Abel, T., Bryan, G.L., and Norman, M.L., “The Formation and Fragmentation of Primordial Molecular Clouds”, Astrophys. J., 540, 39–44, (2000). Related online version (cited on 7 February 2000): http://arXiv.org/abs/astro-ph/0002135. 5.1, 5.2, 6.1
ADS
Article
Google Scholar
Abel, T., Bryan, G.L., and Norman, M.L., “The formation of the first star in the universe”, Science, 295, 93–98, (2002). Related online version (cited on 4 December 2001): http://arXiv.org/abs/astro-ph/0112088. 5.1, 5.2
ADS
Article
Google Scholar
Akiyama, S., and Wheeler, J.C., “Magnetic Fields in Supernovae”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse ofMassive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0211458. 3.1, 3.4.4
Google Scholar
Alcubierre, M., Brügmann, B., Holz, D.E., Takahashi, R., Brandt, S., Seidel, E., and Thornburg, J., “Symmetry without symmetry: Numerical simulation of axisymmetric systems using Cartesian grids”, Int. J. Mod. Phys. D, 10, 273–289, (2001). Related online version (cited on 4 August 1999): http://arXiv.org/abs/gr-qc/9908012. 4.4
ADS
Article
Google Scholar
Andersson, N., “A new class of unstable modes of rotating relativistic stars”, Astrophys. J., 502, 708–713, (1998). Related online version (cited on 24 June 1997): http://arXiv.org/abs/gr-qc/9706075. 2.3
ADS
Article
Google Scholar
Andersson, N., “Gravitational waves from instabilities in relativistic stars”, Class. Quantum Grav., 20, R105–R144, (2002). URL (cited on 4 November 2002): http://arXiv.org/abs/astro-ph/0211057. 2.3
MathSciNet
MATH
Article
Google Scholar
Arnaud, N., Barsuglia, M., Bizouard, M.-A., Brisson, V., Cavalier, F., Davier, M., Hello, P., Kreckelbergh, S., and Porter, E., “Detection of a close supernova gravitational wave burst in a network of interferometers, neutrino and optical detectors”, Astropart. Phys., 21, 201–221, (2004). 1
ADS
Article
Google Scholar
Arnett, W.D., Bahcall, J. N., Kirshner, R.P., and Woosley, S.E., “Supernova 1987a”, Annu. Rev. Astron. Astrophys., 27, 629–700, (1989). 3.1
ADS
Article
Google Scholar
Arras, P., Flanagan, É.É., Morsink, S.M., Schenk, A.K., Teukolsky, S.A., and Wasserman, I., “Saturation of the r-mode instability”, Astrophys. J., 591, 1129–1151, (2002). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0202345. 2.3
ADS
Article
Google Scholar
Baraffe, I., Heger, A., and Woosley, S.E., “On the stability of very massive supermassive stars”, Astrophys. J., 550, 890–896, (2001). Related online version (cited on 26 September 2000): http://arXiv.org/abs/astro-ph/0009410. 5.1
ADS
Article
Google Scholar
Bardeen, M., and Piran, T., “General relativistic axisymmetric rotating systems: Coordinates and equations”, Phys. Rep., 96, 205–250, (1983). 3.4.1
ADS
MathSciNet
Article
Google Scholar
Baron, E., Cooperstein, J., and Kahana, S., “Supernovae and the nuclear equation of state at high densities”, Nucl. Phys. A, 440, 744–754, (1985). 3.1
ADS
Article
Google Scholar
Baron, E., Cooperstein, J., and Kahana, S., “Type II supernovae in 12M⊙ and 15M⊙ stars: The equation of state and general relativity”, Phys. Rev. Lett., 55, 126–129, (1985). 3.1
ADS
Article
Google Scholar
Baron, E., Cooperstein, J., Kahana, S., and Nomoto, K., “Collapsing white dwarfs”, Astrophys. J., 320, 304–307, (1987). 2.4.1
ADS
Article
Google Scholar
Baumgarte, T.W., Janka, H.-T., Keil, W., Shapiro, S.L., and Teukolsky, S.A., “Delayed Collapse of Hot Neutron Stars to Black Holes via Hadronic Phase Transitions”, Astrophys. J., 468, 823–833, (1996). 4.5
ADS
Article
Google Scholar
Baumgarte, T.W., and Shapiro, S.L., “Evolution of rotating supermassive stars to the onset of collapse”, Astrophys. J., 526, 941–952, (1999). Related online version (cited on 14 September 1999): http://arXiv.org/abs/astro-ph/9909237. 2.4.2, 6.1, 6.4, 6.4, 7
ADS
Article
Google Scholar
Baumgarte, T.W., and Shapiro, S.L., “Collapse of a Magnetized Star to a Black Hole”, Astrophys. J., 585, 930–947, (2003). URL (cited on 14 November 2002): http://arXiv.org/abs/astro-ph/0211339. 3.1
ADS
Article
Google Scholar
Baumgarte, T.W., Shapiro, S.L., and Teukolsky, S.A., “Computing supernova collapse to neutron stars and black holes”, Astrophys. J., 443, 717–734, (1995). 4.5
ADS
Article
Google Scholar
Baumgarte, T.W., Shapiro, S.L., and Teukolsky, S.A., “Computing the Delayed Collapse of Hot Neutron Stars to Black Holes”, Astrophys. J., 458, 680–691, (1996). 4.5
ADS
Article
Google Scholar
Bazan, G., and Arnett, D., “Convection, nucleosynthesis, and core collapse”, Astrophys. J. Lett., 433, L41–L43, (1994). 3.4.5
ADS
Article
Google Scholar
Begelman, M.C., and Rees, M.J., “The fate of dense stellar systems”, Mon. Not. R. Astron. Soc., 185, 847–860, (1978). 6.1
ADS
Article
Google Scholar
Berger, E., Kulkarni, S.R., Frail, D.A., and Soderberg, A.M., “A Radio Survey of Type Ib and Ic Supernovae: Searching for Engine-driven Supernovae”, Astrophys. J., 599, 408–418, (2003). 4.2
ADS
Article
Google Scholar
Bethe, H.A., “Supernova mechanisms”, Rev. Mod. Phys., 62, 801–866, (1990). 3.1
ADS
Article
Google Scholar
Bethe, H.A., and Wilson, J.R., “Revival of a stalled supernova shock by neutrino heating”, Astrophys. J., 295, 14–23, (1985). 3.1
ADS
Article
Google Scholar
Blanchet, L., Damour, T., and Schäfer, G., “Post-Newtonian hydrodynamics and post-Newtonian gravitational wave generation for numerical relativity”, Mon. Not. R. Astron. Soc., 242, 289–305, (1990). 2.4.1
ADS
MATH
Article
Google Scholar
Blondin, J.M., Mezzacappa, A., and DeMarino, C., “Stability of Standing Accretion Shocks, with an Eye toward Core-Collapse Supernovae”, Astrophys. J., 584, 971–980, (2003). 3.1, 3.4.5
ADS
Article
Google Scholar
Bodenheimer, P., and Ostriker, J.P., “Rapidly rotating stars. VIII. Zero-viscosity polytropic sequences”, Astrophys. J., 180, 159–170, (1973). 6.1
ADS
Article
Google Scholar
Bonazzola, S., and Marck, J.-A., “Efficiency of gravitational radiation from axisymmetric and 3D stellar collapse. I — Polytropic case”, Astron. Astrophys., 267, 623–633, (1993). 3.4.3
ADS
MathSciNet
Google Scholar
Bowers, R.L., and Wilson, J.R., “Collapse of iron stellar cores”, Astrophys. J., 263, 366–376, (1982). 3.1
ADS
Article
Google Scholar
Bowers, R.L., and Wilson, J.R., “A numerical model for stellar core collapse”, Astrophys. J. Suppl. Ser., 50, 115–159, (1982). 3.1
ADS
Article
Google Scholar
Brachwitz, F., Dean, D.J., Hix, W.R., Iwamoto, K., Langanke, K., Martínez-Pinedo, G., Nomoto, K., Strayer, M.R., Thielemann, F.-K., and Umeda, H., “The role of electron captures in Chandrasekhar-mass models for Type Ia supernovae”, Astrophys. J., 536, 934–947, (2000). Related online version (cited on 26 January 2000): http://arXiv.org/abs/astro-ph/0001464. 2.1
ADS
Article
Google Scholar
Bravo, E., and García-Senz, D., “Coulomb corrections to the equation of state of nuclear statistical equilibrium matter: Implications for SNIa nucleosynthesis and the accretion-induced collapse of white dwarfs”, Mon. Not. R. Astron. Soc., 307, 984–992, (1999). 2.1
ADS
Article
Google Scholar
Bromm, V., Coppi, P.S., and Larson, R.B., “Forming the first stars in the universe: The fragmentation of primordial gas”, Astrophys. J. Lett., 527, L5–L8, (1999). Related online version (cited on 13 October 1999): http://arXiv.org/abs/astro-ph/9910224. 6.1
ADS
Article
Google Scholar
Brown, J.D., “Gravitational waves from the dynamical bar instability in a rapidly rotating star”, Phys. Rev. D, 62, 084024–1–11, (2000). Related online version (cited on 1 April 2000): http://arXiv.org/abs/gr-qc/0004002. 2.4.2
ADS
Article
Google Scholar
Brown, J.D., “Rotational instabilities in post-collapse stellar cores”, in Centrella, J.M., ed., Astrophysical Sources for Ground-Based Gravitational Wave Detectors, Philadelphia, Pennsylvania, 30 October–1 November 2000, AIP Conference Proceedings, 234–245, (American Institute of Physics, Melville, U.S.A., 2001). 3.4.3, 7
