Abbett, W.P., Fisher, G.H., Fan, Y., 2000, “The three-dimensional evolution of rising, twisted magnetic flux tubes in a gravitationally stratified model convection zone”, Astrophys. J., 540, 548–562. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2000ApJ…540..548A
ADS
Article
Google Scholar
Abbett, W.P., Fisher, G.H., Fan, Y., 2001, “The effects of rotation on the evolution of rising omega loops in a stratified model convection zone”, Astrophys. J., 546, 1194–1203. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…546.1194A
ADS
Article
Google Scholar
Acheson, D.J., 1979, “Instability by magnetic buoyancy”, Solar Phys., 62, 23–50. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1979SoPh…62…23A
ADS
Article
Google Scholar
Anzer, U., 1968, “The Stability of Force-Free Magnetic Fields with Cylindrical Symmetry in the Context of Solar Flares”, Solar Phys., 3, 298–315. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1968SoPh….3..298A
ADS
Article
Google Scholar
Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A., O’Shea, E., 2004, “Emergence of magnetic flux from the convection zone into the corona”, Astrophys. J., 426, 1047–1063. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2004A&A…426.1047A
ADS
Google Scholar
Archontis, V., Moreno-Insertis, F., Galsgaard, K., Hood, A.W., 2005, “The Three-dimensional Interaction between Emerging Magnetic Flux and a Large-Scale Coronal Field: Reconnection, Current Sheets, and Jets”, Astrophys. J., 635, 1299–1318. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2005ApJ…635.1299A
ADS
Article
Google Scholar
Archontis, V., Galsgaard, K., Moreno-Insertis, F., Hood, A.W., 2006, “Three-dimensional Plasmoid Evolution in the Solar Atmosphere”, Astrophys. J. Lett., 645, L161–L164. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2006ApJ…645L.161A
ADS
Article
Google Scholar
Bao, S.D., Ai, G.X., Zhang, H.Q., 2000, “The Hemispheric Sign Rule of Current Helicity During the Rising Phase of Cycle 23”, J. Astrophys. Astron., 21, 303–306. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2000JApA…21..303B
ADS
Article
Google Scholar
Batchelor, G.K., 1967, An Introduction to Fluid Dynamics, Cambridge University Press, Cambridge, U.K.
MATH
Google Scholar
Bray, R.J., Loughhead, R.E., 1979, Sunspots, Dover, New York, U.S.A.
Google Scholar
Caligari, P., Moreno-Insertis, F., Schüssler, M., 1995, “Emerging flux tubes in the solar convection zone. I. Asymmetry, tilt, and emerging latitude”, Astrophys. J., 441, 886–902. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1995ApJ…441..886C
ADS
Article
Google Scholar
Caligari, P., Schüssler, M., Moreno-Insertis, F., 1998, “Emerging Flux Tubes in the Solar Convection Zone. II. The Influence of Initial Conditions”, Astrophys. J., 502, 481–492. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1998ApJ…502..481C
ADS
Article
Google Scholar
Cally, P.S., Dikpati, M., Gilman, P.A., 2003, “Clamshell and Tipping Instabilities in a Two-dimensional Magnetohydrodynamic Tachocline”, Astrophys. J., 582, 1190–1205. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003ApJ…582.1190C
ADS
Article
Google Scholar
Cattaneo, F., Hughes, D.W., 1988, “The nonlinear breakup of a magnetic layer — Instability to interchange modes”, J. Fluid Mech., 196, 323–344
ADS
Article
Google Scholar
Cattaneo, F., Chiueh, T., Hughes, D.W., 1990, “A new twist to the solar cycle”, Mon. Not. R. Astron. Soc., 247, 6P–9P. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1990MNRAS.247P…6C
ADS
Google Scholar
Charbonneau, P., MacGregor, K.B., 1997, “Solar Interface Dynamos. II. Linear, Kinematic Models in Spherical Geometry”, Astrophys. J., 486, 502–520. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1997ApJ…486..502C
ADS
Article
Google Scholar
Chatterjee, P., Choudhuri, A.R., Petrovay, K., 2006, “Development of twist in an emerging magnetic flux tube by poloidal field accretion”, Astron. Astrophys., 449, 781–789. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2006A&A…449..781C
ADS
Article
Google Scholar
Cheng, J., 1992, “Equations for the motion of an isolated thin magnetic flux tube”, Astron. Astrophys., 264, 243–248. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1992A&A…264..243C
ADS
Google Scholar
Chou, D.-Y., Wang, H., 1987, “The separation velocity of emerging magnetic flux”, Solar Phys., 110, 81–99. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1987SoPh..110…81C
ADS
Article
Google Scholar
Choudhuri, A.R., 1989, “The evolution of loop structures in flux rings within the solar convection zone”, Solar Phys., 123, 217–239. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1989SoPh..123..217C
ADS
Article
Google Scholar
Choudhuri, A.R., 2003, “On the Connection Between Mean Field Dynamo Theory and Flux Tubes”, Solar Phys., 215, 31–55. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003SoPh..215…31C
ADS
Article
Google Scholar
Choudhuri, A.R., Gilman, P.A., 1987, “The influence of the Coriolis force on flux tubes rising through the solar convection zone”, Astrophys. J., 316, 788–800. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1987ApJ…316..788C
ADS
Article
Google Scholar
Choudhuri, A.R., Chatterjee, P., Nandy, D., 2004, “Helicity of Solar Active Regions from a Dynamo Model”, Astrophys. J. Lett., 615, L57–L60. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2004ApJ…615L..57C
ADS
Article
Google Scholar
Christensen-Dalsgaard, J., Proffitt, C.R., Thompson, M.J., 1993, “Effects of diffusion on solar models and their oscillation frequencies”, Astrophys. J. Lett., 403, L75–L78. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1993ApJ…403L..75C
ADS
Article
Google Scholar
Crow, S.C., 1970, “Stabilities theory for a pair of trailing vorticies”, AIAA J., 8, 2172–2179
ADS
Article
Google Scholar
Deluca, E.E., Gilman, P.A., 1991, “The Solar Dynamo”, in Solar Interior and Atmosphere, (Eds.) Cox, A.N., Livingston, W.C., Matthews, M.S., pp. 275–303, University of Arizona Press, Tucson, U.S.A.
