [arXiv:0811.4225] (Cited on page 17.)ADSzbMATHCrossRefGoogle Scholar
 Platt, N., Spiegel, E.A. and Tresser, C., 1993, “Onoff intermittency: A mechanism for bursting”, Phys. Rev. Lett., 70, 279–282. [DOI], [ADS] (Cited on page 62.)ADSCrossRefGoogle Scholar
 Pouquet, A., Frish, U. and Leorat, J., 1976, “Strong MHD helical turbulence and the nonlinear dynamo effect”, J. Fluid Mech., 77, 321–354. [DOI], [ADS] (Cited on pages 22 and 54.)ADSzbMATHCrossRefGoogle Scholar
 Proctor, M.R.E. and Gilbert, A.D. (Eds.), 1994, Lectures on Solar and Planetary Dynamos, Publications of the Newton Institute, Cambridge University Press, Cambridge; New York (Cited on page 11.)zbMATHCrossRefGoogle Scholar
 Rädler, K.H., Kleeorin, N. and Rogachevskii, I., 2003, “The Mean Electromotive Force for MHD Turbulence: The Case of a Weak Mean Magnetic Field and Slow Rotation”, Geophys. Astrophys. Fluid Dyn., 97, 249–274. [DOI], [ADS], [astroph/0209287] (Cited on page 17.)ADSMathSciNetCrossRefGoogle Scholar
 Rempel, M., 2005, “Influence of Random Fluctuations in the ΛEffect on Meridional Flow and Differential Rotation”, Astrophys. J., 631, 1286–1292. [DOI], [ADS], [astroph/0610132] (Cited on page 37.)ADSCrossRefGoogle Scholar
 Rempel, M., 2006a, “Transport of Toroidal Magnetic Field by the Meridional Flow at the Base of the Solar Convection Zone”, Astrophys. J., 637, 1135–1142. [DOI], [ADS], [astroph/0610133] (Cited on pages 37 and 72.)ADSCrossRefGoogle Scholar
 Rempel, M., 2006b, “FluxTransport Dynamos with Lorentz Force Feedback on Differential Rotation and Meridional Flow: Saturation Mechanism and Torsional Oscillations”, Astrophys. J., 647, 662–675. [DOI], [ADS], [astroph/0604446] (Cited on pages 37, 55, and 72.)ADSCrossRefGoogle Scholar
 Rempel, M. and Schüssler, M., 2001, “Intensification of magnetic fields by conversion of potential energy”, Astrophys. J. Lett., 552, L171–L174. [DOI], [ADS] (Cited on page 71.)ADSCrossRefGoogle Scholar
 Ribes, J.C. and NesmeRibes, E., 1993, “The solar sunspot cycle in the Maunder minimum AD1645 to AD1715”, Astron. Astrophys., 276, 549–563. [ADS] (Cited on pages 51, 64, and 72.)ADSGoogle Scholar
 Roald, C.B. and Thomas, J.H., 1997, “Simple solar dynamo models with variable α and ω effects”, Mon. Not. R. Astron. Soc., 288, 551–564. [ADS] (Cited on page 57.)ADSCrossRefGoogle Scholar
 Roberts, P.H. and Stix, M., 1972, “αEffect Dynamos, by the BullardGellman Formalism”, Astron. Astrophys., 18, 453. [ADS] (Cited on page 32.)ADSGoogle Scholar
 Rozelot, J.P., 1995, “On the chaotic behaviour of the solar activity”, Astron. Astrophys., 297, L45–L48. [ADS] (Cited on page 53.)ADSGoogle Scholar
 Rüdiger, G. and Arlt, R., 2003, “Physics of the solar cycle”, in Advances in Nonlinear Dynamos, (Eds.) FerrizMas, A., N’uñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 147–195, Taylor & Francis, London, New York. [Google Books] (Cited on pages 11 and 28.)CrossRefGoogle Scholar
