Arlt, R., 2009, “The Butterfly Diagram in the Eighteenth Century”, Solar Phys., 255, 143–153. [DOI], [ADS], [arXiv:0812.2233] (Cited on page 72.)
ADS
Google Scholar
Arlt, R., Sule, A. and Filter, R., 2007a, “Stability of the solar tachocline with magnetic fields”, Astron. Nachr., 328, 1142. [DOI], [ADS] (Cited on page 22.)
ADS
MATH
Google Scholar
Arlt, R., Sule, A. and Rüdiger, G., 2007b, “Stability of toroidal magnetic fields in the solar tachocline”, Astron. Astrophys., 461, 295–301. [DOI], [ADS] (Cited on pages 18 and 22.)
ADS
MATH
Google Scholar
Babcock, H.W., 1961, “The Topology of the Sun’s Magnetic Field and the 22-Year Cycle”, Astrophys. J., 133, 572–589. [DOI], [ADS] (Cited on pages 9 and 41.)
ADS
Google Scholar
Bai, T., 1987, “Distribution of flares on the sun: superactive regions and active zones of 1980-1985”, Astrophys. J., 314, 795–807. [DOI], [ADS] (Cited on page 72.)
ADS
Google Scholar
Basu, S. and Antia, H.M., 2001, “A study of possible temporal and latitudinal variations in the properties of the solar tachocline”, Mon. Not. R. Astron. Soc., 324, 498–508. [DOI], [ADS], [astro-ph/0101314] (Cited on page 70.)
ADS
Google Scholar
Baumann, I., Schmitt, D., Schüssler, M. and Solanki, S., 2004, “Evolution of the large-scale magnetic field on the solar surface: a parameter study”, Astron. Astrophys., 426, 1075–1091. [DOI], [ADS] (Cited on page 70.)
ADS
Google Scholar
Beer, J., 2000, “Long-term indirect indices of solar variability”, Space Sci. Rev., 94, 53.66. [ADS] (Cited on pages 51 and 53.)
Google Scholar
Beer, J., Raisbeck, G.M. and Yiou, F., 1991, “Time variation of 10Be and solar activity”, in The Sun in Time, (Eds.) Sonett, C.P., Giampapa, M.S., Matthews, M.S., pp. 343–359, University of Arizona Press, Tucson (Cited on page 51.)
Google Scholar
Beer, J., Tobias, S.M. and Weiss, N.O., 1998, “An Active Sun Throughout the Maunder Minimum”, Solar Phys., 181, 237–249. [DOI], [ADS] (Cited on pages 55, 64, and 72.)
ADS
Google Scholar
Bigazzi, A. and Ruzmaikin, A., 2004, “The sun’s preferred longitudes and the coupling of magnetic dynamo modes”, Astrophys. J., 604, 944–959. [DOI], [ADS] (Cited on page 72.)
ADS
Google Scholar
Blackman, E.G. and Brandenburg, A., 2002, “Dynamical nonlinearity in large-scale dynamo with shear”, Astrophys. J., 579, 359–373. [DOI], [ADS] (Cited on pages 22 and 57.)
ADS
Google Scholar
Blackman, E.G. and Field, G.B., 2000, “Constraints on the magnitude of α in dynamo theory”, Astrophys. J., 534, 984–988. [DOI], [ADS] (Cited on page 70.)
ADS
Google Scholar
Bonanno, A., Elstner, D., Rüdiger, G. and Belvedere, G., 2003, “Parity properties of an advectiondominated solar α2Ω-dynamo”, Astron. Astrophys., 390, 673–680. [ADS] (Cited on page 34.)
ADS
Google Scholar
Bonanno, A., Elstner, D. and Belvedere, G., 2006, “Advection-dominated solar dynamo model with two-cell meridional flow and a positive α-effect in the tachocline”, Astron. Nachr., 327, 680. [DOI], [ADS] (Cited on page 41.)
ADS
MATH
Google Scholar
Boruta, N., 1996, “Solar dynamo surface waves in the presence of a primordial magnetic field: a 30 Gauss upper limit in the solar core”, Astrophys. J., 458, 832–849. [DOI], [ADS] (Cited on page 53.)
ADS
Google Scholar
Boyer, D.W. and Levy, E.H., 1984, “Oscillating dynamo magnetic field in the presence of an external nondynamo field: the influence of a solar primordial field”, Astrophys. J., 277, 848–861. [DOI], [ADS] (Cited on page 53.)
ADS
Google Scholar
Brandenburg, A., 2005, “The Case for a Distributed Solar Dynamo Shaped by Near-Surface Shear”, Astrophys. J., 625, 539–547. [DOI], [ADS], [astro-ph/0502275] (Cited on page 19.)
ADS
Google Scholar
Brandenburg, A., 2009, “Advances in Theory and Simulations of Large-Scale Dynamos”, Space Sci. Rev., 144, 87–104. [DOI], [ADS], [arXiv:0901.0329] (Cited on pages 54 and 70.)
ADS
Google Scholar
Brandenburg, A. and Dobler, W., 2001, “Large scale dynamos with helicity loss through boundaries”, Astron. Astrophys., 369, 329–338. [DOI], [ADS] (Cited on page 70.)
ADS
MATH
Google Scholar
Brandenburg, A. and Schmitt, D., 1998, “Simulations of an alpha-effect due to magnetic buoyancy”, Astron. Astrophys., 338, L55–L58. [ADS] (Cited on page 40.)
ADS
Google Scholar
Brandenburg, A. and Subramanian, K., 2005, “Astrophysical magnetic fields and nonlinear dynamo theory”, Phys. Rep., 417, 1–209. [DOI], [ADS], [astro-ph/0405052] (Cited on page 11.)
ADS
MathSciNet
Google Scholar
Brandenburg, A., Tuominen, I., Nordlund, Å., Pulkkinen, P. and Stein, R.F., 1990, “3-D simulations of turbulent cyclonic magneto-convection”, Astron. Astrophys., 232, 277–291. [ADS] (Cited on page 21.)
ADS
Google Scholar
Brandenburg, A., Rädler, K.-H., Rheinhardt, M. and Subramanian, K., 2008, “Magnetic Quenching of α and Diffusivity Tensors in Helical Turbulence”, Astrophys. J. Lett., 687, L49–L52. [DOI], [ADS], [arXiv:0805.1287] (Cited on page 22.)
ADS
Google Scholar
Braun, D.C. and Fan, Y., 1998, “Helioseismic measurements of the subsurface meridional flow”, Astrophys. J. Lett., 508, L105–L108. [DOI], [ADS] (Cited on page 31.)
ADS
Google Scholar
Brooke, J.M., Pelt, J., Tavakol, R. and Tworkowski, A., 1998, “Grand minima and equatorial symmetry breaking in axisymmetric dynamo models”, Astron. Astrophys., 332, 339–352. [ADS] (Cited on pages 55 and 64.)
ADS
Google Scholar
Brooke, J.M., Moss, D. and Phillips, A., 2002, “Deep minima in stellar dynamos”, Astron. Astrophys., 395, 1013–1022. [DOI], [ADS] (Cited on page 64.)
ADS
MATH
Google Scholar
Brown, B.P., Browning, M.K., Miesch, M.S., Brun, A.S. and Toomre, J., 2009, “Wreathes of Magnetism in Rapidly Rotating Suns”, arXiv, e-print. [ADS], [arXiv:0906.2407] (Cited on page 48.)
Brown, B.P., Browning, M.K., Brun, A.S., Miesch, M.S. and Toomre, J., 2010, “Persistent Magnetic Wreaths in a Rapidly Rotating Sun”, Astrophys. J., 711, 424–438. [DOI], [ADS] (Cited on page 48.)
ADS
Google Scholar
Brown, T.M., Christensen-Dalsgaard, J., Dziembowski, W.A., Goode, P., Gough, D.O. and Morrow, C.A., 1989, “Inferring the Sun’s internal angular velocity from observed p-mode frequency splittings”, Astrophys. J., 343, 526–546. [DOI], [ADS] (Cited on page 17.)
ADS
Google Scholar
Browning, M.K., Miesch, M.S., Brun, A.S. and Toomre, J., 2006, “Dynamo Action in the Solar Convection Zone and Tachocline: Pumping and Organization of Toroidal Fields”, Astrophys. J. Lett., 648, L157–L160. [DOI], [ADS], [astro-ph/0609153] (Cited on page 48.)
ADS
Google Scholar
Brun, A.S., Miesch, M.S. and Toomre, J., 2004, “Global-scale turbulent convection and magnetic dynamo action in the solar envelope”, Astrophys. J., 614, 1073–1098. [DOI], [ADS] (Cited on page 48.)
ADS
Google Scholar
Bushby, P.J., 2006, “Zonal flows and grand minima in a solar dynamo model”, Mon. Not. R. Astron. Soc., 371, 772–780. [DOI], [ADS] (Cited on pages 55 and 65.)