Google Scholar
Dikpati, M., Charbonneau, P., 1999, “A Babcock-Leighton Flux Transport Dynamo with Solarlike Differential Rotation”, Astrophys. J., 518, 508–520. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1999ApJ…518..508D
ADS
Article
Google Scholar
Dikpati, M., Gilman, P.A., 2001, “Flux-Transport Dynamos with α-Effect from Global Instability of Tachocline Differential Rotation: A Solution for Magnetic Parity Selection in the Sun”, Astrophys. J., 559, 428–442. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…559..428D
ADS
Article
Google Scholar
Domínguez Cerdeña, I., Sánchez Almeida, J., Kneer, F., 2003, “Inter-network magnetic fields observed with sub-arcsec resolution”, Astron. Astrophys., 407, 741–757. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003A&A…407..741D
ADS
Article
Google Scholar
Dorch, S.B.F., Nordlund, A., 1998, “Numerical 3D simulations of buoyant magnetic flux tubes”, Astron. Astrophys., 338, 329–339. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1998A&A…338..329D
ADS
Google Scholar
Dorch, S.B.F., Nordlund, A., 2001, “On the transport of magnetic fields by solar-like stratified convection”, Astron. Astrophys., 365, 562–570. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001A&A…365..562D
ADS
Article
Google Scholar
D’Silva, S., Choudhuri, A.R., 1993, “A theoretical model for tilts of bipolar magnetic regions”, Astron. Astrophys., 272, 621–633. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1993A&A…272..621D
ADS
Google Scholar
Emonet, T., Moreno-Insertis, F., 1998, “The Physics of Twisted Magnetic Tubes Rising in a Stratified Medium: Two-dimensional Results”, Astrophys. J., 492, 804–821. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1998ApJ…492..804E
ADS
Article
Google Scholar
Fan, Y., 2001a, “Nonlinear growth of the three-dimensional undular instability of a horizontal magnetic layer and the formation of arching flux tubes”, Astrophys. J., 546, 509–527. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…546..509F
ADS
Article
Google Scholar
Fan, Y., 2001b, “The Emergence of a Twisted Ω-Tube into the Solar Atmosphere”, Astrophys. J. Lett., 554, L111–L114. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…554L.111F
ADS
Article
Google Scholar
Fan, Y., Fisher, G.H., 1996, “Radiative heating and the buoyant rise of magnetic flux tubes in the solar interior”, Solar Phys., 166, 17–41. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996SoPh..166…17F
ADS
Article
Google Scholar
Fan, Y., Gong, D., 2000, “On the twist of emerging flux loops in the solar convection zone”, Solar Phys., 192, 141–157. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2000SoPh..192..141F
ADS
Article
Google Scholar
Fan, Y., Fisher, G.H., Deluca, E.E., 1993, “The origin of morphological asymmetries in bipolar active regions”, Astrophys. J., 405, 390–401. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1993ApJ…405..390F
ADS
Article
Google Scholar
Fan, Y., Fisher, G.H., McClymont, A.N., 1994, “Dynamics of emerging active region flux loops”, Astrophys. J., 436, 907–928. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1994ApJ…436..907F
ADS
Article
Google Scholar
Fan, Y., Zweibel, E.G., Lantz, S.R., 1998a, “Two-dimensional Simulations of Buoyantly Rising, Interacting Magnetic Flux Tubes”, Astrophys. J., 493, 480–493. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1998ApJ…493..480F
ADS
Article
Google Scholar
Fan, Y., Zweibel, E.G., Linton, M.G., Fisher, G.H., 1998b, “The Rise of Kink-Unstable Magnetic Flux Tubes in the Solar Convection Zone”, Astrophys. J. Lett., 505, L59–L62. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1998ApJ…505L..59F
ADS
Article
Google Scholar
Fan, Y., Zweibel, E.G., Linton, M.G., Fisher, G.H., 1999, “The Rise of Kink-unstable Magnetic Flux Tubes and the Origin of delta-Configuration Sunspots”, Astrophys. J., 521, 460–477. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1999ApJ…521..460F
ADS
Article
Google Scholar
Fan, Y., Abbett, W.P., Fisher, G.H., 2003, “The Dynamic Evolution of Twisted Magnetic Flux Tubes in a Three-dimensional Convecting Flow. I. Uniformly Buoyant Horizontal Tubes”, Astrophys. J., 582, 1206–1219. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003ApJ…582.1206F