 Rüdiger, G. and Brandenburg, A., 1995, “A solar dynamo in the overshoot layer: cycle period and butterfly diagram”, Astron. Astrophys., 296, 557–566. [ADS] (Cited on page 28.)ADSGoogle Scholar
 Rüdiger, G. and Elstner, D., 1994, “Nonaxisymmetry vs. axisymmetry in dynamoexcited stellar magnetic fields”, Astron. Astrophys., 281, 46–50. [ADS] (Cited on page 72.)ADSGoogle Scholar
 Rüdiger, G. and Elstner, D., 2002, “Is the Butterfly diagram due to meridional motions?”, Astron. Nachr., 323, 432–435. [DOI], [ADS] (Cited on page 34.)ADSzbMATHCrossRefGoogle Scholar
 Rüdiger, G. and Hollerbach, R., 2004, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, WileyVCH, Weinheim. [ADS], [Google Books] (Cited on page 21.)CrossRefGoogle Scholar
 Rüdiger, G. and Kitchatinov, L.L., 1993, “Alphaeffect and alphaquenching”, Astron. Astrophys., .269, 581–588. [ADS] (Cited on page 21.)ADSGoogle Scholar
 Rüdiger, G., Kitchatinov, L.L., Küker, M. and Schultz, M., 1994, “Dynamo models with magnetic diffusivityquenching”, Geophys. Astrophys. Fluid Dyn., 78, 247–259. [DOI], [ADS] (Cited on page 22.)ADSCrossRefGoogle Scholar
 Rüdiger, G., Kitchatinov, L.L. and Arlt, R., 2005, “The penetration of meridional flow into the tachocline and its meaning for the solar dynamo”, Astron. Astrophys., 444, L53–L56. [DOI], [ADS] (Cited on page 45.)ADSCrossRefGoogle Scholar
 Schatten, K.H., 2009, “Modeling a Shallow Solar Dynamo”, Solar Phys., 255, 3–38. [DOI], [ADS] (Cited on page 71.)ADSCrossRefGoogle Scholar
 Schatten, K.H., Scherrer, P.H., Svalgaard, L. and Wilcox, J.M., 1978, “Using dynamo theory to predict the sunspot number during solar cycle 21”, Geophys. Res. Lett., 5, 411–414. [DOI], [ADS] (Cited on page 68.)ADSCrossRefGoogle Scholar
 Schmalz, S. and Stix, M., 1991, “An αΩ dynamo with order and chaos”, Astron. Astrophys., 245, 654–661. [ADS] (Cited on page 57.)ADSzbMATHGoogle Scholar
 Schmitt, D., 1987, “An αωdynamo with an αeffect due to magnetostrophic waves”, Astron. Astrophys., 174, 281–287. [ADS] (Cited on page 40.)ADSzbMATHGoogle Scholar
 Schmitt, D. and Schüssler, M., 1989, “Nonlinear dynamos I. Onedimensional model of a thin layer dynamo”, Astron. Astrophys., 223, 343–351. [ADS] (Cited on page 71.)ADSGoogle Scholar
 Schmitt, D. and Schüssler, M., 2004, “Does the butterfly diagram indicate a solar fluxtransport dynamo”, Astron. Astrophys., 421, 349–351. [ADS] (Cited on page 45.)ADSCrossRefGoogle Scholar
 Schmitt, D., Schüssler, M. and FerrizMas, A., 1996, “Intermittent solar activity by an onoff dynamo”, Astron. Astrophys., 311, L1–L4. [ADS] (Cited on pages 40, 41, and 65.)ADSGoogle Scholar
 Schou, J. and Bogart, R.S., 1998, “Flows and Horizontal Displacements from Ring Diagrams”, Astrophys. J. Lett., 504, L131–L134. [DOI], [ADS] (Cited on page 31.)ADSCrossRefGoogle Scholar
 Schrijver, C.J. and Siscoe, G.L. (Eds.), 2009, Heliophysics: Plasma Physics of the Local Cosmos, Cambridge University Press, Cambridge (Cited on page 11.)CrossRefGoogle Scholar
 Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J. and Shine, R.A., 1997, “Sustaining the Quiet Photospheric Network: The Balance of Flux Emergence, Fragmentation, Merging, and Cancellation”, Astrophys. J., 487, 424–436. [DOI], [ADS] (Cited on page 60.)ADSCrossRefGoogle Scholar
 Schrijver, C.J., DeRosa, M.L. and Title, A.M., 2002, “What Is Missing from Our Understanding of LongTerm Solar and Heliospheric Activity?”, Astrophys. J., 577, 1006–1012. [DOI], [ADS] (Cited on page 70.)ADSCrossRefGoogle Scholar
 Schüssler, M., 1977, “On Buoyant Magnetic Flux Tubes in the Solar Convection Zone”, Astron. Astrophys., 56, 439–442. [ADS] (Cited on page 22.)ADSGoogle Scholar
 Schüssler, M., 1996, “Magnetic flux tubes and the solar dynamo”, in Solar and Astrophysical Magnetohydrodynamic Flows, Proceedings of the NATO Advanced Study Institute, held in Heraklion, Crete, Greece, June 1995, (Ed.) Tsinganos, K.C., vol. 481 of NATO ASI Series C, pp. 17–37, Kluwer, Dordrecht; Boston (Cited on page 17.)Google Scholar
 Schüssler, M. and FerrizMas, A., 2003, “Magnetic flux tubes and the dynamo problem”, in Advances in Nonlinear Dynamos, (Eds.) FerrizMas, A., Núñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 123–146, Taylor & Francis, London, New York. [Google Books] (Cited on page 17.)CrossRefGoogle Scholar
 Seehafer, N. and Pipin, V.V., 2009, “An advective solartype dynamo without the α effect”, Astron. Astrophys., 508, 9–16. [DOI], [ADS], [arXiv:0910.2614] (Cited on page 34.)ADSzbMATHCrossRefGoogle Scholar
 Sheeley Jr, N.R., 1991, “Polar faculae: 19061990”, Astrophys. J., 374, 386–389. [ADS] (Cited on pages 43 and 51.)ADSCrossRefGoogle Scholar
 Sokoloff, D. and NesmeRibes, E., 1994, “The Maunder minimum: A mixedparity dynamo mode?”, Astron. Astrophys., 288, 293–298. [ADS] (Cited on page 72.)ADSGoogle Scholar
 Spiegel, E.A. and Zahn, J.P., 1992, “The solar tachocline”, Astron. Astrophys., 265, 106–114. [ADS] (Cited on page 17.)ADSGoogle Scholar
 Spruit, H.C., 1981, “Equations for Thin Flux Tubes in Ideal MHD”, Astron. Astrophys., 102, 129–133. [ADS] (Cited on page 40.)ADSzbMATHGoogle Scholar
 Steiner, O. and FerrizMas, A., 2005, “Connecting solar radiance variability to the solar dynamo with the virial theorem”, Astron. Nachr., 326, 190–193. [DOI], [ADS] (Cited on page 31.)ADSzbMATHCrossRefGoogle Scholar
 Stix, M., 1976, “Differential Rotation and the Solar Dynamo”, Astron. Astrophys., 47, 243–254. [ADS] (Cited on page 24.)ADSGoogle Scholar
 Stix, M., 2002, The Sun: An introduction, Astronomy and Astrophysics Library, Springer, Berlin, New York, 2nd edn. (Cited on page 11.)CrossRefGoogle Scholar
 Tapping, K., 1987, “Recent solar radio astronomy at centimeter wavelengths: the temporal variability of the 10.7 cm flux”, J. Geophys. Res., .92, 829–838. [DOI] (Cited on page 51.)ADSCrossRefGoogle Scholar
 Thelen, J.C., 2000a, “A mean electromotive force induced by magnetic buoyancy instabilities”, Mon. Not. R. Astron. Soc., 315, 155–164. [DOI], [ADS] (Cited on pages 18 and 38.)ADSCrossRefGoogle Scholar