ADS
Google Scholar
Bushby, P.J. and Tobias, S.M., 2007, “On Predicting the Solar Cycle Using Mean-Field Models”, Astrophys. J., 661, 1289–1296. [DOI], [ADS], [arXiv:0704.2345] (Cited on page 69.)
ADS
Google Scholar
Caligari, P., Moreno-Insertis, F. and Schüssler, M., 1995, “Emerging flux tubes in the solar convection zone. I. Asymmetry, tilt, and emergence latitudes”, Astrophys. J., 441, 886–902. [DOI], [ADS] (Cited on pages 18 and 57.)
ADS
Google Scholar
Cally, P.S., 2001, “Nonlinear Evolution of 2D Tachocline Instability”, Solar Phys., 199, 231–249. [DOI], [ADS] (Cited on page 38.)
ADS
Google Scholar
Cally, P.S., Dikpati, M. and Gilman, P.A., 2003, “Clamshell and Tipping Instabilities in a Twodimensional Magnetohydrodynamic Tachocline”, Astrophys. J., 582, 1190–1205. [DOI], [ADS] (Cited on page 38.)
ADS
Google Scholar
Cally, P.S., Dikpati, M. and Gilman, P.A., 2008, “Three-dimensional magneto-shear instabilities in the solar tachocline. II. Axisymmetric case”, Mon. Not. R. Astron. Soc., 391, 891–900. [DOI], [ADS] (Cited on page 18.)
ADS
Google Scholar
Cameron, R. and Schüssler, M., 2007, “Solar Cycle Prediction Using Precursors and Flux Transport Models”, Astrophys. J., 659, 801–811. [DOI], [ADS], [astro-ph/0612693] (Cited on page 69.)
ADS
Google Scholar
Cameron, R. and Schüssler, M., 2008, “A Robust Correlation between Growth Rate and Amplitude of Solar Cycles: Consequences for Prediction Methods”, Astrophys. J., 685, 1291–1296. [DOI], [ADS] (Cited on page 69.)
ADS
Google Scholar
Carbonell, M., Oliver, R. and Ballester, J.L., 1994, “A search for chaotic behaviour in solar activity”, Astron. Astrophys., 290, 983–994. [ADS] (Cited on page 53.)
ADS
Google Scholar
Cattaneo, F., 1999, “On the origin of magnetic fields in the quiet photosphere”, Astrophys. J. Lett., 515, L39–L42. [DOI], [ADS] (Cited on page 60.)
ADS
Google Scholar
Cattaneo, F. and Hughes, D.W., 1996, “Nonlinear saturation of the turbulent α-effect”, Phys. Rev. E, 54, R4532–R4535. [ADS] (Cited on pages 28 and 70.)
ADS
Google Scholar
Cattaneo, F. and Hughes, D.W., 2009, “Problems with kinematic mean field electrodynamics at high magnetic Reynolds numbers”, Mon. Not. R. Astron. Soc., 395, L48–L51. [DOI], [ADS], [arXiv:0805.2138] (Cited on page 54.)
ADS
Google Scholar
Cattaneo, F., Hughes, D.W. and Kim, E.-J., 1996, “Suppression of Chaos in a Simplified Nonlinear Dynamo Model”, Phys. Rev. Lett., 76, 2057–2060. [DOI], [ADS] (Cited on page 54.)
ADS
Google Scholar
Cattaneo, F., Emonet, T. and Weiss, N.O., 2003, “On the interaction between convection and magnetic fields”, Astrophys. J., 588, 1183–1198. [DOI], [ADS] (Cited on page 60.)
ADS
Google Scholar
Charbonneau, P., 2001, “Multiperiodicity, Chaos, and Intermittency in a Reduced Model of the Solar Cycle”, Solar Phys., 199, 385–404. [ADS] (Cited on pages 57, 58, and 65.)
ADS
Google Scholar
Charbonneau, P., 2005, “A Maunder Minimum Scenario Based on Cross-Hemispheric Coupling and Intermittency”, Solar Phys., 229, 345–358. [DOI], [ADS] (Cited on pages 47 and 73.)
ADS
Google Scholar
Charbonneau, P., 2007a, “Cross-hemispheric coupling in a Babcock-Leighton model of the solar cycle”, Adv. Space Res., 40, 899–906. [DOI], [ADS] (Cited on pages 47 and 73.)
ADS
Google Scholar
Charbonneau, P., 2007b, “Babcock-Leighton models of the solar cycle: Questions and issues”, Adv. Space Res., 39, 1661–1669. [DOI], [ADS] (Cited on page 45.)
ADS
Google Scholar
Charbonneau, P. and Barlet, G., 2010, “The dynamo basis of solar cycle precursor schemes”, J. Atmos. Sol.-Terr. Phys., 2010, in press. [DOI] (Cited on page 68.)
Google Scholar
Charbonneau, P. and Dikpati, M., 2000, “Stochastic Fluctuations in a Babcock-Leighton Model of the Solar Cycle”, Astrophys. J., 543, 1027–1043. [DOI], [ADS] (Cited on pages 57 and 62.)
ADS
Google Scholar
Charbonneau, P. and MacGregor, K.B., 1996, “On the generation of equipartition-strength magnetic fields by turbulent hydromagnetic dynamos”, Astrophys. J. Lett., 473, L59–L62. [DOI], [ADS] (Cited on page 29.)
ADS
Google Scholar
Charbonneau, P. and MacGregor, K.B., 1997, “Solar Interface Dynamos. II. Linear, Kinematic Models in Spherical Geometry”, Astrophys. J., 486, 502–520. [DOI], [ADS] (Cited on page 29.)
ADS
Google Scholar
Charbonneau, P., Christensen-Dalsgaard, J., Henning, R., Larsen, R.M., Schou, J., Thompson, M.J. and Tomczyk, S., 1999, “Helioseismic Constraints on the Structure of the Solar Tachocline”, Astrophys. J., 527, 445–460. [DOI], [ADS] (Cited on page 17.)
ADS
Google Scholar
Charbonneau, P., Blais-Laurier, G. and St-Jean, C., 2004, “Intermittency and Phase Persistence in a Babcock-Leighton Model of the Solar Cycle”, Astrophys. J. Lett., 616, L183–L186. [DOI], [ADS] (Cited on pages 65, 67, and 68.)
ADS
Google Scholar
Charbonneau, P., St-Jean, C. and Zacharias, P., 2005, “Fluctuations in Babcock-Leighton models of the solar cycle. I. period doubling and transition to chaos”, Astrophys. J., 619, 613–622. [DOI], [ADS] (Cited on pages 42, 43, and 58.)
ADS
Google Scholar
Charbonneau, P., Beaubien, G. and St-Jean, C., 2007, “Fluctuations in Babcock-Leighton Dynamos. II. Revisiting the Gnevyshev-Ohl Rule”, Astrophys. J., 658, 657–662. [DOI], [ADS] (Cited on page 62.)
ADS
Google Scholar
Chatterjee, P. and Choudhuri, A.R., 2006, “On Magnetic Coupling Between the Two Hemispheres in Solar Dynamo Models”, Solar Phys., 239, 29–39. [DOI], [ADS] (Cited on pages 47 and 73.)
ADS
Google Scholar
Chatterjee, P., Nandy, D. and Choudhuri, A.R., 2004, “Full-sphere simulations of a circulation dominated solar dynamo: exploring the parity issue”, Astron. Astrophys., 427, 1019–1030. [DOI], [ADS] (Cited on pages 42, 47, 62, and 63.)
ADS
Google Scholar
Choudhuri, A.R., 1990, “On the possibility of αΩ-type dynamo in a thin layer inside the sun”, Astrophys. J., 355, 733–744. [DOI], [ADS] (Cited on page 23.)
ADS
Google Scholar
Choudhuri, A.R., 1992, “Stochastic fluctuations of the solar dynamo”, Astron. Astrophys., 253, 277–285. [ADS] (Cited on pages 60 and 62.)
ADS
MATH
Google Scholar
Choudhuri, A.R., Schüssler, M. and Dikpati, M., 1995, “The solar dynamo with meridional circulation”, Astron. Astrophys., 303, L29–L32. [ADS] (Cited on page 32.)
ADS
Google Scholar
Choudhuri, A.R., Chatterjee, P. and Jiang, J., 2007, “Predicting Solar Cycle 24 With a Solar Dynamo Model”, Phys. Rev. Lett., 98, 131103. [DOI], [ADS], [astro-ph/0701527] (Cited on pages 68 and 69.)
ADS
Google Scholar
Christensen-Dalsgaard, J., 2002, “Helioseismology”, Rev. Mod. Phys., 74, 1073–1129. [ADS] (Cited on page 13.)
ADS
Google Scholar
Covas, E., Tavakol, R., Tworkowski, A. and Brandenburg, A., 1997, “Robustness of truncated αΩ dynamos with a dynamic alpha”, Solar Phys., 172, 3–13. [DOI], [ADS] (Cited on page 57.)