ADS
Article
Google Scholar
Ferriz-Mas, A., Schüssler, M., 1990, “On the thin magnetic flux tube approximation”, in Physics of magnetic flux ropes, (Eds.) Russel, C.T., Priest, E.R., Lee, L.C., vol. 58 of Geophysical Monograph Series, pp. 141–148, American Geophysical Union, Washington, U.S.A. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1990GMS……141F
Chapter
Google Scholar
Ferriz-Mas, A., Schüssler, M., 1993, “Instabilities of magnetic flux tubes in a stellar convection zone I. Equatorial flux rings in differentially rotating stars”, Geophys. Astrophys. Fluid Dyn., 72, 209–247
ADS
Article
Google Scholar
Ferriz-Mas, A., Schüssler, M., 1995, “Instabilities of magnetic flux tubes in a stellar convection zone II. Equatorial flux rings in differentially rotating stars”, Geophys. Astrophys. Fluid Dyn., 81, 233–265
ADS
Article
Google Scholar
Fisher, G.H., Fan, Y., Howard, R.F., 1995, “Comparisons between theory and observation of active region tilts”, Astrophys. J., 438, 463–471. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1995ApJ…438..463F
ADS
Article
Google Scholar
Freidberg, J.P., 1987, Ideal Magnetohydrodynamics, Plenum Press, New York, U.S.A.
Book
Google Scholar
Galloway, D.J., Weiss, N.O., 1981, “Convection and magnetic fields in stars”, Astrophys. J., 243, 945–953. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1981ApJ…243..945G
ADS
Article
Google Scholar
Galsgaard, K., Moreno-Insertis, F., Archontis, V., Hood, A., 2005, “A Three-dimensional Study of Reconnection, Current Sheets, and Jets Resulting from Magnetic Flux Emergence in the Sun”, Astrophys. J. Lett., 618, L153–L156. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2005ApJ…618L.153G
ADS
Article
Google Scholar
Gilman, P.A., 1970, “Instability of magneto-hydrostatic stellar interiors from magnetic-buoyancy”, Astrophys. J., 162, 1019–1029
ADS
Article
Google Scholar
Gilman, P.A., 2000, “Fluid Dynamics and MHD of the Solar Convection Zone and Tachocline: Current Understanding and Unsolved Problems — (Invited Review)”, Solar Phys., 192, 27–48. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2000SoPh..192…27G
ADS
Article
Google Scholar
Gilman, P.A., Charbonneau, P., 1999, “Creation of Twist at the Core-Convection Zone Interface”, in Magnetic Helicity in Space and Laboratory Plasmas, (Eds.) Brown, M.R., Canfield, R.C., Pevtsov, A.A., vol. 111 of Geophysical Monograph Series, pp. 75–82, American Geophysical Union, Washington, U.S.A. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1999mhsl.conf…75G
Google Scholar
Gilman, P.A., Glatzmaier, G.A., 1981, “Compressible convection in a rotating spherical shell. I. Anelastic equations”, Astrophys. J. Suppl. Ser., 45, 335–388. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1981ApJS…45..335G
ADS
MathSciNet
Article
Google Scholar
Glatzmaier, G.A., 1984, “Numerical simulations of stellar convective dynamos. I — The model and method”, J. Comput. Phys., 55, 461–484. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1984JCoPh..55..461G
ADS
Article
Google Scholar
Gough, D.O., 1969, “The Anelastic Approximation for Thermal Convection”, J. Atmos. Sci., 26, 448–456
ADS
Article
Google Scholar
Hale, G.E., Nicholson, S.B., 1925, “The Law of Sun-spot Polarity”, Astrophys. J., 62, 270–300
ADS
Article
Google Scholar
Hale, G.E., Ellerman, F., Nicholson, S.B., Joy, A.H., 1919, “The Magnetic Polarity of Sun-Spots”, Astrophys. J., 49, 153–178
ADS
Article
Google Scholar
Holder, Z.A., Canfield, R.C., McMullen, R.A., Nandy, D., Howard, R.F., Pevtsov, A.A., 2004, “On the Tilt and Twist of Solar Active Regions”, Astrophys. J., 611, 1149–1155. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2004ApJ…611.1149H
ADS
Article
Google Scholar
Howard, R.F., 1991a, “The magnetic fields of active regions”, Solar Phys., 132, 49–61. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1991SoPh..132…49H
ADS
Article
Google Scholar
Howard, R.F., 1991b, “Axial tilt angles of sunspot groups”, Solar Phys., 136, 251–262. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1991SoPh..136..251H
ADS
Article
Google Scholar