Google Scholar
Bruenn, S.W., “Numerical simulations of core collapse supernovae”, in Guidry, M.W., and Strayer, M.R., eds., Nuclear Physics in the Universe, Proceedings of the First Symposium on Nuclear Physics in the Universe held in Oak Ridge, Tennessee, USA, 24–26 September 1992, 31–50, (Institute of Physics, Bristol, U.K.; Philadelphia, U.S.A., 1993). 3.1
Google Scholar
Bruenn, S.W., De Nisco, K.R., and Mezzacappa, A., “General relativistic effects in the core collapse supernova mechanism”, Astrophys. J., 560, 326–338, (2001). Related online version (cited on 23 January 2001): http://arXiv.org/abs/astro-ph/0101400. 3.4.4
ADS
Article
Google Scholar
Buonanno, A., Sigl, G., Raffelt, G.G., Janka, H.-T., and Müller, E., “Stochastic gravitationalwave background from cosmological supernovae”, Phys. Rev. D, 72, 084001, (2005). 3.5
ADS
Article
Google Scholar
Buras, R., Rampp, M., Janka, H.-T., and Kifonidis, K., “Improved Models of Stellar Core Collapse and Still No Explosions: What Is Missing?”, Phys. Rev. Lett., 90, 241101–1–4, (2003). 3.1
ADS
Article
Google Scholar
Burrows, A., personal communication, (2005). 3.4.5
Burrows, A., and Hayes, J., “Pulsar recoil and gravitational radiation due to asymmetrical stellar collapse and explosion”, Phys. Rev. Lett., 76, 352–355, (1996). 3.1, 3.3, 3.4.5, 11
ADS
Article
Google Scholar
Burrows, A., Hayes, J., and Fryxell, B.A., “On the Nature of Core-Collapse Supernova Explosions”, Astrophys. J., 450, 830–850, (1995). 3.1
ADS
Article
Google Scholar
Burrows, A., Livne, E., Dessart, L., Ott, C., and Murphy, J., “A New Mechanism for Core-Collapse Supernova Explosions”, Astrophys. J., accepted, (2005). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0510687. 3.1, 3.4.5
Google Scholar
Burrows, A., and Thompson, T.A., “Neutrino-Matter Interaction Rates in Supernovae”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0211404. 3.1
Google Scholar
California Institute of Technology, “LIGO Laboratory Home Page”, project homepage. URL (cited on 4 October 2002): http://www.ligo.caltech.edu. 1
Google Scholar
Cappellaro, E., Evans, R., and Turatto, M., “A new determination of supernova rates and a comparison with indicators for galactic star formation”, Astron. Astrophys., 351, 459–466, (1999). 3.2
ADS
Google Scholar
Carr, B.J., Bond, J.R., and Arnett, W.D., “Cosmological consequences of population III stars”, Astrophys. J., 277, 445–469, (1984). 5.2, 5.4
ADS
Article
Google Scholar
Cassisi, S., Iben Jr, I., and Tornambé, A., “Hydrogen-accreting carbon-oxygen white dwarfs”, Astrophys. J., 496, 376–385, (1998). 2.2
ADS
Article
Google Scholar
Centrella, J.M., New, K.C.B., Lowe, L., and Brown, J.D., “Dynamical rotational instability at low T/W”, Astrophys. J. Lett., 550, L193–L196, (2001). Related online version (cited on 27 October 2000): http://arXiv.org/abs/astro-ph/0010574. 2.3, 2.4.2, 3.4.3
ADS
Article
Google Scholar
Chandrasekhar, S., “Dynamical Instability of Gaseous Masses Approaching the Schwarzschild Limit in General Relativity”, Phys. Rev. Lett., 12, 114–116, (1964). Erratum 437–438. 6.1
ADS
MathSciNet
MATH
Article
Google Scholar
Chandrasekhar, S., “The dynamical instability of gaseous masses approaching the Schwarzschild limit in general relativity”, Astrophys. J., 140, 417–433, (1964). 6.1
ADS
MathSciNet
MATH
Article
Google Scholar
Chandrasekhar, S., An Introduction to the Study of Stellar Structure, (Dover, New York, U.S.A., 1967). 2.4.2
MATH
Google Scholar
Colgate, S.A., “Supernova: Hot bubbles drive explosions”, Nature, 341, 489–490, (1989). 3.1
ADS
Article
Google Scholar
Colgate, S.A., Herant, M., and Benz, W., “Neutron star accretion and the neutrino fireball”, Phys. Rep., 227, 157–174, (1993). 3.1
ADS
Article
Google Scholar
Colgate, S.A., and White, R.H., “The hydrodynamic behavior of supernovae explosions”, Astrophys. J., 143, 626–681, (1966). 3.1
ADS
Article
Google Scholar
Cook, G.B., Shapiro, S.L., and Teukolsky, S.A., “Testing a simplified version of Einstein’s equations for numerical relativity”, Phys. Rev. D, 53, 5533–5540, (1996). Related online version (cited on 5 December 1995): http://arXiv.org/abs/astro-ph/9512009. 3.4.4
ADS
MathSciNet
Article
Google Scholar
Detweiler, S., and Lindblom, L., “On the evolution of the homogeneous ellipsoidal figures. II. Gravitational collapse and gravitational radiation”, Astrophys. J., 250, 739–749, (1981). 1, 3.4.1
ADS
MathSciNet
Article
Google Scholar
Dimmelmeier, H., Font, J.A., and Müller, E., “Gravitational waves from relativistic rotational core collapse”, Astrophys. J. Lett., 560, L163–L166, (2001). Related online version (cited on 21 April 2001): http://arXiv.org/abs/astro-ph/0103088. 3.4.4
ADS
MATH
Article
Google Scholar
Dimmelmeier, H., Font, J.A., and Müller, E., “Relativistic simulations of rotational core collapse. I. Methods, initial models, and code tests”, Astron. Astrophys., 388, 917–935, (2002). Related online version (cited on 17 April 2002): http://arXiv.org/abs/astro-ph/0204288. 3.4.4
ADS
Article
Google Scholar
Dimmelmeier, H., Font, J.A., and Müller, E., “Relativistic simulations of rotational core collapse. II. Collapse dynamics and gravitational radiation”, Astron. Astrophys., 393, 523–542, (2002). Related online version (cited on 17 April 2002): http://arXiv.org/abs/astro-ph/0204289. 3.4.3, 3.4.4, 7, 8, 9, 10
ADS
MATH
Article
Google Scholar
Dimmelmeier, H., Novak, J., Font, J.A., Ibáñez, J.M., and Müller, E., “Combining spectral and shock-capturing methods: A new numerical approach for 3D relativistic core collapse simulations”, Astron. Astrophys., 560, 163–166, (2005). 7
Google Scholar
Duez, M.D., Shapiro, S.L., and You, H.-J., “Relativistic hydrodynamic evolutions with black hole excision”, Phys. Rev. D, 69, 104016, (2004). 4.4
ADS
Article
Google Scholar
Durisen, R.H., and Tohline, J.E., “Fission of rapidly rotating fluid systems”, in Black, D., and Matthews, M., eds., Protostars and Planets II, 534–575, (University of Arizona Press, Tucson, U.S.A., 1985). 2.3
Google Scholar
Eisenstein, D.J., and Loeb, A., “Origin of quasar progenitors from the collapse of low-spin cosmological perturbations”, Astrophys. J., 443, 11–17, (1995). Related online version (cited on 11 January 1994): http://arXiv.org/abs/astro-ph/9401016. 6.1
ADS
Article
Google Scholar
Epstein, R., The post-Newtonian theory of the generation of gravitational radiation and its application to stellar collapse, Ph.D. Thesis, (Stanford University, Stanford, U.S.A., 1976). 3.4.1
Google Scholar
Epstein, R., and Wagoner, R.V., “Post-Newtonian generation of gravitational waves”, Astrophys. J., 197, 717–723, (1975). 3.4.1
ADS
MathSciNet
Article
Google Scholar
Eriguchi, Y., and Müller, E., “Equilibrium models of differentially rotating polytropes and the collapse of rotating stellar cores”, Astron. Astrophys., 147, 161–168, (1985). 3.4.2
ADS
Google Scholar
Ferrarese, L., and Merritt, D., “A fundamental relation between supermassive black holes and their host galaxies”, Astrophys. J. Lett., 539, L9–L12, (2000). Related online version (cited on 4 June 2000): http://arXiv.org/abs/astro-ph/0006053. 6.1
ADS
Article
Google Scholar
Ferrari, V., Matarrese, S., and Schneider, R., “Gravitational wave background from a cosmological population of core-collapse supernovae”, Mon. Not. R. Astron. Soc., 303, 247–257, (1999). Related online version (cited on 15 October 1998): http://arXiv.org/abs/astro-ph/9804259. 3.5
ADS
Article
Google Scholar
Ferrari, V., Miniutti, G., and Pons, J.A., “Gravitational waves from newly born, hot neutron stars”, Mon. Not. R. Astron. Soc., 342, 629–638, (2003). Related online version (cited on 26 October 2002): http://arXiv.org/abs/astro-ph/0210581. 3.4.3
ADS
Article
Google Scholar