ADS
Google Scholar
Covas, E., Tavakol, R., Tworkowski, A. and Brandenburg, A., 1998, “Axisymmetric mean field dynamos with dynamic and algebraic α-quenching”, Astron. Astrophys., 329, 350–360. [ADS] (Cited on page 57.)
ADS
Google Scholar
Davidson, P.A., 2001, An Introduction to Magnetohydrodynamics, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge; New York. [Google Books] (Cited on page 12.)
Google Scholar
DeLuca, E.E. and Gilman, P.A., 1988, “Dynamo theory for the interface between the convection zone and the radiative interior of a star”, Geophys. Astrophys. Fluid Dyn., 43, 119–148. [DOI] (Cited on pages 23 and 54.)
ADS
MATH
Google Scholar
DeLuca, E.E., Fisher, G.H. and Patten, B.M., 1993, “The dynamics of magnetic flux rings”, Astrophys. J., 411, 383–393. [DOI], [ADS] (Cited on page 71.)
ADS
Google Scholar
Dikpati, M. and Charbonneau, P., 1999, “A Babcock-Leighton Flux Transport Dynamo with Solar-like Differential Rotation”, Astrophys. J., 518, 508–520. [DOI], [ADS] (Cited on pages 42, 43, 45, and 57.)
ADS
Google Scholar
Dikpati, M. and Gilman, P.A., 1999, “Joint instability of latitudinal differential rotation and concentrated toroidal fields below the solar convection zone”, Astrophys. J., 512, 417–441. [DOI], [ADS] (Cited on page 38.)
ADS
Google Scholar
Dikpati, M. and Gilman, P.A., 2001, “Flux-Transport Dynamos with..-Effect from Global Instability of Tachocline Differential Rotation: A Solution for Magnetic Parity Selection in the Sun”, Astrophys. J., 559, 428–442. [DOI], [ADS] (Cited on pages 17, 37, 39, and 47.)
ADS
Google Scholar
Dikpati, M. and Gilman, P.A., 2006, “Simulating and Predicting Solar Cycles Using a Flux- Transport Dynamo”, Astrophys. J., 649, 498–514. [DOI], [ADS] (Cited on page 68.)
ADS
Google Scholar
Dikpati, M., Corbard, T., Thompson, M.J. and Gilman, P.A., 2002, “Flux Transport Solar Dynamos with Near-Surface Radial Shear”, Astrophys. J. Lett., 575, L41–L45. [DOI], [ADS] (Cited on page 19.)
ADS
Google Scholar
Dikpati, M., De Toma, G., Gilman, P.A., Arge, C.N. and White, O.R., 2004, “Diagnostic of polar field reversal in solar cycle 23 using a flux transport dynamo model”, Astrophys. J., 601, 1136–1151. [DOI], [ADS] (Cited on pages 37, 41, and 47.)
ADS
Google Scholar
Dikpati, M., Gilman, P.A. and MacGregor, K.B., 2005, “Constraints on the Applicability of an Interface Dynamo to the Sun”, Astrophys. J., 631, 647–652. [DOI], [ADS] (Cited on pages 31 and 53.)
ADS
Google Scholar
Dikpati, M., de Toma, G. and Gilman, P.A., 2006, “Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool”, Geophys. Res. Lett., 33, L05102. [DOI], [ADS] (Cited on pages 68 and 69.)
ADS
Google Scholar
Dikpati, M., Gilman, P.A., Cally, P.S. and Miesch, M.S., 2009, “Axisymmetric MHD Instabilities in Solar/Stellar Tachoclines”, Astrophys. J., 692, 1421–I, [ADS] (Cited on page 18.)
ADS
Google Scholar
D’Silva, S. and Choudhuri, A.R., 1993, “A theoretical model for tilts of bipolar magnetic regions”, Astron. Astrophys., 272, 621–633. [ADS] (Cited on page 18.)
ADS
Google Scholar
Durney, B.R., 1995, “On a Babcock-Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field”, Solar Phys., 160, 213–235. [DOI], [ADS] (Cited on pages 42 and 43.)
ADS
Google Scholar
Durney, B.R., 1996, “On a Babcock-Leighton dynamo model with a deep-seated generating layer for the toroidal magnetic field, II”, Solar Phys., 166, 231–260. [DOI], [ADS] (Cited on page 42.)
ADS
Google Scholar
Durney, B.R., 1997, “On a Babcock-Leighton solar dynamo model with a deep-seated generating layer for the toroidal magnetic field. IV”, Astrophys. J., 486, 1065–1077. [DOI], [ADS] (Cited on page 42.)
ADS
Google Scholar
Durney, B.R., 2000, “On the differences between odd and even solar cycles”, Solar Phys., 196, 421–426. [ADS] (Cited on page 57.)
ADS
Google Scholar
Durney, B.R., De Young, D.S. and Roxburgh, I.W., 1993, “On the generation of the large-scale and turbulent magnetic field in solar-type stars”, Solar Phys., 145, 207–225. [DOI], [ADS] (Cited on pages 22, 42, and 54.)
ADS
Google Scholar
Eddy, J.A., 1976, “The Maunder Minimum”, Science, 192, 1189–1202. [DOI], [ADS] (Cited on page 51.)
ADS
Google Scholar
Eddy, J.A., 1983, “The Maunder Minimum: A reappraisal”, Solar Phys., 89, 195–207. [DOI], [ADS] (Cited on page 51.)
ADS
Google Scholar
Fan, Y., 2009, “Magnetic Fields in the Solar Convection Zone”, Living Rev. Solar Phys., 6, lrsp–2009–4. [ADS]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp-2009-4(Cited on pages 10, 17, and 28.)
Google Scholar
Fan, Y., Fisher, G.H. and Deluca, E.E., 1993, “The origin of morphological asymmetries in bipolar active regions”, Astrophys. J., 405, 390–401. [DOI], [ADS] (Cited on pages 18 and 57.)
ADS
Google Scholar
Ferriz-Mas, A. and Núñez, M. (Eds.), 2003, Advances in Nonlinear Dynamos, vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, Taylor & Francis, London, New York (Cited on page 11.)
Google Scholar
Ferriz-Mas, A., Schmitt, D. and Schüssler, M., 1994, “A dynamo effect due to instability of magnetic flux tubes”, Astron. Astrophys., 289, 949–956. [ADS] (Cited on pages 17, 40, and 41.)
ADS
Google Scholar
Feynman, J. and Gabriel, S.B., 1990, “Period and phase of the 88-year solar cycle and the Maunder minimum: Evidence for a chaotic Sun”, Solar Phys., 127, 393–403. [DOI], [ADS] (Cited on page 53.)
ADS
Google Scholar
Foukal, P.V., 2004, Solar Astrophysics, Wiley-VCH, Weinheim, 2nd edn. (Cited on page 11.) Garaud, P. and Brummell, N.H., 2008, “On the Penetration of Meridional Circulation below the Solar Convection Zone”, Astrophys. J., 674, 498–510. [DOI], [ADS], [arXiv:0708.0258] (Cited on page 45.)
Ghizaru, M., Charbonneau, P. and Smolarkiewicz, P.K., 2010, “Magnetic cycles in global largeeddy simulations of solar convection”, Astrophys. J. Lett., 715, L133–L137. [DOI], [ADS] (Cited on pages 48, 49, and 72.)
ADS
Google Scholar
Gilman, P.A., 1983, “Dynamically consistent nonlinear dynamos driven by convection on a rotating spherical shell. II. Dynamos with cycles and strong feedback”, Astrophys. J. Suppl. Ser., 53, 243–268. [DOI], [ADS] (Cited on pages 47 and 54.)
ADS
Google Scholar
Gilman, P.A. and Fox, P.A., 1997, “Joint instability of latitudinal differential rotation and toroidal magnetic fields below the solar convection zone”, Astrophys. J., 484, 439–454. [DOI], [ADS] (Cited on page 38.)
ADS
Google Scholar
Gilman, P.A. and Miesch, M.S., 2004, “Limits to penetration of meridional circulation below the solar convection zone”, Astrophys. J., 611, 568–574. [DOI], [ADS] (Cited on page 45.)
ADS
Google Scholar
Gilman, P.A. and Miller, J., 1981, “Dynamically consistent nonlinear dynamos driven by convection in a rotating spherical shell”, Astrophys. J. Suppl. Ser., 46, 211–238. [DOI], [ADS] (Cited on page 47.)
ADS
Google Scholar
Gilman, P.A. and Rempel, M., 2005, “Concentration of Toroidal Magnetic Field in the Solar Tachocline by η-Quenching”, Astrophys. J., 630, 615–622. [DOI], [ADS], [astro-ph/0504003] (Cited on page 22.)
ADS
Google Scholar
Gilman, P.A., Morrow, C.A. and Deluca, E.E., 1989, “Angular momentum transport and dynamo action in the sun. Implications of recent oscillation measurements”, Astrophys. J., 46, 528–537. [DOI], [ADS] (Cited on page 23.)
ADS
Google Scholar
Gizon, L., 2004, “Helioseismology of Time-Varying Flows Through The Solar Cycle”, Solar Phys., 224, 217–228. [DOI], [ADS] (Cited on pages 13 and 31.)