Howard, R.F., 1992, “The rotation of active regions with differing magnetic polarity separations”, Solar Phys., 142, 233–248. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1992SoPh..142..233H
ADS
Article
Google Scholar
Hughes, D.W., Cattaneo, F., 1987, “A new look at the instability of a stratified horizontal magnetic field”, Geophys. Astrophys. Fluid Dyn., 39, 65–81
ADS
MATH
Article
Google Scholar
Isobe, H., Miyagoshi, T., Shibata, K., Yokoyama, T., 2005, “Filamentary structure on the Sun from the magnetic Rayleigh-Taylor instability”, Nature, 434, 478–481. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2005Natur.434..478I
ADS
Article
Google Scholar
Khomenko, E.V., Collados, M., Solanki, S.K., Lagg, A., Trujillo Bueno, J., 2003, “Quiet-Sun internetwork magnetic fields observed in the infrared”, Astrophys. J., 408, 1115–1135. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003A&A…408.1115K
ADS
Google Scholar
Lantz, S.R., 1991, Dynamical Behavior of Magnetic Fields in a Stratified, Convecting Fluid Layer, Ph.D. Thesis, Cornell University, Ithaca, U.S.A. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1992PhDT……..78L
Google Scholar
Lantz, S.R., Fan, Y., 1999, “Anelastic Magnetohydrodynamic Equations for Modeling Solar and Stellar Convection Zones”, Astrophys. J., 121, 247–264. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1999ApJS..121..247L
ADS
Article
Google Scholar
Leka, K.D., van Driel-Gesztelyi, L., Nitta, N., Canfield, R.C., Mickey, D.L., Sakurai, T., Ichimoto, K., 1994, “The magnetic evolution of the activity complex AR 7260: A roadmap”, Solar Phys., 155, 301–337. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1994SoPh..155..301L
ADS
Article
Google Scholar
Leka, K.D., Canfield, R.C., McClymont, A.N., van Driel-Gesztelyi, L., 1996, “Evidence for Current-carrying Emerging Flux”, Astrophys. J., 462, 547–560. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996ApJ…462..547L
ADS
Article
Google Scholar
Linton, M.G., Longcope, D.W., Fisher, G.H., 1996, “The Helical Kink Instability of Isolated, Twisted Magnetic Flux Tubes”, Astrophys. J., 496, 954–963. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996ApJ…469..954L
ADS
Article
Google Scholar
Linton, M.G., Dahlburg, R.B., Fisher, G.H., Longcope, D.W., 1998, “Nonlinear Evolution of Kink-unstable Magnetic Flux Tubes and Solar delta-Spot Active Regions”, Astrophys. J., 507, 404–416. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1998ApJ…507..404L
ADS
Article
Google Scholar
Linton, M.G., Fisher, G.H., Dahlburg, R.B., Fan, Y., 1999, “Relationship of the Multimode Kink Instability to delta-Spot Formation”, Astrophys. J., 522, 1190–1205. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1999ApJ…522.1190L
ADS
Article
Google Scholar
Longcope, D.W., Choudhuri, A.R., 2002, “The Orientational Relaxation of Bipolar Active Regions”, Solar Phys., 205, 63–92. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2002SoPh..205…63L
ADS
Article
Google Scholar
Longcope, D.W., Fisher, G.H., 1996, “The Effects of Convection Zone Turbulence on the Tilt Angles of Magnetic Bipoles”, Astrophys. J., 458, 380–390. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996ApJ…458..380L
ADS
Article
Google Scholar
Longcope, D.W., Klapper, I., 1997, “Dynamics of a Thin Twisted Flux Tube”, Astrophys. J., 488, 443–453. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1997ApJ…488..443L
ADS
Article
Google Scholar
Longcope, D.W., Fisher, G.H., Arendt, S., 1996, “The Evolution and Fragmentation of Rising Magnetic Flux Tubes”, Astrophys. J., 464, 999–1011. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996ApJ…464..999L
ADS
Article
Google Scholar
Longcope, D.W., Fisher, G.H., Pevtsov, A.A., 1998, “Flux-Tube Twist Resulting from Helical Turbulence: The Sigma-Effect”, Astrophys. J., 507, 417–432. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1998ApJ…507..417L
ADS
Article
Google Scholar
Longcope, D.W., Linton, M.O., Pevtsov, A.A., Fisher, G.H., Klapper, I., 1999, “Twisted Flux Tubes and How They Get That Way”, in Magnetic Helicity in Space and Laboratory Plasmas, (Eds.) Brown, M.R., Canfield, R.C., Pevtsov, A.A., vol. 111 of Geophysical Monograph Series, p. 93, American Geophysical Union, Washington, U.S.A.