Finn, L.S., “Supernovae, gravitational radiation, and the quadrupole formula”, in Evans, C.R., Finn, L.S., and Hobill, D.W., eds., Frontiers in Numerical Relativity, International workshop devoted to research in numerical relativity, held in Urbana-Champaign in May 1988, 126–145, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1989). 3.1, 3.3
Google Scholar
Finn, L.S., “Detectability of gravitational radiation from stellar-core collapse”, in Buchler, J.R., Detweiler, S., and Ipser, J.R., eds., Nonlinear problems in relativity and cosmology, 6th Florida Workshop in Nonlinear Astronomy, held on October 2–4, 1990 in Gainesville, Florida, 156–172, (New York Academy of Sciences, New York, U.S.A., 1991). 3.4.1
Google Scholar
Finn, L.S., “Gravitional Radiation Sources and Signatures”, in Dixon, L.J., ed., Gravity: From the Hubble Length to the Planck Length, Proceedings of the 26th SLAC Summer Institute on Particle Physics (SSI 98), Stanford, USA, 3–14 August 1998, vol. 538 of SLAC-R, (SLAC, Springfield, U.S.A., 2001). URL (cited on 30 March 1999): http://www.slac.stanford.edu/pubs/confproc/ssi98/ssi98-007.html. also at: http://arXiv.org/abs/gr-qc/9903107. 1
Finn, L.S., and Evans, C.R., “Determining gravitational radiation from Newtonian selfgravitating systems”, Astrophys. J., 351, 588–600, (1990). 1, 2.4.1, 3.4.2
ADS
Article
Google Scholar
Foglizzo, T., Scheck, L., and Janka, H.-T., “Neutrino-driven convection versus advection in core collapse supernovae”, Astron. Astrophys., submitted, (2005). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0507636. 3.1
Google Scholar
Folkner, W.M., ed., Laser Interferometer Space Antenna: Second International LISA Symposium on the Detection and Observation of Gravitational Waves in Space, Pasadena 1998, vol. 456 of AIP Conference Proceedings, (Springer, New York, U.S.A., 1993). 6.4
Friedman, J.L., and Morsink, S.M., “Axial instability of rotating relativistic stars”, Astrophys. J., 502, 714–720, (1998). Related online version (cited on 23 June 1997): http://arXiv.org/abs/gr-qc/9706073. 2.3
ADS
Article
Google Scholar
Fryer, C.L., “Mass Limits For Black Hole Formation”, Astrophys. J., 522, 413–418, (1999). 3.1, 4.1
ADS
Article
Google Scholar
Fryer, C.L., “Stellar Collapse”, Int. J. Mod. Phys. D, 12, 1795–1835, (2003). 3.1
ADS
Article
Google Scholar
Fryer, C.L., “Neutron Star Kicks from Asymmetric Collapse”, Astrophys. J., 601, L175–L178, (2004). 3.1, 3.3, 3.4.3, 3.4.5
ADS
Article
Google Scholar
Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). 3.1
Fryer, C.L., Benz, W., Herant, M., and Colgate, S.A., “What can the accretion-induced collapse of white dwarfs really explain?”, Astrophys. J., 516, 892–899, (1999). Related online version (cited on 2 December 1998): http://arXiv.org/abs/astro-ph/9812058. 2.1, 2.2, 2.4.1, 2.4.1, 2.4.1, 2.4.1, 2.4.2
ADS
Article
Google Scholar
Fryer, C.L., and Heger, A., “Core-Collapse Simulations of Rotating Stars”, Astrophys. J., 541, 1033–1050, (2000). Related online version (cited on 30 July 1999): http://arXiv.org/abs/astro-ph/9907433. 3.1, 3.4.3, 3.4.4
ADS
Article
Google Scholar
Fryer, C.L., and Heger, A., “Binary Merger Progenitors for Gamma-Ray Bursts and Hypernovae”, Astrophys. J., 623, 302–313, (2005). 7
ADS
Article
Google Scholar
Fryer, C.L., Heger, A., Langer, N., and Wellstein, S., “Stellar Collapse”, Int. J. Mod. Phys. D, 12, 1795–1835, (2003). 3.1
ADS
Article
Google Scholar
Fryer, C.L., Holz, D.E., and Hughes, S.A., “Gravitational wave emission from core-collapse of massive stars”, Astrophys. J., 565, 430–446, (2002). Related online version (cited on 25 September 2001): http://arXiv.org/abs/astro-ph/0106113. 1, 2.4.1, 2.4.1, 3.1, 3.4.4, 4.4, 5.2, 5.4, 7
ADS
Article
Google Scholar
Fryer, C.L., Holz, D.E., and Hughes, S.A., “Gravitational Waves from Stellar Collapse: Correlations to Explosion Asymmetries”, Astrophys. J., 609, 288–300, (2004). 1, 3.4.3, 12, 13, 3.4.5
ADS
Article
Google Scholar
Fryer, C.L., Holz, D.E., Hughes, S.A., and Warren, M.S., “Stellar Collapse and Gravitational Waves”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0211609. 1, 3.4.3, 3.4.4, 3.4.4, 5.4
Fryer, C.L., and Kalogera, V., “Theoretical black hole mass distributions”, Astrophys. J., 554, 548–560, (2001). 3.1, 3.2, 4.2
ADS
Article
Google Scholar
Fryer, C.L., and Kusenko, A., “Effects of neutrino-driven kicks on the supernova explosion mechanism”, Astrophys. J., submitted, (2005). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0512033. 3.4.3
Google Scholar
Fryer, C.L., and Warren, M.S., “Modeling Core-Collapse Supernovae in Three Dimensions”, Astrophys. J. Lett., 574, L65–L68, (2002). URL (cited on 3 June 2002): http://arXiv.org/abs/astro-ph/0206017. 1, 3.1, 3.4.3, 7
ADS
Article
Google Scholar
Fryer, C.L., and Warren, M.S., “The Collapse of Rotating Massive Stars in Three Dimensions”, Astrophys. J., 601, 391–404, (2004). 3.1, 3.4.3, 7
ADS
Article
Google Scholar
Fryer, C.L., and Woosley, S.E., “Helium Star/Black Hole Mergers: A New Gamma-Ray Burst Model”, Astrophys. J., 502, L9–L12, (1998). 4.2
ADS
Article
Google Scholar
Fryer, C.L., Woosley, S.E., and Hartmann, D., “Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts”, Astrophys. J., 526, 152–177, (1999). 4.2
ADS
Article
Google Scholar
Fryer, C.L., Woosley, S.E., and Hartmann, D.H., “Formation Rates of Black Hole Accretion Disk Gamma-Ray Bursts”, Astrophys. J., 526, 152–177, (1999). 7
ADS
Article
Google Scholar
Fryer, C.L., Woosley, S.E., and Heger, A., “Pair-instability supernovae, gravity waves, and gamma-ray transients”, Astrophys. J., 550, 372-382, (2001). Related online version (cited on 13 July 2000): http://arXiv.org/abs/astro-ph/0007176. 2.3, 5.1, 5.2, 5.4
Gressman, P., Lin, L.-M., Suen, W.-M., Stergioulas, N., and Friedman, J.L., “Nonlinear r-modes in neutron stars: Instability of an unstable mode”, Phys. Rev. D, 66, 041303–1–5, (2002). 2.3
ADS
Article
Google Scholar
Hachisu, I., “A versatile method for obtaining structures of rapidly rotating stars”, Astrophys. J. Suppl. Ser., 61, 479–507, (1986). 2.4.2
ADS
Article
Google Scholar
Haehnelt, M.G., “Low-frequency gravitational waves from supermassive black holes”, Mon. Not. R. Astron. Soc., 269, 199–208, (1994). 6.2
ADS
Article
Google Scholar
Haehnelt, M.G., Natarajan, P., and Rees, M.J., “High-redshift galaxies, their active nuclei and central black holes”, Mon. Not. R. Astron. Soc., 300, 817–827, (1998). Related online version (cited on 18 December 1997): http://arXiv.org/abs/astro-ph/9712259. 6.1
ADS
Article
Google Scholar
Haehnelt, M.G., and Rees, M.J., “The formation of nuclei in newly formed galaxies and the evolution of the quasar population”, Mon. Not. R. Astron. Soc., 263, 168–178, (1993). 6.1
ADS
Article
Google Scholar
Haensel, P., Levenfish, K.P., and Yakovlev, D.G., “Bulk viscosity in superfluid neutron star cores. III. Effects of ∑- hyperons”, Astron. Astrophys., 381, 1080–1089, (2002). Related online version (cited on 26 October 2001): http://arXiv.org/abs/astro-ph/0110575. 2.3
ADS
Article
Google Scholar
Hamuy, M., “Observed and physical properties of core-collapse supernovae”, Astrophys. J., 582, 905–914, (2003). URL (cited on 10 September 2002): http://arXiv.org/abs/astro-ph/0209174. 3.1
ADS
Article
Google Scholar
Hannover University, “GEO 600 home page”, project homepage. URL (cited on 4 October 2002): http://www.geo600.uni-hannover.de/. 1
Google Scholar
Hayashi, A., Eriguchi, Y., and Hashimoto, M., “On the possibility of the nonexplosive core contraction of massive stars: New evolutionary paths from rotating white dwarfs to rotating neutron stars”, Astrophys. J., 492, 286–297, (1998). 3.4.2
ADS
Article
Google Scholar
Hayashi, A., Eriguchi, Y., and Hashimoto, M., “On the possibility of the nonexplosive core contraction of massive stars. II. General relativistic analysis”, Astrophys. J., 521, 376–381, (1999). 3.4.2