ADS
Google Scholar
Gizon, L. and Rempel, M., 2008, “Observation and Modeling of the Solar-Cycle Variation of the Meridional Flow”, Solar Phys., 251, 241–250. [DOI], [ADS], [arXiv:0803.0950] (Cited on pages 31 and 55.)
ADS
Google Scholar
Glatzmaier, G.A., 1985a, “Numerical simulations of stellar convective dynamos. II. Field propagation in the convection zone”, Astrophys. J., 291, 300–307. [DOI], [ADS] (Cited on page 47.)
ADS
Google Scholar
Glatzmaier, G.A., 1985b, “Numerical simulations of stellar convective dynamos. III. At the base of the convection zone”, Geophys. Astrophys. Fluid Dyn., 31, 137–150. [DOI], [ADS] (Cited on page 47.)
ADS
Google Scholar
Guerrero, G. and de Gouveia Dal Pino, E.M., 2007, “How does the shape and thickness of the tachocline affect the distribution of the toroidal magnetic fields in the solar dynamo?”, Astron. Astrophys., 464, 341–349. [DOI], [ADS], [astro-ph/0610703] (Cited on page 45.)
ADS
Google Scholar
Guerrero, G. and de Gouveia Dal Pino, E.M., 2008, “Turbulent magnetic pumping in a Babcock- Leighton solar dynamo model”, Astron. Astrophys., 485, 267–273. [DOI], [ADS], [arXiv:0803.3466] (Cited on pages 42, 45, 46, and 47.)
ADS
Google Scholar
Guerrero, G.A. and Muñoz, J.D., 2004, “Kinematic solar dynamo models with a deep meridional flow”, Mon. Not. R. Astron. Soc., 350, 317–322. [DOI], [ADS] (Cited on page 45.)
ADS
Google Scholar
Haber, D.A., Hindman, B.W., Toomre, J., Bogart, R.S., Larsen, R.M. and Hill, F., 2002, “Evolving Submerged Meridional Circulation Cells within the Upper Convection Zone Revealed by Ring- Diagram Analysis”, Astrophys. J., 570, 855–864. [DOI], [ADS] (Cited on pages 31 and 37.)
ADS
Google Scholar
Hagenaar, H.J., Schrijver, C.J. and Title, A.M., 2003, “The Properties of Small Magnetic Regions on the Solar Surface and the Implications for the Solar Dynamo(s)”, Astrophys. J., 584, 1107–1119. [DOI], [ADS] (Cited on page 60.)
ADS
Google Scholar
Haigh, J.D., 2007, “The Sun and the Earth’s Climate”, Living Rev. Solar Phys., 4, lrsp–2007–2.[ADS]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp-2007-2(Cited on page 51.)
Google Scholar
Hathaway, D.H., 1996, “Doppler measurements of the sun’s meridional flow”, Astrophys. J., 460, 1027–1033. [DOI], [ADS] (Cited on page 31.)
ADS
Google Scholar
Hathaway, D.H., 2010, “The Solar Cycle”, Living Rev. Solar Phys., 7, lrsp–2010–1. [ADS]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp-2010-1 (Cited on pages 51, 53, and 69.)
Google Scholar
Hathaway, D.H., Wilson, R.M. and Reichmann, E.J., 1999, “A Synthesis of Solar Cycle Prediction Techniques”, J. Geophys. Res., 104, 22,375–22,388. [DOI], [ADS] (Cited on page 68.)
ADS
Google Scholar
Hathaway, D.H., Wilson, R.M. and Reichmann, E.J., 2002, “Group sunspot numbers: sunspot cycle characteristics”, Solar Phys., 211, 357–370. [ADS] (Cited on page 52.)
ADS
Google Scholar
Hathaway, D.H., Nandy, D., Wilson, R.M. and Reichmann, E.J., 2003, “Evidence that a deep meridional flow sets the sunspot cycle period”, Astrophys. J., 589, 665–670. [DOI], [ADS] (Cited on page 45.)
ADS
Google Scholar
Henney, C.J. and Harvey, J.W., 2002, “Phase coherence analysis of solar magnetic activity”, Solar Phys., 207, 199–218. [DOI], [ADS] (Cited on page 72.)
ADS
Google Scholar
Howe, R., 2009, “Solar Interior Rotation and its Variation”, Living Rev. Solar Phys., 6, lrsp–2009–1. [ADS], [arXiv:0902.2406]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp-2009-1 (Cited on pages 13 and 70.)
Google Scholar
Hoyng, P., 1988, “Turbulent transport of magnetic fields. III. Stochastic excitation of global magnetic modes”, Astrophys. J., 332, 857–871. [DOI], [ADS] (Cited on page 60.)
ADS
Google Scholar
Hoyng, P., 1993, “Helicity fluctuations in mean field theory: an explanation for the variability of the solar cycle?”, Astron. Astrophys., 272, 321–339. [ADS] (Cited on pages 21, 60, and 64.)
ADS
MathSciNet
Google Scholar
Hoyng, P., 2003, “The field, the mean and the meaning”, in Advances in Nonlinear Dynamos, (Eds.) Ferriz-Mas, A., Núñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 1–36, Taylor & Francis, London, New York. [Google Books] (Cited on pages 7 and 21.)
Google Scholar
Hoyt, D.V. and Schatten, K., 1998, “Group Sunspot Numbers: A New Solar Activity Reconstruction”, Solar Phys., 179, 189–219. [ADS] (Cited on page 52.)
ADS
Google Scholar
Hoyt, D.V. and Schatten, K.H., 1996, “How Well Was the Sun Observed during the Maunder Minimum?”, Solar Phys., 165, 181–192. [DOI], [ADS] (Cited on page 51.)
ADS
Google Scholar
Jennings, R.L. and Weiss, N.O., 1991, “Symmetry breaking in stellar dynamos”, Mon. Not. R. Astron. Soc., 252, 249–260. [ADS] (Cited on page 57.)
ADS
MATH
Google Scholar
Jiang, J., Chatterjee, P. and Choudhuri, A.R., 2007, “Solar activity forecast with a dynamo model”, Mon. Not. R. Astron. Soc., 381, 1527–1542. [DOI], [ADS], [arXiv:0707.2258] (Cited on page 68.)
ADS
Google Scholar
Jiang, J., Cameron, R., Schmitt, D. and Schüssler, M., 2009, “Countercell Meridional Flow and Latitudinal Distribution of the Solar Polar Magnetic Field”, Astrophys. J., 693, L96–L99. [DOI], [ADS] (Cited on pages 37 and 41.)
ADS
Google Scholar
Jouve, L. and Brun, A.S., 2007, “On the role of meridional flows in flux transport dynamo models”, Astron. Astrophys., 474, 239–250. [DOI], [ADS], [arXiv:0712.3200] (Cited on page 41.)
ADS
Google Scholar
Jouve, L., Brun, A.S., Arlt, R., Brandenburg, A., Dikpati, M., Bonanno, A., Käpylä, P.J., Moss, D., Rempel, M., Gilman, P., Korpi, M.J. and Kosovichev, A.G., 2008, “A solar mean field dynamo benchmark”, Astron. Astrophys., 483, 949–960. [DOI], [ADS] (Cited on page 19.)
ADS
Google Scholar
Jouve, L., Brown, B.P. and Brun, A.S., 2010, “Exploring the Pcyc vs. Prot relation with flux transport dynamo models of solar-like stars”, Astron. Astrophys., 509, A32. [DOI], [ADS], [arXiv:0911.1947] (Cited on page 45.)
ADS
Google Scholar
Käpylä, P.J., Korpi, M.J., Ossendrijver, M. and Stix, M., 2006a, “Magnetoconvection and dynamo coefficients. III. α-effect and magnetic pumping in the rapid rotation regime”, Astron. Astrophys., 455, 401–412. [DOI], [ADS], [astro-ph/0602111] (Cited on pages 21, 22, and 72.)
ADS
Google Scholar
Käpylä, P.J., Korpi, M.J. and Tuominen, I., 2006b, “Solar dynamo models with α-effect and turbulent pumping from local 3D convection calculations”, Astron. Nachr., 327, 884. [DOI], [ADS], [astro-ph/0606089] (Cited on page 34.)
ADS
MATH
Google Scholar
Käpylä, P.J., Korpi, M.J., Brandenburg, A., Mitra, D. and Tavakol, R., 2010, “Convective dynamos in spherical wedge geometry”, Astron. Nachr., 331, 73. [DOI], [ADS] (Cited on page 48.)
ADS
MATH
Google Scholar
Kitchatinov, L.L. and Rüdiger, G., 1993, “Λ-effect and differential rotation in stellar convection zones”, Astron. Astrophys., 276, 96–102. [ADS] (Cited on pages 28 and 54.)
ADS
Google Scholar
Kitchatinov, L.L. and Rüdiger, G., 2006, “Magnetic field confinement by meridional flow and the solar tachocline”, Astron. Astrophys., 453, 329–333. [DOI], [ADS], [astro-ph/0603417] (Cited on page 53.)