 Thelen, J.C., 2000b, “Nonlinear αωdynamos driven by magnetic buoyancy”, Mon. Not. R. Astron. Soc., 315, 165–183. [DOI], [ADS] (Cited on pages 38 and 54.)ADSCrossRefGoogle Scholar
 Tobias, S.M., 1996a, “Diffusivity quenching as a mechanism for Parker’s surface dynamo”, Astrophys. J., 467, 870–880. [DOI], [ADS] (Cited on pages 29 and 31.)ADSCrossRefGoogle Scholar
 Tobias, S.M., 1996b, “Grand minimia in nonlinear dynamos”, Astron. Astrophys., 307, L21–L24. [ADS] (Cited on page 64.)ADSGoogle Scholar
 Tobias, S.M., 1997, “The solar cycle: parity interactions and amplitude modulation”, Astron. Astrophys., 322, 1007–1017. [ADS] (Cited on pages 29, 54, 55, and 64.)ADSGoogle Scholar
 Tobias, S.M., 2002, “Modulation of solar and stellar dynamos”, Astron. Nachr., 323, 417–423. [DOI], [ADS] (Cited on page 11.)ADSzbMATHCrossRefGoogle Scholar
 Tobias, S.M., Brummell, N.H., Clune, T.L. and Toomre, J., 2001, “Transport and storage of magnetic fields by overshooting turbulent convective convection”, Astrophys. J., 549, 1183–1203. [DOI], [ADS] (Cited on page 48.)ADSCrossRefGoogle Scholar
 Tobias, S.M., Cattaneo, F. and Brummell, N.H., 2008, “Convective Dynamos with Penetration, Rotation, and Shear”, Astrophys. J., 685, 596–605. [DOI], [ADS] (Cited on page 48.)ADSCrossRefGoogle Scholar
 Tomczyk, S., Schou, J. and Thompson, M.J., 1995, “Measurement of the Rotation Rate in the Deep Solar Interior”, Astrophys. J. Lett., 448, L57–L60. [DOI], [ADS] (Cited on page 17.)ADSCrossRefGoogle Scholar
 Toomre, J., ChristensenDalsgaard, J., Hill, F., Howe, R., Komm, R.W., Schou, J. and Thompson, M.J., 2003, “Transient oscillations near the solar tachocline”, in Local and Global Helioseismology: The Present and Future, Proceedings of SOHO 12/GONG+ 2002, 27 October  1 November 2002, Big Bear Lake, California, U.S.A.,.(Ed.) SawayaLacoste, H., vol. SP517 of ESA Conference Proceedings, pp. 409–412, ESA, Noordwijk. [ADS] (Cited on page 70.)Google Scholar
 Tworkowski, A., Tavakol, R., Brandenburg, A., Brooke, J.M., Moss, D. and Tuominen, I., 1998, “Intermittent behaviour in axisymmetric meanfield dynamo models in spherical shells”, Mon. Not. R. Astron. Soc., 296, 287–295. [DOI], [ADS] (Cited on page 65.)ADSCrossRefGoogle Scholar
 Ulrich, R.K. and Boyden, J.E., 2005, “The Solar Surface Toroidal Magnetic Field”, Astrophys. J. Lett., 620, L123–L127. [DOI], [ADS] (Cited on pages 31 and 37.)ADSCrossRefGoogle Scholar
 Usoskin, I.G., 2008, “A History of Solar Activity over Millennia”, Living Rev. Solar Phys., 5, lrsp–2008–3. [ADS], [arXiv:0810.3972]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp20083 (Cited on pages 51 and 64.)CrossRefGoogle Scholar
 Usoskin, I.G. and Mursula, K., 2003, “Longterm solar cycle evolution: Review of recent developments”, Solar Phys., 218, 319–343. [DOI] (Cited on pages 11 and 53.)ADSCrossRefGoogle Scholar
 Usoskin, I.G., Mursula, K., Arlt, R. and Kovaltsov, G.A., 2009a, “A Solar Cycle Lost in 17931800: Early Sunspot Observations Resolve the Old Mystery”, Astrophys. J. Lett., 700, L154–L157. [DOI], [ADS], [arXiv:0907.0063] (Cited on pages 54 and 64.)ADSCrossRefGoogle Scholar