Google Scholar
López Fuentes, M.C., Demoulin, P., Mandrini, C.H., Pevtsov, A.A., van Driel-Gesztelyi, L., 2003, “Magnetic twist and writhe of active regions. On the origin of deformed flux tubes”, Astron. Astrophys., 397, 305–318. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003A&A…397..305L
ADS
Article
Google Scholar
Magara, T., 2001, “Dynamics of Emerging Flux Tubes in the Sun”, Astrophys. J., 549, 608–628. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…549..608M
ADS
Article
Google Scholar
Magara, T., 2004, “A Model for Dynamic Evolution of Emerging Magnetic Fields in the Sun”, Astrophys. J., 605, 480–492. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2004ApJ…605..480M
ADS
Article
Google Scholar
Magara, T., 2006, “Dynamic and Topological Features of Photospheric and Coronal Activities Produced by Flux Emergence in the Sun”, Astrophys. J., 653, 1499–1509. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2006ApJ…653.1499M
ADS
Article
Google Scholar
Magara, T., Longcope, D.W., 2001, “Sigmoid Structure of an Emerging Flux Tube”, Astrophys. J. Lett., 559, L55–L59. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…559L..55M
ADS
Article
Google Scholar
Magara, T., Longcope, D.W., 2003, “Injection of Magnetic Energy and Magnetic Helicity into the Solar Atmosphere by an Emerging Magnetic Flux Tube”, Astrophys. J., 586, 630–649. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003ApJ…586..630M
ADS
Article
Google Scholar
Magara, T., Antiochos, S.K., DeVore, C.R., Linton, M.O., 2005, “A Mechanism for the Emergence of Magnetic U-Loops and Flux Cancellation on the Sun”, in Proceedings of the International Scientific Conference on Chromospheric and Coronal Magnetic Fields, (Eds.) Innes, D.E., Lagg, A., Solanki, S.K., 30 August–2 September 2005, Katlenburg-Lindau, Germany, vol. SP-596, ESA Publications Division, Nordwijk, Netherlands. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2005ccmf.confE..74M. CD-ROM
Google Scholar
Manchester IV, W., 2001, “The Role of Nonlinear Alfvén Waves in Shear Formation during Solar Magnetic Flux Emergence”, Astrophys. J., 547, 503–519. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…547..503M
ADS
Article
Google Scholar
Manchester IV, W., Gombosi, T., DeZeeuw, D., Fan, Y., 2004, “Eruption of a Buoyantly Emerging Magnetic Flux Rope”, Astrophys. J., 610, 588–596. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2004ApJ…610..588M
ADS
Article
Google Scholar
Matthews, P.C., Hughes, D.W., Proctor, M.R.E., 1995, “Magnetic Buoyancy, Vorticity, and Three-dimensional Flux-Tube Formation”, Astrophys. J., 448, 938–941. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1995ApJ…448..938M
ADS
Article
Google Scholar
Maunder, E.W., 1922, “The sun and sun-spots, 1820–1920”, Mon. Not. R. Astron. Soc., 82, 534–545
ADS
Article
Google Scholar
Moffatt, H.K., 1978, Magnetic Field Generation in Electrically Conducting Fluids, Cambridge Monographs on Mechanics and Applied Mathematics, Cambridge University Press, Cambridge, U.K.; New York, U.S.A.
Google Scholar
Moreno-Insertis, F., 1986, “Nonlinear time-evolution of kink-unstable magnetic flux tubes in the convective zone of the sun”, Astrophys. J., 166, 291–305. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1986A&A…166..291M
ADS
MATH
Google Scholar
Moreno-Insertis, F., 1992, “The Motion of Magnetic Flux Tubes in the Convection Zone and the Subsurface Origin of Active Regions”, in Sunspots: Theory and Observations, (Eds.) Thomas, J.H., Weiss, N.O., vol. 375 of NATO Science Series: C, pp. 385–410, Kluwer, Dordrecht, Netherlands. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1992sto..work..385M
Chapter
Google Scholar
Moreno-Insertis, F., Emonet, T., 1996, “The Rise of Twisted Magnetic Tubes in a Stratified Medium”, Astrophys. J. Lett., 472, L53–L56. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996ApJ…472L..53M
ADS
Article
Google Scholar
Moreno-Insertis, F., Schüssler, M., Ferriz-Mas, A., 1992, “Storage of magnetic flux tubes in a convective overshoot region”, Astron. Astrophys., 264, 686–700. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1992A&A…264..686M
ADS
Google Scholar
Moreno-Insertis, F., Caligari, P., Schüssler, M., 1994, “Active region asymmetry as a result of the rise of magnetic flux tubes”, Solar Phys., 153, 449–452. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1994SoPh..153..449M
ADS
Article
Google Scholar
Moreno-Insertis, F., Caligari, P., Schüssler, M., 1995, “‘Explosion’ and Intensification of Magnetic Flux Tubes”, Astrophys. J., 452, 894–900. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1995ApJ…452..894M
ADS
Article
Google Scholar
Moreno-Insertis, F., Ferriz-Mas, A., Schüssler, M., 1996, “Enhanced inertia of thin magnetic flux tubes”, Astron. Astrophys., 312, 317–326. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996A&A…312..317M