ADS
MATH
Google Scholar
Kitchatinov, L.L., Rüdiger, G. and Küker, M., 1994, “Λ-quenching as the nonlinearity in stellar-turbulence dynamos”, Astron. Astrophys., 292, 125–132. [ADS] (Cited on page 54.)
ADS
Google Scholar
Kitchatinov, L.L., Mazur, M.V. and Jardine, M., 2000, “Magnetic field escape from a stellar convection zone and the dynamo-cycle period”, Astron. Astrophys., 359, 531–538. [ADS] (Cited on page 71.)
ADS
Google Scholar
Kitiashvili, I. and Kosovichev, A.G., 2008, “Application of Data Assimilation Method for Predicting Solar Cycles”, Astrophys. J., 688, L49–L52. [DOI], [ADS], [arXiv:0807.3284] (Cited on page 69.)
ADS
Google Scholar
Kleeorin, N., Rogachevskii, I. and Ruzmaikin, A., 1995, “Magnitude of the dynamo-generated magnetic field in solar-type convective zones”, Astron. Astrophys., 297, 159–167. [ADS] (Cited on page 57.)
ADS
Google Scholar
Knobloch, E., Tobias, S.M. and Weiss, N.O., 1998, “Modulation and symmetry changes in stellar dynamos”, Mon. Not. R. Astron. Soc., 297, 1123–1138. [DOI], [ADS] (Cited on page 55.)
ADS
Google Scholar
Krause, F. and Rädler, K.-H., 1980, Mean-Field Magnetohydrodynamics and Dynamo Theory, Pergamon Press, Oxford; New York (Cited on page 21.)
MATH
Google Scholar
Küker, M., Arlt, R. and Rüdiger, R., 1999, “The Maunder minimum as due to magnetic Λ-quenching”, Astron. Astrophys., 343, 977–982. [ADS] (Cited on pages 55 and 64.)
ADS
Google Scholar
Küker, M., Rüdiger, G. and Schulz, M., 2001, “Circulation-dominated solar shell dynamo models with positive alpha effect”, Astron. Astrophys., 374, 301–308. [DOI], [ADS] (Cited on page 34.)
ADS
Google Scholar
Leighton, R.B., 1964, “Transport of magnetic fields on the sun”, Astrophys. J., 140, 1547–1562. [DOI], [ADS] (Cited on page 41.)
ADS
MATH
Google Scholar
Leighton, R.B., 1969, “A magneto-kinematic model of the solar cycle”, Astrophys. J., 156, 1–26. [DOI], [ADS] (Cited on page 41.)
ADS
Google Scholar
Lerche, I. and Parker, E.N., 1972, “The Generation of Magnetic Fields in Astrophysical Bodies. IX. A Solar Dynamo Based on Horizontal Shear”, Astrophys. J., 176, 213. [DOI], [ADS] (Cited on page 25.)
ADS
Google Scholar
Lopes, I. and Passos, D., 2009, “Solar Variability Induced in a Dynamo Code by Realistic Meridional Circulation Variations”, Solar Phys., 257, 1–12. [DOI], [ADS] (Cited on pages 62, 63, and 71.)
ADS
Google Scholar
MacGregor, K.B. and Charbonneau, P., 1997, “Solar interface dynamos. I. Linear, kinematic models in cartesian geometry”, Astrophys. J., 486, 484–501. [DOI], [ADS] (Cited on pages 29 and 31.)
ADS
Google Scholar
Malkus, W.V.R. and Proctor, M.R.E., 1975, “The macrodynamics of α-effect dynamos in rotating fluids”, J. Fluid Mech., 67, 417–443 (Cited on page 54.)
ADS
MATH
Google Scholar
Markiel, J.A and Thomas, J.H., 1999, “Solar interface dynamo models with a realistic rotation profile”, Astrophys. J., 523, 827–837. [DOI], [ADS] (Cited on pages 29 and 31.)
ADS
Google Scholar
Mason, J., Hughes, D.W. and Tobias, S.M., 2002, “The competition in the solar dynamo between surface and deep-seated α-effect”, Astrophys. J. Lett., 580, L89–L92. [DOI], [ADS] (Cited on page 47.)
ADS
Google Scholar
Mason, J., Hughes, D.W. and Tobias, S.M., 2008, “The effects of flux transport on interface dynamos”, Mon. Not. R. Astron. Soc., 391, 467–480. [DOI], [ADS], [arXiv:0812.0199] (Cited on page 31.)
ADS
Google Scholar
Matthews, P.C., Hughes, D.W. and Proctor, M.R.E., 1995, “Magnetic Buoyancy, Vorticity, and Three-dimensional Flux-Tube Formation”, Astrophys. J., 448, 938–941. [DOI], [ADS] (Cited on page 18.)
ADS
Google Scholar
Miesch, M.S., 2005, “Large-Scale Dynamics of the Convection Zone and Tachocline”, Living Rev. Solar Phys., 2, lrsp–2005–1. URL (accessed 1 May 2005): http://www.livingreviews.org/lrsp-2005-1 (Cited on page 37.)
Google Scholar
Miesch, M.S. and Toomre, J., 2009, “Turbulence, Magnetism, and Shear in Stellar Interiors”, Annu. Rev. Fluid Mech., 41, 317–345. [DOI], [ADS] (Cited on page 48.)
ADS
MATH
Google Scholar
Mininni, P.D. and Gómez, D.O., 2002, “Study of Stochastic Fluctuations in a Shell Dynamo”, Astrophys. J., 573, 454–463. [DOI], [ADS] (Cited on page 60.)
ADS
Google Scholar
Mininni, P.D. and Gómez, D.O., 2004, “A new technique for comparing solar dynamo models and observations”, Astron. Astrophys., 426, 1065–1073. [DOI], [ADS] (Cited on pages 60 and 64.)
ADS
Google Scholar
Mininni, P.D., Gómez, D.O. and Mindlin, G.B., 2002, “Instantaneous phase and amplitude correlation in the solar cycle”, Solar Phys., 208, 167–179. [DOI], [ADS] (Cited on page 53.)
ADS
Google Scholar
Moffatt, H.K., 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge; New York (Cited on page 21.)
Google Scholar
Moreno-Insertis, F., 1983, “Rise time of horizontal magnetic flux tubes in the convection zone of the Sun”, Astron. Astrophys., 122, 241–250. [ADS] (Cited on page 22.)
ADS
Google Scholar
Moreno-Insertis, F., 1986, “Nonlinear time-evolution of kink-unstable magnetic flux tubes in the convective zone of the sun”, Astrophys. J., 166, 291–305. [ADS] (Cited on pages 22 and 57.)
ADS
MATH
Google Scholar
Moss, D., 1999, “Non-axisymmetric solar magnetic fields”, Mon. Not. R. Astron. Soc., 306, 300–306. [DOI], [ADS] (Cited on page 72.)
ADS
Google Scholar
Moss, D. and Brooke, J.M., 2000, “Towards a model of the solar dynamo”, Mon. Not. R. Astron. Soc., 315, 521–533. [DOI], [ADS] (Cited on pages 54 and 55.)
ADS
Google Scholar
Moss, D., Tuominen, I. and Brandenburg, A., 1990, “Buoyancy-limited thin-shell dynamos”, Astron. Astrophys., 240, 142–149. [ADS] (Cited on page 71.)
ADS
Google Scholar
Moss, D., Brandenburg, A. and Tuominen, I., 1991, “Properties of mean field dynamos with nonaxisymmetric α-effect”, Astron. Astrophys., 347, 576–579. [ADS] (Cited on page 72.)
ADS
MATH
Google Scholar
Moss, D., Brandenburg, A., Tavakol, R. and Tuominen, I., 1992, “Stochastic effects in mean-field dynamos”, Astron. Astrophys., 265, 843–849. [ADS] (Cited on page 62.)
ADS
Google Scholar
Moss, D., Sokoloff, D., Usoskin, I. and Tutubalin, V., 2008, “Solar Grand Minima and Random Fluctuations in Dynamo Parameters”, Solar Phys., 250, 221–234. [DOI], [ADS], [arXiv:0806.3331] (Cited on pages 60 and 64.)
ADS
Google Scholar
Mundt, M.D., Maguire II, W.B. and Chase, R.R.P., 1991, “Chaos in the Sunspot Cycle: Analysis and Prediction”, J. Geophys. Res., 96, 1705–1716. [DOI], [ADS] (Cited on page 53.)
ADS
Google Scholar
Muñoz-Jaramillo, A., Nandy, D. and Martens, P.C.H., 2009, “Helioseismic Data Inclusion in Solar Dynamo Models”, Astrophys. J., 698, 461–478. [DOI], [ADS], [arXiv:0811.3441] (Cited on pages 45 and 57.)