 Usoskin, I.G., Sokoloff, D. and Moss, D., 2009b, “Grand Minima of Solar Activity and the Mean Field Dynamo”, Solar Phys., 254, 345–355. [DOI], [ADS] (Cited on page 72.)ADSCrossRefGoogle Scholar
 van Ballegooijen, A.A. and Choudhuri, A.R., 1988, “The possible role of meridional circulation in suppressing magnetic buoyancy”, Astrophys. J., 333, 965–977. [DOI], [ADS] (Cited on pages 32 and 33.)ADSCrossRefGoogle Scholar
 Wang, Y.M. and Sheeley Jr, N.R., 1991, “Magnetic flux transport and the Sun’s dipole moment: New twists to the BabcockLeighton model”, Astrophys. J., 375, 761–770. [ADS] (Cited on pages 41 and 70.)ADSCrossRefGoogle Scholar
 Wang, Y.M., Nash, A.G. and Sheeley Jr, N.R., 1989, “Magnetic flux transport on the sun”, Science, 245, 712–718. [DOI], [ADS] (Cited on page 41.)ADSCrossRefGoogle Scholar
 Wang, Y.M., Sheeley Jr, N.R. and Nash, A.G., 1991, “A new cycle model including meridional circulation”, Astrophys. J., 383, 431–442. [DOI], [ADS] (Cited on page 42.)ADSCrossRefGoogle Scholar
 Wang, Y.M., Lean, J. and Sheeley Jr, N.R., 2002, “Role of Meridional Flow in the Secular Evolution of the Sun’s Polar Fields and Open Flux”, Astrophys. J. Lett., 577, L53–L57. [ADS] (Cited on page 70.)ADSCrossRefGoogle Scholar
 Weiss, N.O., Cattaneo, F. and Jones, C.A., 1984, “Periodic and aperiodic dynamo waves”, Geophys. Astrophys. Fluid Dyn., 30, 305–341. [DOI], [ADS] (Cited on page 57.)ADSMathSciNetzbMATHCrossRefGoogle Scholar
 WilmotSmith, A.L., Nandy, D., Hornig, G. and Martens, P.C.H., 2006, “A Time Delay Model for Solar and Stellar Dynamos”, Astrophys. J., 652, 696–708. [DOI], [ADS] (Cited on page 58.)ADSCrossRefGoogle Scholar
 Yeates, A.R., Nandy, D. and Mackay, D.H., 2008, “Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection versus Diffusiondominated Solar Convection Zones”, Astrophys. J., 673, 544–556. [DOI], [ADS], [arXiv:0709.1046] (Cited on page 69.)ADSCrossRefGoogle Scholar
 Yoshimura, H., 1975, “Solarcycle dynamo wave propagation”, Astrophys. J., 201, 740–748. [DOI], [ADS] (Cited on page 24.)ADSMathSciNetCrossRefGoogle Scholar
 Yoshimura, H., 1978, “Nonlinear astrophysical dynamos: Multipleperiod dynamo wave oscillations and longterm modulations of the 22 year solar cycle”, Astrophys. J., 226, 706–719. [DOI], [ADS] (Cited on page 57.)ADSCrossRefGoogle Scholar
 Zhang, K., Chan, K.H., Zou, J., Liao, X. and Schubert, G., 2003a, “A threedimensional spherical nonlinear interface dynamo”, Astrophys. J., 596, 663–679. [DOI], [ADS] (Cited on pages 29 and 72.)ADSCrossRefGoogle Scholar
 Zhang, K., Liao, X. and Schubert, G., 2003b, “Nonaxisymmetric Instability of a Toroidal Magnetic Field in a Rotating Sphere”, Astrophys. J., 585, 1124–1137. [DOI], [ADS] (Cited on page 38.)ADSCrossRefGoogle Scholar
 Zhang, K., Liao, X. and Schubert, G., 2004, “A sandwich interface dynamo: linear dynamo waves in the sun”, Astrophys. J., 602, 468–480. [DOI], [ADS] (Cited on page 29.)ADSCrossRefGoogle Scholar