ADS
Google Scholar
Moreno-Insertis, F., Schüssler, M., Glampedakis, K., 2002, “Thermal properties of magnetic flux tubes I. Solution of the diffusion problem”, Astron. Astrophys., 388, 1022–1035. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2002A&A…388.1022M
ADS
Article
Google Scholar
Murray, M.J., Hood, A.W., Moreno-Insertis, F., Galsgaard, K., Archontis, V., 2006, “3D simulations identifying the effects of varying the twist and field strength of an emerging flux tube”, Astrophys. J., 460, 909–923. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2006A&A…460..909M
ADS
Google Scholar
Nandy, D., 2006, “Magnetic helicity and flux tube dynamics in the solar convection zone: Comparisons between observation and theory”, J. Geophys. Res., 111, 12. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2006JGRA..11112S01N
Article
Google Scholar
Newcomb, W., 1961, “Convective instability induced by gravity in a plasma with a frozen-in magnetic field”, Phys. Fluids, 4, 391–396
ADS
MathSciNet
MATH
Article
Google Scholar
Nordlund, Å., Brandenburg, A., Jennings, R.L., Rieutord, M., Ruokolainen, J., Stein, R.F., Tuominen, I., 1992, “Dynamo action in stratified convection with overshoot”, Astrophys. J., 392, 647–652. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1992ApJ…392..647N
ADS
Article
Google Scholar
Parker, E.N., 1966, “The dynamic state of the interstellar gas and field”, Astrophys. J., 145, 811–833
ADS
Article
Google Scholar
Parker, E.N., 1975, “The generation of magnetic fields in astrophysical bodies. X — Magnetic buoyancy and the solar dynamo”, Astrophys. J., 198, 205–209. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1975ApJ…198..205P
ADS
Article
Google Scholar
Parker, E.N., 1978, “Hydraulic concentration of magnetic fields in the solar photosphere. VI — Adiabatic cooling and concentration in downdrafts”, Astrophys. J., 221, 368–377. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1978ApJ…221..368P
ADS
Article
Google Scholar
Parker, E.N., 1979, Cosmical Magnetic Fields: Their Origin and Their Activity, Clarendon Press; Oxford University Press, Oxford, England; New York, U.S.A.
Google Scholar
Parker, E.N., 1984, “Stellar fibril magnetic systems. I — Reduced energy state”, Astrophys. J., 283, 343–348. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1984ApJ…283..343P
ADS
Article
Google Scholar
Parker, E.N., 1993, “A solar dynamo surface wave at the interface between convection and nonuniform rotation”, Astrophys. J., 408, 707–719. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1993ApJ…408..707P
ADS
Article
Google Scholar
Parker, E.N., 1994, “Theoretical properties of Omega-loops in the convective zone of the Sun. 1: Emerging bipolar magnetic regions”, Astrophys. J., 433, 867–874. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1994ApJ…433..867P
ADS
Article
Google Scholar
Petrovay, K., Marik, M., Brown, J.C., Fletcher, L., van Driel-Gesztelyi, L., 1990, “Asymmetric flux loops in active regions. II”, Solar Phys., 127, 51–64. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1990SoPh..127…51P
ADS
Article
Google Scholar
Petrovay, K., Chaterjee, P., Choudhuri, A., 2006, “Helical Magnetic Fields in Solar Active Regions: Theory vs. Observations”, in 4th Workshop of Young Researchers in Astronomy & Astrophysics, (Ed.) Forgács-Dajka, E., Budapest, Hungary, 11–13 January, 2006, vol. 17 of Publications of the Astronomy Department of the Eöotvöos University (PADEU), pp. 5–14, Eöotvoös University, Budapest, Hungary. Related online version (cited on 01 February 2007): http://astro.elte.hu/astro/en/library/padeu/padeu_vol_17.html
Google Scholar
Pevtsov, A.A., Canfield, R.C., Metcalf, T.R., 1995, “Latitudinal variation of helicity of photospheric magnetic fields”, Astrophys. J. Lett., 440, L109–L112. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1995ApJ…440L.109P
ADS
Article
Google Scholar
Pevtsov, A.A., Canfield, R.C., Latushko, S., 2001, “Hemispheric Helicity Trend for Solar Cycle 23”, Astrophys. J. Lett., 549, L261–L263. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…549L.261P
ADS
Article
Google Scholar
Pevtsov, A.A., Maleev, V.M., Longcope, D.W., 2003, “Helicity Evolution in Emerging Active Regions”, Astrophys. J., 593, 1217–1225. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003ApJ…593.1217P
ADS
Article
Google Scholar
Rempel, M., 2002, personal communication
Rempel, M., 2003, “Thermal properties of magnetic flux tubes II. Storage of flux in the solar overshoot region”, Astron. Astrophys., 397, 1097–1107. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003A&A…397.1097R
ADS
Article
Google Scholar