ADS
Google Scholar
Muñoz-Jaramillo, A., Nandy, D. and Martens, P.C.H., 2010a, “Magnetic Quenching of Turbulent Diffusivity: Reconciling Mixing-length Theory Estimates with Kinematic Dynamo Models of the Solar Cycle”, arXiv, e-print. [ADS], [arXiv:1007.1262] (Cited on page 37.)
Muñoz-Jaramillo, A., Nandy, D., Martens, P.C.H. and Yeates, A.R., 2010b, “A Double-Ring Algorithm for Modeling Solar Active Regions: Unifying Kinematic Dynamo Models and Surface Flux-Transport Simulations”, arXiv, e-print. [ADS], [arXiv:1006.4346] (Cited on page 42.)
Mursula, K., Usoskin, I.G. and Kovaltsov, G.A., 2001, “Persistent 22-year cycle in sunspot activity: Evidence for a relic solar magnetic field”, Solar Phys., 198, 51–56. [DOI], [ADS] (Cited on page 53.)
ADS
Google Scholar
Nandy, D. and Choudhuri, A.R., 2001, “Toward a mean-field formulation of the Babcock-Leighton type solar dynamo. I. α-coefficient versus Durney’s double-ring approach”, Astrophys. J., 551, 576–585. [DOI], [ADS] (Cited on pages 42, 43, and 45.)
ADS
Google Scholar
Nandy, D. and Choudhuri, A.R., 2002, “Explaining the latitudinal distribution of sunspots with deep meridional flow”, Science, 296, 1671–1673. [DOI], [ADS] (Cited on pages 42 and 45.)
ADS
Google Scholar
Ossendrijver, A.J.H., Hoyng, P. and Schmitt, D., 1996, “Stochastic excitation and memory of the solar dynamo”, Astron. Astrophys., 313, 938–948. [ADS] (Cited on page 60.)
ADS
Google Scholar
Ossendrijver, M., 2003, “The solar dynamo”, Astron. Astrophys. Rev., 11, 287–367. [DOI], [ADS] (Cited on pages 7, 11, and 21.)
ADS
Google Scholar
Ossendrijver, M.A.J.H., 2000a, “Grand minima in a buoyancy-driven solar dynamo”, Astron. Astrophys., 359, 364–372. [ADS] (Cited on pages 40, 41, and 65.)
ADS
Google Scholar
Ossendrijver, M.A.J.H., 2000b, “The dynamo effect of magnetic flux tubes”, Astron. Astrophys., 359, 1205–1210. [ADS] (Cited on page 41.)
ADS
Google Scholar
Ossendrijver, M.A.J.H. and Covas, E., 2003, “Crisis-induced intermittency due to attractor-widening in a buoyancy-driven solar dynamo”, Int. J. Bifurcat. Chaos, 13, 2327–2333. [DOI], [ADS] (Cited on page 64.)
MATH
Google Scholar
Ossendrijver, M.A.J.H. and Hoyng, P., 1996, “Stochastic and nonlinear fluctuations in a mean field dynamo”, Astron. Astrophys., 313, 959–970. [ADS] (Cited on page 60.)
ADS
Google Scholar
Ossendrijver, M.A.J.H. and Hoyng, P., 1997, “Mean magnetic field and energy balance of Parker’s surface-wave dynamo”, Astron. Astrophys., 324, 329–343. [ADS] (Cited on page 31.)
ADS
Google Scholar
Ossendrijver, M.A.J.H., Stix, M. and Brandenburg, A., 2001, “Magnetoconvection and dynamo coefficients: dependence of the α-effect on rotation and magnetic fields”, Astron. Astrophys., 376, 713–726. [DOI], [ADS] (Cited on pages 21 and 60.)
ADS
Google Scholar
Ossendrijver, M.A.J.H., Stix, M., Brandenburg, A. and Rüdiger, G., 2002, “Magnetoconvection and dynamo coefficients. II. Field-direction dependent pumping of magnetic field”, Astron. Astrophys., 394, 735–745. [ADS] (Cited on page 22.)
ADS
MATH
Google Scholar
Otmianowska-Mazur, K., Rüdiger, G., Elstner, D. and Arlt, R., 1997, “The turbulent EMF as a time series and the ‘equality’ of dynamo cycles”, Geophys. Astrophys. Fluid Dyn., 86, 229–247. [DOI] (Cited on page 60.)
ADS
Google Scholar
Parker, E.N., 1955, “Hydromagnetic Dynamo Models”, Astrophys. J., 122, 293–314. [DOI], [ADS] (Cited on pages 8 and 24.)
ADS
MathSciNet
Google Scholar
Parker, E.N., 1975, “The Generation of Magnetic Fields in Astrophysical Bodies. X. Magnetic Buoyancy and the Solar Dynamo”, Astrophys. J., 198, 205–209. [DOI], [ADS] (Cited on page 22.)
ADS
Google Scholar
Parker, E.N., 1982, “The dynamics of fibril magnetic fields. I. Effect of flux tubes on convection”, Astrophys. J., 256, 292–301. [DOI], [ADS] (Cited on page 71.)
ADS
Google Scholar
Parker, E.N., 1993, “A solar dynamo surface wave at the interface between convection and nonuniform rotation”, Astrophys. J., 408, 707–719. [DOI], [ADS] (Cited on page 28.)
ADS
Google Scholar
Passos, D. and Lopes, I., 2008, “A Low-Order Solar Dynamo Model: Inferred Meridional Circulation Variations Since 1750”, Astrophys. J., 686, 1420–1425. [DOI], [ADS] (Cited on pages 62 and 63.)
ADS
Google Scholar
Passos, D. and Lopes, I.P., 2009, “Grand Minima Under the Light of a Low Order Dynamo Model”, arXiv, e-print. [ADS], [arXiv:0908.0496] (Cited on page 62.)
Petrovay, K., 2000, “What makes the Sun tick?”, in The Solar Cycle and Terrestrial Climate, Proceedings of the 1st Solar and Space Weather Euroconference: 25-29 September 2000, Instituto de Astrofísica de Canarias, Santa Cruz de Tenerife, Tenerife, Spain, (Eds.) Vázquez, M., Schmieder, B., vol. SP-463 of ESA Conference Proceedings, pp. 3–14, European Space Agency, Nordwijk (Cited on page 11.)
Google Scholar
Petrovay, K. and Kerekes, A., 2004, “The effect of a meridional flow on Parker’s interface dynamo”, Mon. Not. R. Astron. Soc., 351, L59–L62. [DOI], [ADS], [astro-ph/0404607] (Cited on page 34.)
ADS
Google Scholar
Petrovay, K. and Szakály, G., 1999, “Transport effects in the evolution of the global solar magnetic field”, Solar Phys., 185, 1–13. [ADS] (Cited on page 10.)
ADS
Google Scholar
Phillips, J.A., Brooke, J.M. and Moss, D., 2002, “The importance of physical structure in solar dynamo models”, Astron. Astrophys., 392, 713–727. [DOI], [ADS] (Cited on pages 29 and 55.)
ADS
MATH
Google Scholar
Pipin, V.V., 1999, “The Gleissberg cycle by a nonlinear αΛ dynamo”, Astron. Astrophys., 346, 295–302. [ADS] (Cited on page 55.)
ADS
Google Scholar
Pipin, V.V. and Seehafer, N., 2009, “Stellar dynamos with Ω × J effect”, Astron. Astrophys., 493, 819–828. [DOI], [ADS], [arXiv:0811.4225] (Cited on page 17.)
ADS
MATH
Google Scholar
Platt, N., Spiegel, E.A. and Tresser, C., 1993, “On-off intermittency: A mechanism for bursting”, Phys. Rev. Lett., 70, 279–282. [DOI], [ADS] (Cited on page 62.)
ADS
Google Scholar
Pouquet, A., Frish, U. and Leorat, J., 1976, “Strong MHD helical turbulence and the nonlinear dynamo effect”, J. Fluid Mech., 77, 321–354. [DOI], [ADS] (Cited on pages 22 and 54.)
ADS
MATH
Google Scholar
Proctor, M.R.E. and Gilbert, A.D. (Eds.), 1994, Lectures on Solar and Planetary Dynamos, Publications of the Newton Institute, Cambridge University Press, Cambridge; New York (Cited on page 11.)
MATH
Google Scholar
Rädler, K.-H., Kleeorin, N. and Rogachevskii, I., 2003, “The Mean Electromotive Force for MHD Turbulence: The Case of a Weak Mean Magnetic Field and Slow Rotation”, Geophys. Astrophys. Fluid Dyn., 97, 249–274. [DOI], [ADS], [astro-ph/0209287] (Cited on page 17.)
ADS
MathSciNet
Google Scholar
Rempel, M., 2005, “Influence of Random Fluctuations in the Λ-Effect on Meridional Flow and Differential Rotation”, Astrophys. J., 631, 1286–1292. [DOI], [ADS], [astro-ph/0610132] (Cited on page 37.)