ADS
Article
Google Scholar
Heger, A., The presupernova evolution of rotating massive stars, Ph.D. Thesis, (Technische Universität München, Munich, Germany, 1998). 3.4.4, 5.4
Google Scholar
Heger, A., Fryer, C.L., Woosley, S.E., Langer, N., and Hartmann, D.H., “How Massive Single Stars End Their Life”, Astrophys. J., 591, 288–300, (2001). 3.1
ADS
Article
Google Scholar
Heger, A., Langer, N., and Woosley, S.E., “Presupernova evolution of rotating massive stars. I. Numerical method and evolution of the internal stellar structure”, Astrophys. J., 528, 368–396, (2000). Related online version (cited on 12 April 1999): http://arXiv.org/abs/astro-ph/9904132. 3.4.3
ADS
Article
Google Scholar
Heger, A., Woosley, S.E., and Spruit, H.C., “Presupernova Evolution of Differentially Rotating Massive Stars Including Magnetic Fields”, Astrophys. J., 626, 350–363, (2005). 3.4.4
ADS
Article
Google Scholar
Herant, M., “Inside the Supernova: A Powerful Convective Engine”, Phys. Rep., 256, 117–133, (1995). 3.4.5, 3.4.5
ADS
Article
Google Scholar
Herant, M., Benz, W., Hiz, W.R., Fryer, C.L., and Colgate, S.A., “Inside the Supernova: A Powerful Convective Engine”, Astrophys. J., 435, 339–361, (1994). 3.1
ADS
Article
Google Scholar
Hillebrandt, W., “Stellar Collapse and Supernova Explosions”, in Pacini, F., ed., High Energy Phenomena around Collapsed Stars, Proceedings of the NATO Advanced Study Institute, Cargèse, Corsica, France, September 2–13, 1985, vol. 195 of NATO Science Series, 73–104, (Reidel, Dordrecht, Netherlands; Boston, U.S.A., 1987). 3.4.5
Hillebrandt, W., Nomoto, K., and Wolff, R.G., “Supernova explosions of massive stars — The mass range 8 to 10 solar masses”, Astron. Astrophys., 133, 175–184, (1984). 2.1
ADS
Google Scholar
Ho, W.C.G., and Lai, D., “r-Mode oscillations and spin-down of young rotating magnetic neutron stars”, Astrophys. J., 543, 386–394, (2000). Related online version (cited on 15 December 1999): http://arXiv.org/abs/astro-ph/9912296. 2.4.1
ADS
Article
Google Scholar
Höflich, P., Khokhlov, A., Wang, L., Wheeler, J.C., and Baade, D., “Aspherical Supernovae Explosions”, in van der Hucht, K.A., Herrero, A., and Esteban, C., eds., A Massive Star Odyssey, from Main Sequence to Supernova, Lanzarote, Canary Islands, Spain, June 24–28, 2002, vol. 212 of IAU Symposia, (Astronomical Society of the Pacific, San Francisco, U.S.A., 2003). Related online version (cited on 12 July 2002): http://arXiv.org/abs/astro-ph/0207272. 3.1
Hogan, C.J., “A model of pregalactic evolution”, Mon. Not. R. Astron. Soc., 188, 781–790, (1979). 5.2
ADS
Article
Google Scholar
Houser, J.L., “The effect of rotation on the gravitational radiation and dynamical instability of stiff stellar cores”, Mon. Not. R. Astron. Soc., 299, 1069–1086, (1998). 2.3
ADS
Article
Google Scholar
Hughes, S.A., “Untangling the merger history of massive black holes with LISA”, Mon. Not. R. Astron. Soc., 331, 805–816, (2002). Related online version (cited on 30 August 2001): http://arXiv.org/abs/astro-ph/0108483. 6.4
ADS
Article
Google Scholar
Hughes, S.A., Márka, S., Bender, P.L., and Hogan, C.J., “New physics and astronomy with the new gravitational-wave observatories”, in Graf, N., ed., Proceedings of Snowmass 2001, The Future of Particle Physics, 30 June–21 July 2001, Snowmass Village, Colorado, vol. C010630, P402, (SLAC eConf, Stanford, U.S.A., 2001). URL (cited on 15 October 2001): http://www.slac.stanford.edu/econf/C010630/proceedings.shtml. 1
Hungerford, A., Fryer, C.L., and Rockefeller, G., “Gamma Rays from Single-Lobe Supernova Explosions”, Astrophys. J., 635, 487–501, (2005). 3.1
ADS
Article
Google Scholar
Hungerford, A., Fryer, C.L., and Warren, M.S., “Gamma Rays from Asymmetric Supernovae”, Astrophys. J., 594, 390–403, (2005). 3.1
ADS
Article
Google Scholar
Iben, I., “Massive stars in quasi-static equilibrium”, Astrophys. J., 138, 1090–1096, (1963). 6.1
ADS
Article
Google Scholar
Imamura, J.N., and Durisen, R.H., “The Dominance of Dynamic Barlike Instabilities in the Evolution of a Massive Stellar Core Collapse That “Fizzles””, Astrophys. J., 549, 1062–1075, (2001). 3.4.2
ADS
Article
Google Scholar
Imamura, J.N., Friedman, J.L., and Durisen, R.H., “Secular stability limits for rotating polytropic stars”, Astrophys. J., 294, 474–478, (1985). 2.3
ADS
Article
Google Scholar
INFN, “The Virgo Project”, project homepage. URL (cited on 4 October 2002): http://www.virgo.infn.it/. 1
Isern, J., Canal, R., and Labay, J., “The outcome of explosive ignition of ONeMg cores: supernovae, neutron stars, or “iron” white dwarfs?”, Astrophys. J. Lett., 372, L83–L86, (1991). 2.1
ADS
Article
Google Scholar
Janka, H.-T., “Conditions for shock revival by neutrino heating in core-collapse supernovae”, Astron. Astrophys., 368, 527–560, (2001). Related online version (cited on 28 August 2000): http://arXiv.org/abs/astro-ph/0008432. 3.1
ADS
Article
Google Scholar
Janka, H.-T., “Supermassive Stars: Fact or Fiction?”, in Chui, C.K., Siuniaev, R.A., and Churazov, E., eds., Lighthouses of the Universe: The Most Luminous Celestial Objects and Their Use for Cosmology, Proceedings of the MPA/ESO/MPE/USM Joint Astronomy Conference, held in Garching, Germany, 6–10 August 2001, ESO Astrophysics Symposia, 357–368, (Springer, Berlin, Germany; New York, U.S.A., 2002). Related online version (cited on 1 February 2002): http://arXiv.org/abs/astro-ph/0202028. 6.1
Chapter
Google Scholar
Janka, H.-T., Buras, R., Kifonidis, K., Rampp, M., and Plewa, T., “Explosion Mechanisms of Massive Stars”, in Fryer, C.L., ed., Stellar Collapse, Proceedings of “Core Collapse of Massive Stars”, 200th AAS meeting, Albuquerque, NM, June 2002, vol. 302 of Astrophysics and Space Science Library, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 2004). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0212314. 3.1, 7
Janka, H.-T., and Müller, E., “Neutrino-driven type-II supernovae: Neutrino heating and post bounce dynamics”, in Suzuki, Y., and Nakamura, K., eds., Frontiers of Neutrino Astrophysics, Proceedings of the International Symposium on Neutrino Astrophysics held on October 19–22, 1992, Takayama / Kamioka, Japan, vol. 5 of Frontiers Science Series, 203–217, (Universal Academy Press, Tokyo, Japan, 1993). 3.1
ADS
Google Scholar
Janka, H.-T., and Müller, E., “Dynamics of Type-II supernovae”, in McCray, R., and Wang, Z., eds., Supernovae and Supernovae Remnants, Proceedings of the IAU Colloquium 145, held in Xian, China, May 24–29, 1993, 109–118, (Cambridge University Press, Cambridge, U.K., 1996). 3.1
Chapter
Google Scholar
Janka, H.-T., and Müller, E., “Neutrino heating, convection, and the mechanism of Type-II supernova explosions”, Astron. Astrophys., 306, 167–198, (1996). 3.1
ADS
Google Scholar
Jenet, F.A., and Prince, T.A., “Detection of variable frequency signals using a fast chirp transform”, Phys. Rev. D, 62, 122001–1–10, (2000). Related online version (cited on 7 December 2000): http://arXiv.org/abs/gr-qc/0012029. 3.4.4
ADS
Article
Google Scholar
Jones, P.B., “Bulk viscosity of neutron-star matter”, Phys. Rev. D, 64, 084003–1–7, (2001). 2.3
ADS
Article
Google Scholar
Jones, P.B., “Comment on “Gravitational radiation instability in hot young neutron stars””, Phys. Rev. Lett., 86, 1384, (2001). 2.3
ADS
Article
Google Scholar
Kato, M., and Hachisu, I., “A new estimation of mass accumulation efficiency in helium shell flashes toward Type Ia supernova explosions”, Astrophys. J. Lett., 513, L41–L44, (1999). Related online version (cited on 8 January 1999): http://arXiv.org/abs/astro-ph/9901080. 2.2
ADS
Article
Google Scholar
Kifonidis, K., Plewa, T., Scheck, L., Janka, H.-T., and Müller, E., “Non-Spherical Core-Collapse Supernovae II. Late-Time Evolution of Globally Anisotropic Neutrino-Driven Explosions and Implications for SN 1987A”, Astron. Astrophys., submitted, (2005). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0511369. 3.1