Rempel, M., 2004, “Overshoot at the Base of the Solar Convection Zone: A Semianalytical Approach”, Astrophys. J., 607, 1046–1064. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2004ApJ…607.1046R
ADS
Article
Google Scholar
Rempel, M., Schüssler, M., 2001, “Intensification of magnetic fields by conversion of potential energy”, Astrophys. J. Lett., 552, L171–L174. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…552L.171R
ADS
Article
Google Scholar
Rempel, M., Schüssler, M., Tóth, G., 2000, “Storage of magnetic flux at the bottom of the solar convection zone”, Astron. Astrophys., 363, 789–799. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2000A&A…363..789R
ADS
Google Scholar
Rust, D.M., Kumar, A., 1996, “Evidence for Helically Kinked Magnetic Flux Ropes in Solar Eruptions”, Astrophys. J. Lett., 464, L199–L202. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996ApJ…464L.199R
ADS
Article
Google Scholar
Schmitt, J.H.M.M., Rosner, R., 1983, “Doubly diffusive magnetic buoyancy instability in the solar interior”, Astrophys. J., 265, 901–924. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1983ApJ…265..901S
ADS
Article
Google Scholar
Schmitt, J.H.M.M., Rosner, R., Bohn, H.U., 1984, “The overshoot region at the bottom of the solar convection zone”, Astrophys. J., 282, 316–329. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1984ApJ…282..316S
ADS
Article
Google Scholar
Schüssler, M., 1979, “Magnetic buoyancy revisited — Analytical and numerical results for rising flux tubes”, Astron. Astrophys., 71, 79–91. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1979A&A….71…79S
ADS
Google Scholar
Schüssler, M., Rempel, M., 2002, “Structure of the magnetic field in the lower convection zone”, in From Solar Min to Max: Half a Solar Cycle with SOHO, (Ed.) Wilson, A., vol. SP-508 of ESA Special Publications, pp. 499–506, ESA Publications Division, Noordwijk, Netherlands. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2002soho…11..499S
Google Scholar
Schüssler, M., Rempel, M., 2005, “The dynamical disconnection of sunspots from their magnetic roots”, Astron. Astrophys., 441, 337–346. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2005A&A…441..337S
ADS
Article
Google Scholar
Schüssler, M., Caligari, P., Ferriz-Mas, A., Moreno-Insertis, F., 1994, “Instability and eruption of magnetic flux tubes in the solar convection zone”, Astron. Astrophys., 281, L69–L72. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1994A&A…281L..69S
ADS
Google Scholar
Schwarzschild, M., 1958, Structure and Evolution of the Stars, Dover, New York, U.S.A.
Book
Google Scholar
Shibata, K., Tajima, T., Matsumoto, R., Horiuchi, T., Hanawa, T., Rosner, R., Uchida, Y., 1989, “Nonlinear Parker instability of isolated magnetic flux in a plasma”, Astrophys. J., 338, 471–492. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1989ApJ…338..471S
ADS
Article
Google Scholar
Skaley, D., Stix, M., 1991, “The overshoot layer at the base of the solar convection zone”, Astron. Astrophys., 241, 227–232. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1991A&A…241..227S
ADS
Google Scholar
Socas-Navarro, H., Sánchez Almeida, J., 2003, “Magnetic Fields in the Quiet Sun: Observational Discrepancies and Unresolved Structure”, Astrophys. J., 593, 581–586. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2003ApJ…593..581S
ADS
Article
Google Scholar
Spruit, H.C., 1974, “A model of the solar convection zone”, Solar Phys., 34, 277–290. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1974SoPh…34..277S
ADS
Article
Google Scholar
Spruit, H.C., 1979, “Convective collapse of flux tubes”, Solar Phys., 61, 363–378. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1979SoPh…61..363S
ADS
Article
Google Scholar
Spruit, H.C., 1981, “Motion of magnetic flux tubes in the solar convection zone and chromosphere”, Astron. Astrophys., 98, 155–160. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1981AfeA 98..155S
ADS
MATH
Google Scholar
Spruit, H.C., 1997, “Convection in stellar envelopes: a changing paradigm”, Mem. Soc. Astron. Ital., 68, 397–413. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1997MmSAI..68..397S
ADS
Google Scholar
Spruit, H.C., van Ballegooijen, A.A., 1982a, “Stability of Toroidal Flux Tubes in Stars”, Astron. Astrophys., 106, 58–66. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1982AfeA…106…58S
ADS
MathSciNet
MATH
Google Scholar
Spruit, H.C., van Ballegooijen, A.A., 1982b, “Erratum: Stability of Toroidal Flux Tubes in Stars”, Astron. Astrophys., 113, 350. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1982A&A…113..350S
ADS
MathSciNet
MATH
Google Scholar
Spruit, H.C., Zweibel, E.G., 1979, “Convective instability of thin flux tubes”, Solar Phys., 62, 15–22. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1979SoPh…62…15S
ADS
Article
Google Scholar