ADS
Google Scholar
Rempel, M., 2006a, “Transport of Toroidal Magnetic Field by the Meridional Flow at the Base of the Solar Convection Zone”, Astrophys. J., 637, 1135–1142. [DOI], [ADS], [astro-ph/0610133] (Cited on pages 37 and 72.)
ADS
Google Scholar
Rempel, M., 2006b, “Flux-Transport Dynamos with Lorentz Force Feedback on Differential Rotation and Meridional Flow: Saturation Mechanism and Torsional Oscillations”, Astrophys. J., 647, 662–675. [DOI], [ADS], [astro-ph/0604446] (Cited on pages 37, 55, and 72.)
ADS
Google Scholar
Rempel, M. and Schüssler, M., 2001, “Intensification of magnetic fields by conversion of potential energy”, Astrophys. J. Lett., 552, L171–L174. [DOI], [ADS] (Cited on page 71.)
ADS
Google Scholar
Ribes, J.C. and Nesme-Ribes, E., 1993, “The solar sunspot cycle in the Maunder minimum AD1645 to AD1715”, Astron. Astrophys., 276, 549–563. [ADS] (Cited on pages 51, 64, and 72.)
ADS
Google Scholar
Roald, C.B. and Thomas, J.H., 1997, “Simple solar dynamo models with variable α and ω effects”, Mon. Not. R. Astron. Soc., 288, 551–564. [ADS] (Cited on page 57.)
ADS
Google Scholar
Roberts, P.H. and Stix, M., 1972, “α-Effect Dynamos, by the Bullard-Gellman Formalism”, Astron. Astrophys., 18, 453. [ADS] (Cited on page 32.)
ADS
Google Scholar
Rozelot, J.P., 1995, “On the chaotic behaviour of the solar activity”, Astron. Astrophys., 297, L45–L48. [ADS] (Cited on page 53.)
ADS
Google Scholar
Rüdiger, G. and Arlt, R., 2003, “Physics of the solar cycle”, in Advances in Nonlinear Dynamos, (Eds.) Ferriz-Mas, A., N’uñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 147–195, Taylor & Francis, London, New York. [Google Books] (Cited on pages 11 and 28.)
Google Scholar
Rüdiger, G. and Brandenburg, A., 1995, “A solar dynamo in the overshoot layer: cycle period and butterfly diagram”, Astron. Astrophys., 296, 557–566. [ADS] (Cited on page 28.)
ADS
Google Scholar
Rüdiger, G. and Elstner, D., 1994, “Non-axisymmetry vs. axisymmetry in dynamo-excited stellar magnetic fields”, Astron. Astrophys., 281, 46–50. [ADS] (Cited on page 72.)
ADS
Google Scholar
Rüdiger, G. and Elstner, D., 2002, “Is the Butterfly diagram due to meridional motions?”, Astron. Nachr., 323, 432–435. [DOI], [ADS] (Cited on page 34.)
ADS
MATH
Google Scholar
Rüdiger, G. and Hollerbach, R., 2004, The Magnetic Universe: Geophysical and Astrophysical Dynamo Theory, Wiley-VCH, Weinheim. [ADS], [Google Books] (Cited on page 21.)
Google Scholar
Rüdiger, G. and Kitchatinov, L.L., 1993, “Alpha-effect and alpha-quenching”, Astron. Astrophys., .269, 581–588. [ADS] (Cited on page 21.)
ADS
Google Scholar
Rüdiger, G., Kitchatinov, L.L., Küker, M. and Schultz, M., 1994, “Dynamo models with magnetic diffusivity-quenching”, Geophys. Astrophys. Fluid Dyn., 78, 247–259. [DOI], [ADS] (Cited on page 22.)
ADS
Google Scholar
Rüdiger, G., Kitchatinov, L.L. and Arlt, R., 2005, “The penetration of meridional flow into the tachocline and its meaning for the solar dynamo”, Astron. Astrophys., 444, L53–L56. [DOI], [ADS] (Cited on page 45.)
ADS
Google Scholar
Schatten, K.H., 2009, “Modeling a Shallow Solar Dynamo”, Solar Phys., 255, 3–38. [DOI], [ADS] (Cited on page 71.)
ADS
Google Scholar
Schatten, K.H., Scherrer, P.H., Svalgaard, L. and Wilcox, J.M., 1978, “Using dynamo theory to predict the sunspot number during solar cycle 21”, Geophys. Res. Lett., 5, 411–414. [DOI], [ADS] (Cited on page 68.)
ADS
Google Scholar
Schmalz, S. and Stix, M., 1991, “An αΩ dynamo with order and chaos”, Astron. Astrophys., 245, 654–661. [ADS] (Cited on page 57.)
ADS
MATH
Google Scholar
Schmitt, D., 1987, “An αω-dynamo with an α-effect due to magnetostrophic waves”, Astron. Astrophys., 174, 281–287. [ADS] (Cited on page 40.)
ADS
MATH
Google Scholar
Schmitt, D. and Schüssler, M., 1989, “Non-linear dynamos I. One-dimensional model of a thin layer dynamo”, Astron. Astrophys., 223, 343–351. [ADS] (Cited on page 71.)
ADS
Google Scholar
Schmitt, D. and Schüssler, M., 2004, “Does the butterfly diagram indicate a solar flux-transport dynamo”, Astron. Astrophys., 421, 349–351. [ADS] (Cited on page 45.)
ADS
Google Scholar
Schmitt, D., Schüssler, M. and Ferriz-Mas, A., 1996, “Intermittent solar activity by an on-off dynamo”, Astron. Astrophys., 311, L1–L4. [ADS] (Cited on pages 40, 41, and 65.)
ADS
Google Scholar
Schou, J. and Bogart, R.S., 1998, “Flows and Horizontal Displacements from Ring Diagrams”, Astrophys. J. Lett., 504, L131–L134. [DOI], [ADS] (Cited on page 31.)
ADS
Google Scholar
Schrijver, C.J. and Siscoe, G.L. (Eds.), 2009, Heliophysics: Plasma Physics of the Local Cosmos, Cambridge University Press, Cambridge (Cited on page 11.)
Google Scholar
Schrijver, C.J., Title, A.M., van Ballegooijen, A.A., Hagenaar, H.J. and Shine, R.A., 1997, “Sustaining the Quiet Photospheric Network: The Balance of Flux Emergence, Fragmentation, Merging, and Cancellation”, Astrophys. J., 487, 424–436. [DOI], [ADS] (Cited on page 60.)
ADS
Google Scholar
Schrijver, C.J., DeRosa, M.L. and Title, A.M., 2002, “What Is Missing from Our Understanding of Long-Term Solar and Heliospheric Activity?”, Astrophys. J., 577, 1006–1012. [DOI], [ADS] (Cited on page 70.)
ADS
Google Scholar
Schüssler, M., 1977, “On Buoyant Magnetic Flux Tubes in the Solar Convection Zone”, Astron. Astrophys., 56, 439–442. [ADS] (Cited on page 22.)
ADS
Google Scholar
Schüssler, M., 1996, “Magnetic flux tubes and the solar dynamo”, in Solar and Astrophysical Magnetohydrodynamic Flows, Proceedings of the NATO Advanced Study Institute, held in Heraklion, Crete, Greece, June 1995, (Ed.) Tsinganos, K.C., vol. 481 of NATO ASI Series C, pp. 17–37, Kluwer, Dordrecht; Boston (Cited on page 17.)
Google Scholar
Schüssler, M. and Ferriz-Mas, A., 2003, “Magnetic flux tubes and the dynamo problem”, in Advances in Nonlinear Dynamos, (Eds.) Ferriz-Mas, A., Núñez, M., vol. 9 of The Fluid Mechanics of Astrophysics and Geophysics, pp. 123–146, Taylor & Francis, London, New York. [Google Books] (Cited on page 17.)
Google Scholar
Seehafer, N. and Pipin, V.V., 2009, “An advective solar-type dynamo without the α effect”, Astron. Astrophys., 508, 9–16. [DOI], [ADS], [arXiv:0910.2614] (Cited on page 34.)
ADS
MATH
Google Scholar
Sheeley Jr, N.R., 1991, “Polar faculae: 1906-1990”, Astrophys. J., 374, 386–389. [ADS] (Cited on pages 43 and 51.)
ADS
Google Scholar
Sokoloff, D. and Nesme-Ribes, E., 1994, “The Maunder minimum: A mixed-parity dynamo mode?”, Astron. Astrophys., 288, 293–298. [ADS] (Cited on page 72.)
ADS
Google Scholar
Spiegel, E.A. and Zahn, J.-P., 1992, “The solar tachocline”, Astron. Astrophys., 265, 106–114. [ADS] (Cited on page 17.)
ADS
Google Scholar
Spruit, H.C., 1981, “Equations for Thin Flux Tubes in Ideal MHD”, Astron. Astrophys., 102, 129–133. [ADS] (Cited on page 40.)
ADS
MATH
Google Scholar
Steiner, O. and Ferriz-Mas, A., 2005, “Connecting solar radiance variability to the solar dynamo with the virial theorem”, Astron. Nachr., 326, 190–193. [DOI], [ADS] (Cited on page 31.)