Google Scholar
King, A.R., and Lasota, J.-P., “Spin evolution and magnetic fields in cataclysmic variables”, Astrophys. J., 378, 674–681, (1991). 2.4.1
ADS
Article
Google Scholar
Kobayashi, S., and Mészáros, P., “Gravitational radiation from gamma-ray burst progenitors”, Astrophys. J., 589, 861–870, (2003). Related online version (cited on 9 October 2002): http://arXiv.org/abs/astro-ph/0210211. 4.3
ADS
Article
Google Scholar
Kobayashi, S., and Mészáros, P., “Polarized Gravitational Waves from Gamma-Ray Bursts”, Astrophys. J., 585, L89–L92, (2003). 4.3
ADS
Article
Google Scholar
Kormendy, J., “Supermassive Black Holes in Disk Galaxies”, in Funes, J.G., and Corsini, E.M., eds., Galaxy Disks and Disk Galaxies, Proceedings of a conference sponsored by the Vatican Observatory, held at the Pontifical Gregorian University in Rome, Italy, 12–16 June 2000, vol. 230 of ASP Conference Series, 247–256, (Astronomical Society of the Pacific, San Francisco, U.S.A., 2001). 6.1
ADS
Google Scholar
Kotake, K., Katsuhiko, S., and Keitaro, T., “Explosion Mechanism, Neutrino Burst, and Gravitational Wave in Core-Collapse Supernovae”, Rep. Prog. Phys., submitted, (2005). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0509456. 3.1
Google Scholar
Kotake, K., Yamada, S., and Sato, K., “Gravitational radiation from axisymmetric rotational core collapse”, Phys. Rev. D, 68, 044023, (2003). 3.4.2, 3.4.2
ADS
MathSciNet
MATH
Article
Google Scholar
Kotake, K., Yamada, S., Sato, K., Sumiyoshi, K., Ono, H., and Suzuki, H., “Gravitational radiation from rotational core collapse: Effects of magnetic fields and realistic equations of state”, Phys. Rev. D, 69, 124004–1–11, (2004). 3.4.2
ADS
Article
Google Scholar
Lai, D., “Secular bar-mode evolution and gravitational waves from neutron stars”, in Centrella, J.M., ed., Astrophysical Sources for Ground-based Gravitational Wave Detectors, Philadelphia, Pennsylvania, USA, 30 October–1 November 2000, vol. 575 of AIP Conference Proceedings, 246–257, (American Institute of Physics, Melville, U.S.A., 2001). 3.4.4, 7
ADS
Article
Google Scholar
Lai, D., and Goldreich, P., “Growth of perturbations in gravitational collapse and accretion”, Astrophys. J., 535, 402–411, (2000). Related online version (cited on 25 June 1999): http://arXiv.org/abs/astro-ph/9906400. 3.4.5
ADS
Article
Google Scholar
Lai, D., and Shapiro, S.L., “Gravitational radiation from rapidly rotating nascent neutron stars”, Astrophys. J., 442, 259–272, (1995). Related online version (cited on 17 August 1994): http://arXiv.org/abs/astro-ph/9408053. 3.4.4
ADS
Article
Google Scholar
Leaver, E.W., “An analytic representation for the quasi-normal modes of Kerr black holes”, Proc. R. Soc. London, Ser. A, 402, 285–298, (1985). 6.4
ADS
MathSciNet
Google Scholar
Liebendörfer, M., Messer, O.E.B., Mezzacappa, A., Bruenn, S.W., Cardall, C.Y., and Thielemann, F.-K., “A finite difference representation of neutrino radiation hydrodynamics for spherically symmetric general relativistic supernova simulations”, Astrophys. J. Suppl. Ser., 150, 263–316, (2004). 7
ADS
Article
Google Scholar
Lindblom, L., and Owen, B.J., “Effect of hyperon bulk viscosity on neutron-star r-modes”, Phys. Rev. D, 65, 063006–1–15, (2002). Related online version (cited on 25 October 2001): http://arXiv.org/abs/astro-ph/0110558. 2.3
ADS
Article
Google Scholar
Lindblom, L., Owen, B.J., and Morinsk, S.M., “Gravitational radiation instability in hot young stars”, Phys. Rev. Lett., 80, 4843–4846, (1998). Related online version (cited on 13 March 1998): http://arXiv.org/abs/gr-qc/9803053. 2.3
ADS
Article
Google Scholar
Lindblom, L., Tohline, J.E., and Vallisneri, M., “Nonlinear evolution of the r-modes in neutron stars”, Phys. Rev. Lett., 86, 1152–1155, (2001). Related online version (cited on 31 October 2000): http://arXiv.org/abs/astro-ph/0010653. 2.3, 3.4.4
ADS
Article
Google Scholar
Lindblom, L., Tohline, J.E., and Vallisneri, M., “Numerical evolutions of nonlinear r-modes in neutron stars”, Phys. Rev. D, 65, 084039–1–15, (2002). Related online version (cited on 20 September 2001): http://arXiv.org/abs/astro-ph/0109352. 2.3
ADS
Article
Google Scholar
Liu, Y.T., “Dynamical instability of new-born neutron stars as sources of gravitational radiation”, Phys. Rev. D, 65, 124003–1–14, (2002). Related online version (cited on 21 September 2001): http://arXiv.org/abs/gr-qc/0109078. 2.4.2, 7
ADS
Article
Google Scholar
Liu, Y.T., and Lindblom, L., “Models of rapidly rotating neutron stars: remnants of accretion-induced collapse”, Mon. Not. R. Astron. Soc., 324, 1063–1073, (2001). Related online version (cited on 9 December 2000): http://arXiv.org/abs/astro-ph/0012198. 2.1, 2.4.2
ADS
Article
Google Scholar
Loeb, A., and Rasio, F.A., “Collapse of primordial gas clouds and the formation of quasar black holes”, Astrophys. J., 432, 52–61, (1994). Related online version (cited on 16 January 1994): http://arXiv.org/abs/astro-ph/9401026. 6.1
ADS
Article
Google Scholar
Loveridge, L.C., “Gravitational waves from a pulsar kick caused by neutrino conversions”, Phys. Rev. D, 69, 024008, (2004). 3.3
ADS
Article
Google Scholar
Macchetto, F.D., “Supermassive black holes and galaxy morphology”, Astrophys. Space Sci., 269, 269–291, (1999). Related online version (cited on 5 October 1999): http://arXiv.org/abs/astro-ph/9910089. 6.1
ADS
Article
Google Scholar
MacFadyen, A.I., and Woosley, S.E., “Collapsars: Gamma-Ray Bursts and Explosions in “Failed Supernovae””, Astrophys. J., 524, 262–289, (1999). 4.1
ADS
Article
Google Scholar
Maiolino, R., Vanzi, L., Mannucci, F., Cresci, G., Ghinassi, F., and Della Valle, M., “Discovery of two infrared supernovae: a new window on the SN search”, Astron. Astrophys., 389, 84–92, (2002). 3.2
ADS
Article
Google Scholar
Managan, R.A., “On the secular instability of axisymmetric rotating stars to gravitational radiation reaction”, Astrophys. J., 294, 463–473, (1985). 2.3
ADS
MathSciNet
Article
Google Scholar
Marck, J.-A., and Bonazzola, S., “Gravitational radiation from three-dimensional gravitational stellar core collapse”, in D’Inverno, R., ed., Approaches to Numerical Relativity, Proceedings of the International Workshop on Numerical Relativity, Southampton, England, 16–20 December 1991, 247, (Cambridge University Press, Cambridge, U.K., 1992). 3.4.3
Chapter
Google Scholar
Max Planck Institute for Astrophysics, “MPA Hydro Gang Homepage”, project homepage. URL (cited on 17 April 2002): http://www.mpa-garching.mpg.de/Hydro/index.shtml. url updated in 2006 revision. 3.4.4
Google Scholar
Max Planck Institute for Astrophysics, “General relativistic simulations of rotational supernova collapse”, project homepage, (2002). URL (cited on 3 July 2002): http://www.mpa-garching.mpg.de/rel_hydro/axi_core_collapse/index.shtml. url updated in 2006 revision. 3.4.4
Google Scholar
Mayle, R., and Wilson, J.R., “Supernovae from collapse of oxygen-magnesium-neon cores”, Astrophys. J., 334, 909–926, (1988). 2.4.1
ADS
Article
Google Scholar
Mezzacappa, A., Calder, A.C., Bruenn, S.W., Blondin, J.M., Guidry, M.W., Strayer, M.R., and Umar, A.S., “The interplay between proto-neutron star convection and neutrino transport in core collapse supernovae”, Astrophys. J., 493, 848–862, (1998). Related online version (cited on 18 September 1997): http://arXiv.org/abs/astro-ph/9709184. 3.1
ADS
Article
Google Scholar
Mezzacappa, A., Calder, A.C., Bruenn, S.W., Blondin, J.M., Guidry, M.W., Strayer, M.R., and Umar, A.S., “An investigation of neutrino-driven convection and the core collapse supernova mechanism using multigroup neutrino transport”, Astrophys. J., 495, 911–926, (1998). Related online version (cited on 18 September 1997): http://arXiv.org/abs/astro-ph/9709188. 3.1