Spruit, H.C., Nordlund, Å., Title, A.M., 1990, “Solar convection”, Annu. Rev. Astron. Astrophys., 28, 263–301. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1990ARA&A..28..263S
ADS
Article
Google Scholar
Stein, R.F., Nordlund, Å., 2000, “Realistic Solar Convection Simulations”, Solar Phys., 192, 91–108. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2000SoPh..192…91S
ADS
Article
Google Scholar
Stenflo, J.O., 1989, “Small-scale magnetic structures on the sun”, Astron. Astrophys. Rev., 1, 3–48. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1989A&ARv…1….3S
ADS
Article
Google Scholar
Strous, L.H., Scharmer, G., Tarbell, T.D., Title, A.M., Zwaan, C., 1996, “Phenomena in an emerging active region. I. Horizontal dynamics.”, Astron. Astrophys., 306, 947–959. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1996A&A…306..947S
ADS
Google Scholar
Tanaka, K., 1991, “Studies on a very flare-active delta group — Peculiar delta spot evolution and inferred subsurface magnetic rope structure”, Solar Phys., 136, 133–149. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1991SoPh..136..133T
ADS
Article
Google Scholar
Thomas, J.H., Nye, A.H., 1975, “Convective instability in the presence of a non-uniform horizontal magnetic field”, Phys. Fluids, 18, 490–491. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1975PhFl…18..490T
ADS
MATH
Article
Google Scholar
Tian, L., Alexander, D., Liu, Y., Yang, J., 2005, “Magnetic Twist and Writhe of δ Active Regions”, Solar Phys., 229, 63–77. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2005AGUSMSH54B..03T
ADS
Article
Google Scholar
Tobias, S.M., Brummell, N.H., Clune, T.L., Toomre, J., 1998, “Pumping of Magnetic Fields by Turbulent Penetrative Convection”, Astrophys. J. Lett., 502, L177–L180. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1998ApJ…502L.177T
ADS
Article
Google Scholar
Tobias, S.M., Brummell, N.H., Clune, T.L., Toomre, J., 2001, “Transport and Storage of Magnetic Field by Overshooting Turbulent Compressible Convection”, Astrophys. J., 549, 1183–1203. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2001ApJ…549.1183T
ADS
Article
Google Scholar
van Ballegooijen, A.A., 1982, “The Overshoot Layer at the Base of the Solar Convective Zone and the Problem of Magnetic Flux Storage”, Astron. Astrophys., 113, 99–112. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1982A&A…113…99V
ADS
MATH
Google Scholar
van Driel-Gesztelyi, L., Petrovay, K., 1990, “Asymmetric flux loops in active regions”, Solar Phys., 126, 285–298. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1990SoPh..126..285V
ADS
Article
Google Scholar
Vishniac, E.T., 1995a, “The Dynamics of Flux Tubes in a High-beta Plasma. I. A General Description”, Astrophys. J., 446, 724–740. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1995ApJ…446..724V
ADS
Article
Google Scholar
Vishniac, E.T., 1995b, “The Dynamics of Flux Tubes in a High-beta Plasma. II. Buoyancy in Stars and Accretion Disks”, Astrophys. J., 451, 816–824. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1995ApJ…451..816V
ADS
Article
Google Scholar
Wang, Y.-M., Sheeley Jr, N.R., 1989, “Average properties of bipolar magnetic regions during sunspot cycle 21”, Solar Phys., 124, 81–100. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1989SoPh..124…81W
ADS
Article
Google Scholar
Wang, Y.-M., Sheeley Jr, N.R., 1991, “Magnetic flux transport and the sun’s dipole moment — New twists to the Babcock-Leighton model”, Astrophys. J., 375, 761–770. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1991ApJ…375..761W
ADS
Article
Google Scholar
Wang, Y.-M., Nash, A.O., Sheeley Jr, N.R., 1989, “Magnetic flux transport on the sun”, Science, 245, 712–718. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1989Sci…245..712W
ADS
Article
Google Scholar
Wissink, J.O., Hughes, D.W., Matthews, P.C., Proctor, M.R.E., 2000, “The three-dimensional breakup of a magnetic layer”, Mon. Not. R. Astron. Soc., 318, 501–510. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/2000MNRAS.318..501W
ADS
Article
Google Scholar
Zirin, H., 1988, Astrophysics of the Sun, Cambridge University Press, Cambridge, U.K.; New York, U.S.A.
Google Scholar
Zirin, H., Tanaka, K., 1973, “The Flares of August 1972”, Solar Phys., 32, 173–207. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1973SoPh…32..173Z
ADS
Article
Google Scholar
Zwaan, C., 1987, “Elements and patterns in the solar magnetic field”, Annu. Rev. Astron. Astrophys., 25, 83–111. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1987ARAfeA..25…83Z
ADS
Article
Google Scholar
Zweibel, E.O., Bruhwiler, D.L., 1992, “The effect of line tying on Parker’s instability”, Astrophys. J., 399, 318–324. Related online version (cited on 01 February 2007): http://adsabs.harvard.edu/abs/1992ApJ…399..318Z
ADS
Article
Google Scholar