ADS
MATH
Google Scholar
Stix, M., 1976, “Differential Rotation and the Solar Dynamo”, Astron. Astrophys., 47, 243–254. [ADS] (Cited on page 24.)
ADS
Google Scholar
Stix, M., 2002, The Sun: An introduction, Astronomy and Astrophysics Library, Springer, Berlin, New York, 2nd edn. (Cited on page 11.)
Google Scholar
Tapping, K., 1987, “Recent solar radio astronomy at centimeter wavelengths: the temporal variability of the 10.7 cm flux”, J. Geophys. Res., .92, 829–838. [DOI] (Cited on page 51.)
ADS
Google Scholar
Thelen, J.-C., 2000a, “A mean electromotive force induced by magnetic buoyancy instabilities”, Mon. Not. R. Astron. Soc., 315, 155–164. [DOI], [ADS] (Cited on pages 18 and 38.)
ADS
Google Scholar
Thelen, J.-C., 2000b, “Nonlinear αω-dynamos driven by magnetic buoyancy”, Mon. Not. R. Astron. Soc., 315, 165–183. [DOI], [ADS] (Cited on pages 38 and 54.)
ADS
Google Scholar
Tobias, S.M., 1996a, “Diffusivity quenching as a mechanism for Parker’s surface dynamo”, Astrophys. J., 467, 870–880. [DOI], [ADS] (Cited on pages 29 and 31.)
ADS
Google Scholar
Tobias, S.M., 1996b, “Grand minimia in nonlinear dynamos”, Astron. Astrophys., 307, L21–L24. [ADS] (Cited on page 64.)
ADS
Google Scholar
Tobias, S.M., 1997, “The solar cycle: parity interactions and amplitude modulation”, Astron. Astrophys., 322, 1007–1017. [ADS] (Cited on pages 29, 54, 55, and 64.)
ADS
Google Scholar
Tobias, S.M., 2002, “Modulation of solar and stellar dynamos”, Astron. Nachr., 323, 417–423. [DOI], [ADS] (Cited on page 11.)
ADS
MATH
Google Scholar
Tobias, S.M., Brummell, N.H., Clune, T.L. and Toomre, J., 2001, “Transport and storage of magnetic fields by overshooting turbulent convective convection”, Astrophys. J., 549, 1183–1203. [DOI], [ADS] (Cited on page 48.)
ADS
Google Scholar
Tobias, S.M., Cattaneo, F. and Brummell, N.H., 2008, “Convective Dynamos with Penetration, Rotation, and Shear”, Astrophys. J., 685, 596–605. [DOI], [ADS] (Cited on page 48.)
ADS
Google Scholar
Tomczyk, S., Schou, J. and Thompson, M.J., 1995, “Measurement of the Rotation Rate in the Deep Solar Interior”, Astrophys. J. Lett., 448, L57–L60. [DOI], [ADS] (Cited on page 17.)
ADS
Google Scholar
Toomre, J., Christensen-Dalsgaard, J., Hill, F., Howe, R., Komm, R.W., Schou, J. and Thompson, M.J., 2003, “Transient oscillations near the solar tachocline”, in Local and Global Helioseismology: The Present and Future, Proceedings of SOHO 12/GONG+ 2002, 27 October - 1 November 2002, Big Bear Lake, California, U.S.A.,.(Ed.) Sawaya-Lacoste, H., vol. SP-517 of ESA Conference Proceedings, pp. 409–412, ESA, Noordwijk. [ADS] (Cited on page 70.)
Google Scholar
Tworkowski, A., Tavakol, R., Brandenburg, A., Brooke, J.M., Moss, D. and Tuominen, I., 1998, “Intermittent behaviour in axisymmetric mean-field dynamo models in spherical shells”, Mon. Not. R. Astron. Soc., 296, 287–295. [DOI], [ADS] (Cited on page 65.)
ADS
Google Scholar
Ulrich, R.K. and Boyden, J.E., 2005, “The Solar Surface Toroidal Magnetic Field”, Astrophys. J. Lett., 620, L123–L127. [DOI], [ADS] (Cited on pages 31 and 37.)
ADS
Google Scholar
Usoskin, I.G., 2008, “A History of Solar Activity over Millennia”, Living Rev. Solar Phys., 5, lrsp–2008–3. [ADS], [arXiv:0810.3972]. URL (accessed 9 April 2010): http://www.livingreviews.org/lrsp-2008-3 (Cited on pages 51 and 64.)
Google Scholar
Usoskin, I.G. and Mursula, K., 2003, “Long-term solar cycle evolution: Review of recent developments”, Solar Phys., 218, 319–343. [DOI] (Cited on pages 11 and 53.)
ADS
Google Scholar
Usoskin, I.G., Mursula, K., Arlt, R. and Kovaltsov, G.A., 2009a, “A Solar Cycle Lost in 1793-1800: Early Sunspot Observations Resolve the Old Mystery”, Astrophys. J. Lett., 700, L154–L157. [DOI], [ADS], [arXiv:0907.0063] (Cited on pages 54 and 64.)
ADS
Google Scholar
Usoskin, I.G., Sokoloff, D. and Moss, D., 2009b, “Grand Minima of Solar Activity and the Mean- Field Dynamo”, Solar Phys., 254, 345–355. [DOI], [ADS] (Cited on page 72.)
ADS
Google Scholar
van Ballegooijen, A.A. and Choudhuri, A.R., 1988, “The possible role of meridional circulation in suppressing magnetic buoyancy”, Astrophys. J., 333, 965–977. [DOI], [ADS] (Cited on pages 32 and 33.)
ADS
Google Scholar
Wang, Y.-M. and Sheeley Jr, N.R., 1991, “Magnetic flux transport and the Sun’s dipole moment: New twists to the Babcock-Leighton model”, Astrophys. J., 375, 761–770. [ADS] (Cited on pages 41 and 70.)
ADS
Google Scholar
Wang, Y.-M., Nash, A.G. and Sheeley Jr, N.R., 1989, “Magnetic flux transport on the sun”, Science, 245, 712–718. [DOI], [ADS] (Cited on page 41.)
ADS
Google Scholar
Wang, Y.-M., Sheeley Jr, N.R. and Nash, A.G., 1991, “A new cycle model including meridional circulation”, Astrophys. J., 383, 431–442. [DOI], [ADS] (Cited on page 42.)
ADS
Google Scholar
Wang, Y.-M., Lean, J. and Sheeley Jr, N.R., 2002, “Role of Meridional Flow in the Secular Evolution of the Sun’s Polar Fields and Open Flux”, Astrophys. J. Lett., 577, L53–L57. [ADS] (Cited on page 70.)
ADS
Google Scholar
Weiss, N.O., Cattaneo, F. and Jones, C.A., 1984, “Periodic and aperiodic dynamo waves”, Geophys. Astrophys. Fluid Dyn., 30, 305–341. [DOI], [ADS] (Cited on page 57.)
ADS
MathSciNet
MATH
Google Scholar
Wilmot-Smith, A.L., Nandy, D., Hornig, G. and Martens, P.C.H., 2006, “A Time Delay Model for Solar and Stellar Dynamos”, Astrophys. J., 652, 696–708. [DOI], [ADS] (Cited on page 58.)
ADS
Google Scholar
Yeates, A.R., Nandy, D. and Mackay, D.H., 2008, “Exploring the Physical Basis of Solar Cycle Predictions: Flux Transport Dynamics and Persistence of Memory in Advection- versus Diffusiondominated Solar Convection Zones”, Astrophys. J., 673, 544–556. [DOI], [ADS], [arXiv:0709.1046] (Cited on page 69.)
ADS
Google Scholar
Yoshimura, H., 1975, “Solar-cycle dynamo wave propagation”, Astrophys. J., 201, 740–748. [DOI], [ADS] (Cited on page 24.)
ADS
MathSciNet
Google Scholar
Yoshimura, H., 1978, “Nonlinear astrophysical dynamos: Multiple-period dynamo wave oscillations and long-term modulations of the 22 year solar cycle”, Astrophys. J., 226, 706–719. [DOI], [ADS] (Cited on page 57.)
ADS
Google Scholar
Zhang, K., Chan, K.H., Zou, J., Liao, X. and Schubert, G., 2003a, “A three-dimensional spherical nonlinear interface dynamo”, Astrophys. J., 596, 663–679. [DOI], [ADS] (Cited on pages 29 and 72.)
ADS
Google Scholar
Zhang, K., Liao, X. and Schubert, G., 2003b, “Nonaxisymmetric Instability of a Toroidal Magnetic Field in a Rotating Sphere”, Astrophys. J., 585, 1124–1137. [DOI], [ADS] (Cited on page 38.)
ADS
Google Scholar
Zhang, K., Liao, X. and Schubert, G., 2004, “A sandwich interface dynamo: linear dynamo waves in the sun”, Astrophys. J., 602, 468–480. [DOI], [ADS] (Cited on page 29.)
ADS
Google Scholar