ADS
Article
Google Scholar
Misner, C.W., Thorne, K.S., and Wheeler, J.A., Gravitation, (Freeman, New York, U.S.A., 1973). 2.4.1
Google Scholar
Mönchmeyer, R., Schäfer, G., Müller, E., and Kates, R.E., “Gravitational waves from the collapse of rotating stellar cores”, Astron. Astrophys., 246, 417–440, (1991). 1, 2.4.1, 3.1, 3.3, 3.4.2, 3.4.2
Google Scholar
Müller, E., “Gravitational radiation from collapsing rotating stellar cores”, Astron. Astrophys., 114, 53–59, (1982). 1, 3.4.1, 3.4.2
Google Scholar
Müller, E., “Gravitational waves from core collapse supernovae”, in Marck, J.-A., and Lasota, J.-P., eds., Relativistic Gravitation and Gravitational Radiation, Proceedings of the Les Houches School of Physics, held in Les Houches, Haute Savoie, 26 September–6 October, 1995, Cambridge Contemporary Astrophysics, 273–308, (Cambridge University Press, Cambridge, U.K., 1997). 1
Google Scholar
Müller, E., “Simulation of astrophysical fluid flow”, in LeVeque, R.J., Mihalas, D., Dorfi, E.A., and Müller, E., eds., Computational Methods for Astrophysical Fluid Flow, Lecture Notes 1997 of the Swiss Society for Astronomy and Astrophysics (SSAA), held March 3–8, 1997 in Les Diablerets, Switzerland, vol. 27 of Saas-Fee Advanced Courses, 343–494, (Springer, Berlin, Germany; New York, U.S.A., 1998). 1, 3.1, 3.4.5
ADS
MATH
Article
Google Scholar
Müller, E., and Hillebrandt, W., “The collapse of rotating stellar cores”, Astron. Astrophys., 103, 358–366, (1981). 3.4.1
ADS
MATH
Google Scholar
Müller, E., Hillebrandt, W., and Rozyczka, M., “Stellar Collapse — Adiabatic hydrodynamics and shock wave propagation”, Astron. Astrophys., 81, 288–292, (1980). 3.4.2
ADS
Google Scholar
Müller, E., and Janka, H.-T., “Gravitational radiation from convective instabilities in Type II supernova explosions”, Astron. Astrophys., 317, 140–163, (1997). 3.3, 3.4.5, 3.4.5, 14, 15, 3.4.5
ADS
Google Scholar
Müller, E., Rampp, M., Buras, R., Janka, H.-T., and Shoemaker, D.H., “Toward Gravitational Wave Signals from Realistic Core-Collapse Supernova Models”, Astrophys. J., 603, 221–230, (2004). 3.4.2, 3.4.5, 3.4.5
ADS
Article
Google Scholar
Nadyozhin, D.K., “Physical Properties of SNe IIP Derived from a Comparison of Theoretical Models with Observations”, Astron. Astrophys., submitted, (2002). Related online version (cited on 09 January 2006): http://www.mpa-garching.mpg.de/mpa/publications/preprints/pp2002/pp2002-en.html. 3.1
Google Scholar
Nakamura, T., “General relativistic collapse of axially symmetric stars leading to the formation of rotating black holes”, Prog. Theor. Phys., 65, 1876–1890, (1981). 1, 4.4
ADS
Article
Google Scholar
Nakamura, T., “General Relativistic Collapse of Accreting Neutron Stars with Rotation”, Prog. Theor. Phys., 70, 1144–1147, (1983). 4.4
ADS
Article
Google Scholar
NASA/ESA, “Laser Interferometer Space Antenna”, project homepage. URL (cited on 4 October 2002): http://lisa.jpl.nasa.gov. 1
Google Scholar
National Astronomical Observatory, “TAMA Project”, project homepage. URL (cited on 4 October 2002): http://tamago.mtk.nao.ac.jp/. 1
Google Scholar
Nazin, S.N., and Postnov, K.A., “High neutron star birth velocities and gravitational radiation during supernova explosions”, Astron. Astrophys., 317, L79–L81, (1997). Related online version (cited on 15 January 1997): http://arXiv.org/abs/astro-ph/9701073. 3.4.5
ADS
Google Scholar
New, K.C.B., Centrella, J.M., and Tohline, J.E., “Gravitational waves from long-duration simulations of the dynamical bar instability”, Phys. Rev. D, 62, 064019–1–16, (2000). Related online version (cited on 30 November 1999): http://arXiv.org/abs/astro-ph/9911525. 2.4.2
ADS
Article
Google Scholar
New, K.C.B., and Shapiro, S.L., “Evolution of differentially rotating supermassive stars to the onset of bar instability”, Astrophys. J., 548, 439–446, (2001). Related online version (cited on 9 October 2000): http://arXiv.org/abs/astro-ph/0010172. 2.4.2, 6.1
ADS
Article
Google Scholar
New, K.C.B., and Shapiro, S.L., “The formation of supermassive black holes and the evolution of supermassive stars”, Class. Quantum Grav., 18, 3965–3976, (2001). Related online version (cited on 6 September 2000): http://arXiv.org/abs/astro-ph/0009095. 6.1
ADS
MATH
Article
Google Scholar
Nomoto, K., and Kondo, Y., “Conditions for accretion-induced collapse of white dwarfs”, Astrophys. J. Lett., 367, L19–L22, (1991). 2.1, 1
ADS
Article
Google Scholar
Novikov, I.D., “Gravitational radiation from a star collapsing into a disk”, Sov. Astron., 19, 398, (1975). 3.4.1
ADS
Google Scholar
Oshea, B.W., Norman M., personal communication, (2005). 5.2
Ott, C.D., Burrows, A., Livne, E., and Walder, R., “Gravitational Waves from Axisymmetric, Rotating Stellar Core Collapse”, Astrophys. J., 600, 834–864, (2004). 3.4.2
ADS
Article
Google Scholar
Ou, S., Tohline, J.E., and Lindblom, L., “Supernovae and the nuclear equation of state at high densities”, Astrophys. J., 617, 490–499, (2004). 3.4.4, 6
ADS
Article
Google Scholar
Pickett, B.K., Durisen, R.H., and Davis, G., “The dynamic stability of rotating protostars and protostellar disks. I. The effects of the angular momentum distribution”, Astrophys. J., 458, 714–738, (1996). 2.3, 2.4.2
ADS
Article
Google Scholar
Piran, T., and Stark, R.F., “Numerical relativity, rotating gravitational collapse, and gravitational radiation”, in Centrella, J.M., ed., Dynamical Spacetimes and Numerical Relativity, Proceedings of a workshop held at Drexel University, October 7–11, 1985, 40–73, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1986). 3.4.1
Google Scholar
Podsiadlowski, P., Joss, P.C., and Hsu, J.J.L., “Presupernova evolution in massive interacting binaries”, Astrophys. J., 391, 246–264, (1992). 3.1
ADS
Article
Google Scholar
Popham, R., Woosley, S.E., and Fryer, C.L., “Hyperaccreting Black Holes and Gamma-Ray Bursts”, Astrophys. J., 518, 356–374, (1999). 4.1
ADS
Article
Google Scholar
Proga, D., MacFadyen, A.I., Armitage, P.J., and Begelman, M.C., “Axisymmetric Magnetohydrodynamic Simulations of the Collapsar Model for Gamma-Ray Bursts”, Astrophys. J. Lett., 599, L5–L8, (2003). 4.1
ADS
Article
Google Scholar
Rampp, M., and Janka, H.-T., “Radiation hydrodynamics with neutrinos: Variable Eddington factor method for core-collapse supernova simulations”, Astron. Astrophys., 396, 361–392, (2002). Related online version (cited on 7 March 2002): http://arXiv.org/abs/astro-ph/0203101. 3.1, 7
ADS
Article
Google Scholar
Rampp, M., Müller, E., and Ruffert, M., “Simulations of non-axisymmetric rotational core collapse”, Astron. Astrophys., 332, 969–983, (1998). Related online version (cited on 11 November 1997): http://arXiv.org/abs/astro-ph/9781112. 1, 3.4.3, 3.4.4, 7
ADS
Google Scholar
Rees, M.J., “Astrophysical Evidence for Black Holes”, in Wald, R.M., ed., Black Holes and Relativistic Stars, Proceedings of the Symposium dedicated to the memory of Subrahmanyan Chandrasekhar, held in Chicago, December 14–15, 1996, 79–101, (University of Chicago Press, Chicago, U.S.A.; London, U.K., 1998). 6.1
Google Scholar
Rezzolla, L., “Relativistic Astrophysics movies at SISSA”, personal homepage, SISSA / ISAS. URL (cited on 4 October 2002): http://www.sissa.it/~rezzolla/movies.html. 4.4
Google Scholar
Rezzolla, L., Lamb, F.K., Marković, D., and Shapiro, S.L., “Properties of r modes in rotating magnetic neutron stars. I. Kinematic secular effects and magnetic evolution”, Phys. Rev. D, 64, 104013–1–12, (2001). Related online version (cited on 17 July 2001): http://arXiv.org/abs/gr-qc/0107061. 2.3
ADS
Article
Google Scholar
Rezzolla, L., Lamb, F.L., Markovic, D., and Shapiro, S.L., “Properties of r modes in rotating magnetic neutron stars. II. Evolution of the r modes and stellar magnetic field”, Phys. Rev. D, 64, 104014–1–13, (2001). Related online version (cited on 17 July 2001): http://arXiv.org/abs/gr-qc/0107062. 2.3
ADS
Article
Google Scholar
Ruffini, R., and Wheeler, J.A., “Relativistic Cosmology from Space Platforms”, in Hardy, V., and H. Moore, H., eds., Proceedings of the Conference on Space Physics, 45–174, (ESRO, Paris, France, 1971). 1, 3.4.1
Google Scholar
Saenz, R.A., and Shapiro, S.L., “Gravitational radiation from stellar collapse — Ellipsoidal models”, Astrophys. J., 221, 286–303, (1978). 1, 3.4.1
ADS
Article
Google Scholar
Saenz, R.A., and Shapiro, S.L., “Gravitational and neutrion radiation from stellar core collapse — Improved ellipsoidal model calculations”, Astrophys. J., 229, 1107–1125, (1979). 3.4.1
ADS
Article
Google Scholar
Saenz, R.A., and Shapiro, S.L., “Gravitational radiation from stellar core collapse. III — Damped ellipsoidal oscillations”, Astrophys. J., 244, 1033–1038, (1981). 3.4.1
ADS
Article
Google Scholar
Saijo, M., “The Collapse of Differentially Rotating Supermassive Stars: Conformally Flat Simulations”, Astrophys. J., 615, 866–879, (2004). 6.4
ADS
Article
Google Scholar
Saijo, M., Baumgarte, T.W., Shapiro, S.L., and Shibata, M., “Collapse of a rotating supermassive star to a supermassive black hole: Post-Newtonian simulations”, Astrophys. J., 569, 349–361, (2002). Related online version (cited on 6 February 2002): http://arXiv.org/abs/astro-ph/0202112. 6.4, 19, 7
ADS
Article
Google Scholar
Saijo, M., Shibata, M., Baumgarte, T.W., and Shapiro, S.L., “Dynamical bar instability in rotating stars: effect of general relativity”, Astrophys. J., 548, 919–931, (2001). Related online version (cited on 10 October 2000): http://arXiv.org/abs/astro-ph/0010201. 2.3
ADS
Article
Google Scholar
Salpeter, E.E., “Energy and pressure of a zero-temperature plasma”, Astrophys. J., 134, 669–682, (1961). 2.4.2
ADS
MathSciNet
Article
Google Scholar
Sanders, R.H., “The effects of stellar collisions in dense stellar systems”, Astrophys. J., 162, 791–809, (1970). 6.1
ADS
Article
Google Scholar
Scheck, L., Plewa, T., Janka, H.-T., Kifonidis, K., and Müller, E., “Pulsar Recoil by Large-Scale Anisotropies in Supernova Explosions”, Phys. Rev. Lett., 92, 011103, (2004). 3.1, 3.4.5
ADS
Article
Google Scholar
Schenk, A.K., Arras, P., Flanagan, É.É., Teukolsky, S.A., and Wasserman, I., “Nonlinear mode coupling in rotating stars and the r-mode instability in neutron stars”, Phys. Rev. D, 65, 024001–1–43, (2002). Related online version (cited on 23 January 2001): http://arXiv.org/abs/gr-qc/0101092. 2.3
ADS
Article
Google Scholar
Schutz, B.F., “Gravitational Wave Astronomy”, Class. Quantum Grav., 16, A131–A156, (1999). Related online version (cited on 9 November 1999): http://arXiv.org/abs/gr-qc/9911034. 1
ADS
MathSciNet
MATH
Article
Google Scholar
Seidel, E., and Moore, T., “Gravitational radiation from realistic relativistic stars: Oddparity fluid perturbations”, Phys. Rev. D, 35, 2287–2296, (1987). 3.4.1
ADS
Article
Google Scholar
Seidel, E., and Moore, T., “Gravitational radiation from perturbations of stellar core collapse models”, in Evans, C.R., Finn, L.S., and Hobill, D.W., eds., Frontiers in Numerical Relativity, 146–162, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1988). 3.4.1
Google Scholar
Sekiguchi, Y., and Shibata, M., “New criterion for direct black hole formation in rapidly rotating stellar collapse”, Phys. Rev. D, 70, 084005, (2004). 4.4
ADS
MathSciNet
Article
Google Scholar
Shapiro, S.L., “Gravitational radiation from stellar collapse — The initial burst”, Astrophys. J., 214, 566–575, (1977). 3.4.1
ADS
Article
Google Scholar
Shapiro, S.L., and Lightman, A.P., “Rapidly rotating, post-Newtonian neutron stars”, Astrophys. J., 207, 263–278, (1976). 3.4.2
ADS
Article
Google Scholar
Shapiro, S.L., and Teukolsky, S.A., “Gravitational collapse of supermassive stars to black holes — Numerical solution of the Einstein equations”, Astrophys. J., 234, L177–L181, (1979). 6.4
ADS
Article
Google Scholar
Shapiro, S.L., and Teukolsky, S.A., Black Holes, White Dwarfs, and Neutron Stars, (Wiley, New York, U.S.A., 1983). 2.3, 6.1
Book
Google Scholar
Shibata, M., “Axisymmetric Simulations of Rotating Stellar Collapse in Full General Relativity — Criteria for Prompt Collapse to Black Holes -”, Prog. Theor. Phys., 104, 325–358, (2000). Related online version (cited on 19 July 2000): http://arXiv.org/abs/gr-qc/0007049. 4.4, 7
ADS
MathSciNet
Article
Google Scholar
Shibata, M., Baumgarte, T.W., and Shapiro, S.L., “The bar-mode instability in differentially rotating neutron stars: Simulations in full general relativity”, Astrophys. J., 542, 453–463, (2000). Related online version (cited on 18 May 2000): http://arXiv.org/abs/astro-ph/0005378. 2.3
ADS
Article
Google Scholar
Shibata, M., Baumgarte, T.W., and Shapiro, S.L., “Stability and collapse of rapidly rotating, supramassive neutron stars: 3D simulations in general relativity”, Phys. Rev. D, 61, 044012–1–11, (2000). Related online version (cited on 16 November 1999): http://arXiv.org/abs/astro-ph/9911308. 2.5
ADS
Article
Google Scholar
Shibata, M., and Karino, S., “Numerical evolution of secular bar-mode instability induced by gravitational radiation reaction in rapidly rotating neutron stars”, Phys. Rev. D, 70, 084022–1–15, (2004). 2.3
ADS
Article
Google Scholar
Shibata, M., Karino, S., and Eriguchi, Y., “Dynamical instability of differentially rotating stars”, Mon. Not. R. Astron. Soc., 334, L27–L32, (2002). Related online version (cited on 6 June 2002): http://arXiv.org/abs/gr-qc/0206002. 2.3
ADS
Article
Google Scholar
Shibata, M., Karino, S., and Eriguchi, Y., “Dynamical bar-mode instability of differentially rotating stars: effects of equations of state and velocity profiles”, Mon. Not. R. Astron. Soc., 343, 619–626, (2003). 2.3
ADS
Article
Google Scholar
Shibata, M., and Shapiro, S.L., “Collapse of a rotating supermassive star to a supermassive black hole: Fully relativistic simulations”, Astrophys. J. Lett., 572, L39–L43, (2002). URL (cited on 07 May 2002): http://arXiv.org/abs/astro-ph/0205091. 6.4
ADS
Article
Google Scholar
Shibata, M., Shapiro, S.L., and Uryu, K., “Equilibrium and stability of supermassive stars in binary systems”, Phys. Rev. D, 64, 24004–1–14, (2001). Related online version (cited on 25 April 2001): http://arXiv.org/abs/astro-ph/0104408. 6.4
ADS
Article
Google Scholar
Shibata, M., and Yu-ichirou, S., “Gravitational waves from axisymmetric rotating stellar core collapse to a neutron star in full general relativity”, Phys. Rev. D, 69, 084024–1–16, (2004). 3.4.4
ADS
MathSciNet
Article
Google Scholar
Smith, S., Houser, J.L., and Centrella, J.M., “Simulations of nonaxisymmetric instability in a rotating star: A comparison between Eulerian and Smooth Particle Hydrodynamics”, Astrophys. J., 458, 236–256, (1996). Related online version (cited on 9 October 1995): http://arXiv.org/abs/gr-qc/9510014. 2.4.2
ADS
Article
Google Scholar
Spruit, H.C., “Dynamo action by differential rotation in a stably stratified stellar interior”, Astron. Astrophys., 381, 923–932, (2002). 3.4.4
ADS
Article
Google Scholar
Stark, R.F., and Piran, T., “Gravitational wave emission from rotating gravitational collapse”, Phys. Rev. Lett., 55, 891–894, (1985). 1, 3.4.1, 6.4
ADS
Article
Google Scholar
Starrfield, S., Timmes, F.X., Hix, W.R., Sion, E.M., Sparks, W.M., and Dwyer, S.J., “Surface Hydrogen-burning Modeling of Supersoft X-ray Binaries: Are they Type Ia Supernovae Progenitors?”, Astrophys. J., 612, L53–L56, (2004). 2.2
ADS
Article
Google Scholar
Stergioulas, N., Apostolatos, T.A., and Font, J.A., “Non-linear pulsations in differentially rotating neutron stars: mass-shedding-induced damping and splitting of the fundamental mode”, Mon. Not. R. Astron. Soc., 352, 1089–1101, (2004). 2.3, 3.4.4
ADS
Article
Google Scholar
Stergioulas, N., and Font, J.A., “Nonlinear r-modes in rapidly rotating relativistic stars”, Phys. Rev. Lett., 86, 1148–1151, (2001). Related online version (cited on 31 July 2000): http://arXiv.org/abs/gr-qc/0007086. 2.3
ADS
Article
Google Scholar
Swesty, F.D., Lattimer, J.M., and Myra, E.S., “The role of the equation of state in the ‘prompt’ phase of type II supernovae”, Astrophys. J., 425, 195–204, (1994). 3.1
ADS
Article
Google Scholar
Symbalisty, E.M.D., “Magnetorotational iron core collapse”, Astrophys. J., 285, 729–746, (1984). 3.4.2
ADS
Article
Google Scholar
Tassoul, J.-L., Theory of Rotating Stars, (Princeton University Press, Princeton, U.S.A., 1978). 2.3, 3.4.4
Google Scholar
Thompson, T.A., Burrows, A., and Pinto, P.A., “Shock breakout in core-collapse supernovae and its neutrino signature”, Astrophys. J., 592, 434–456, (2003). URL (cited on 10 November 2002): http://arXiv.org/abs/astro-ph/0211194. 7
ADS
Article
Google Scholar
Thorne, K.S., “Multipole expansion of gravitational radiation”, Rev. Mod. Phys., 52, 299–340, (1980). 3.4.2, 3.4.5
ADS
MathSciNet
Article
Google Scholar
Thorne, K.S., “Gravitational Radiation”, in Hawking, S.W., and Israel, W., eds., Three Hundred Years of Gravitation, 330–458, (Cambridge University Press, Cambridge, U.K.; New York, U.S.A., 1987). 6.4
Google Scholar
Thorne, K.S., “Gravitational radiation”, in Böhringer, H., Morfill, G.E., and Trümper, J.E., eds., 17th Texas Symposium on Relativistic Astrophysics and Cosmology, vol. 759 of Annals of the New York Academy of Sciences, 127–152, (New York Academy of Sciences, New York, U.S.A., 1995). 6.4
ADS
Google Scholar
Thorne, K.S., “Gravitational Waves from Compact Bodies”, in van Paradijs, J., van den Heuvel, E.P.J., and Kuulkers, E., eds., Compact Stars in Binaries, Proceedings of the 165th Symposium of the International Astronomical Union, held in The Hague, the Netherlands, August 15–19, 1994, vol. 165 of IAU Symposia, 153–184, (Kluwer Academic Publishers, Dordrecht, Netherlands; Boston, U.S.A., 1996). Related online version (cited on 30 June 1995): http://arXiv.org/abs/gr-qc/9506084. 1
ADS
Article
Google Scholar
Thuan, T.X., and Ostriker, J.P., “Gravitational radiation from stellar collapse”, Astrophys. J. Lett., 191, L105–L107, (1974). 1, 3.4.1
ADS
Article
Google Scholar
Tohline, J.E., “The collapse of rotating stellar cores — Equilbria between white dwarf and neutron star densities”, Astrophys. J., 285, 721–728, (1984). 3.4.2
ADS
Article
Google Scholar
Tohline, J.E., and Hachisu, I., “The breakup of self-gravitating rings, tori, and thick accretion disks”, Astrophys. J., 361, 394–407, (1990). 2.3, 2.4.2
ADS
Article
Google Scholar
Toman, J., Imamura, J.N., Pickett, B.K., and Durisen, R.H., “Nonaxisymmetric dynamic instabilities of rotating polytropes. I. The Kelvin modes”, Astrophys. J., 497, 370–387, (1998). 2.3
ADS
Article
Google Scholar
Turner, M.S., and Wagoner, R.V., “Gravitational radiation from slowly-rotating supernovae — Preliminary results”, in Smarr, L.L., ed., Sources of Gravitational Radiation, Proceedings of the Battelle Seattle Workshop, July 24–August 4, 1978, 383–407, (Cambridge University Press, Cambridge, U.K., 1979). 3.4.1
Google Scholar
van Putten, M.H.P.M., “Gravitational Wave Frequencies and Energies in Hypernovae”, Astrophys. J., 583, 374–378, (2003). 4.3
ADS
Article
Google Scholar
van Putten, M.H.P.M., and Levinson, A., “Theory and astrophysical consequences of a magnetized torus around a rapidly rotating black hole”, Astrophys. J., 584, 937–953, (2003). URL (cited on 12 December 2002): http://arXiv.org/abs/astro-ph/0212297. 4.3, 4.4, 7
ADS
Article
Google Scholar
Villain, L., Pons, J.A., Cerdá-Durán, P., and Gourgoulhon, E., “Evolutionary sequences of rotating protoneutron stars”, Astron. Astrophys., 418, 283–294, (2004). 2.3
ADS
Article
Google Scholar
Walder, R., Burrows, A., Ott, C.D., Livne, E., Lichtenstadt, I., and Jarrah, M., “Anisotropies in the Neutrino Fluxes and Heating Profiles in Two-dimensional, Time-dependent, Multigroup Radiation Hydrodynamics Simulations of Rotating Core-Collapse Supernovae”, Astrophys. J., 626, 317–332, (2005). 3.1
ADS
Article
Google Scholar
Watts, A.L., Andersson, N., and Jones, D.I., “The Nature of Low T/|W| Dynamical Instabilities in Differentially Rotating Stars”, Astrophys. J. Lett., 618, L37–L40, (2005). 2.3
ADS
Article
Google Scholar
Wheeler, J.C., Yi, I., Höflich, P., and Wang, L., “Asymmetric Supernovae, Pulsars, Magnetars, and Gamma-Ray Bursts”, Astrophys. J., 537, 810–823, (2000). 3.1
ADS
Article
Google Scholar
Wickramasinghe, D.T., and Ferrario, L., “Magnetism in Isolated and Binary White Dwarfs”, Publ. Astron. Soc. Pac., 112, 873–924, (2000). 2.4.2
ADS
Article
Google Scholar
Wilson, J.R., “title missing”, in Centrella, J.M., LeBlanc, J.M., and Bowers, J.L., eds., Numerical Astrophysics, Proceedings of a symposium in honor of James R. Wilson, held at the University of Illinois in October, 1982, 422–434, (Jones and Barlett, Boston, U.S.A., 1985). 3.1
Wilson, J.R., and Mayle, R., “Convection in core collapse supernovae”, Phys. Rep., 163, 63–78, (1988). 3.1
ADS
Article
Google Scholar
Wilson, J.R., Mayle, R., Woosley, S.E., and Weaver, T.A., “Stellar Core Collapse and Supernovae”, Ann. N.Y. Acad. Sci., 470, 267–293, (1986). 3.1
ADS
Article
Google Scholar
Woodward, J., Tohline, J.E., and Hachisu, I., “The stability of thick, self-gravitating disks in protostellar systems”, Astrophys. J., 420, 247–267, (1994). 2.3, 2.4.2
ADS
Article
Google Scholar
Woosley, S.E., “Gamma-Ray Bursts From Stellar Mass Accretion Disks Around Black Holes”, Astrophys. J., 405, 273–277, (1993). 1
ADS
Article
Google Scholar
Woosley, S.E., “Gamma-ray bursts from stellar mass accretion disks around black holes”, Astrophys. J., 405, 273–277, (1993). 3.1, 4.1
ADS
Article
Google Scholar
Woosley, S.E., and Baron, E., “The collapse of white dwarfs to neutron stars”, Astrophys. J., 391, 228–235, (1992). 2.1, 2.4.1
ADS
Article
Google Scholar
Yamada, S., and Sato, K., “Gravitational radiation from rotational collapse of a supernova core”, Astrophys. J., 450, 245–252, (1995). 3.4.2
ADS
Article
Google Scholar
Yooun, S.C., and Langer, N., “Evolution of rapidly rotating metal-poor massive stars towards gamma-ray bursts”, Astron. Astrophys., 443, 643–648, (2005). 7
ADS
Article
Google Scholar
Young, P.A., Fryer, C.L., Hungerford, A., Arnett, D., Rockefeller, G., Timmes, F.X., Voit, B., Meakin, C., and Eriksen, K.A., “Constraints on the Progenitor of Cassiopeia A”, Astrophys. J., accepted, (2005). Related online version (cited on 21 December 2005): http://arXiv.org/abs/astro-ph/0511806. 3.1
Google Scholar
Yu-ichirou, S., and Shibata, M., “Axisymmetric collapse simulations of rotating massive stellar cores in full general relativity: Numerical study for prompt black hole formation”, Phys. Rev. D, 71, 084013–1–30, (2005). 4.4
ADS
Article
Google Scholar
Yungelson, L.R., and Livio, M., “Type Ia Supernovae: An Examination of Potential Progenitors and the Redshift Distribution”, Astrophys. J., 497, 168–177, (1998). Related online version (cited on 18 November 1997): http://arXiv.org/abs/astro-ph/9711201. 2.2
ADS
Article
Google Scholar
Zanotti, O., Rezzolla, L., and Font, J.A., “Quasi-periodic accretion and gravitational waves from oscillating “toroidal neutron stars” around a Schwarzschild black hole”, Mon. Not. R. Astron. Soc., 341, 832–848, (2003). 4.3, 4.4
ADS
Article
Google Scholar
Zel’dovich, Y.B., and Novikov, I.D., Relativistic Astrophysics, vol. 1, (University of Chicago Press, Chicago, U.S.A., 1971). 6.1
Zwerger, T., and Müller, E., “Dynamics and gravitational wave signature of axisymmetric rotational core collapse”, Astron. Astrophys., 320, 209–227, (1997). 1, 2.4.1, 2.4.2, 3.4.2, 3, 3.4.2, 4, 5, 3.4.2, 3.4.3, 3.4.4, 3.4.4, 3.4.5
ADS
Google Scholar