Skip to main content

Gravitational Waves from Core-Collapse Supernovae

  • Living reference work entry
  • First Online:
Handbook of Gravitational Wave Astronomy

Abstract

We summarize our current understanding of gravitational wave emission from core-collapse supernovae. We review the established results from multi-dimensional simulations and, wherever possible, provide back-of-the-envelope calculations to highlight the underlying physical principles. The gravitational waves are predominantly emitted by protoneutron star oscillations. In slowly rotating cases, which represent the most common type of the supernovae, the oscillations are excited by multi-dimensional hydrodynamic instabilities, while in rare rapidly rotating cases, the protoneutron star is born with an oblate deformation due to the centrifugal force. The gravitational wave signal may be marginally visible with current detectors for a source within our galaxy, while future third-generation instruments will enable more robust and detailed observations. The rapidly rotating models that develop non-axisymmetric instabilities may be visible up to a megaparsec distance with the third-generation detectors. Finally, we discuss strategies for multi-messenger observations of supernovae.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Shapiro LS, Teukolsky SA (1983) Black holes, white dwarfs and neutron stars. Wiley, New York

    Book  Google Scholar 

  2. Alsabti AW, Murdin P (2017) Handbook of supernovae. https://doi.org/10.1007/978-3-319-21846-5

  3. Janka HT (2012) Ann Rev Nuc Par Sci 62:407. https://doi.org/10.1146/annurev-nucl-102711-094901

    Article  ADS  Google Scholar 

  4. Müller B (2020) Living Rev Comput Astrophys 6(1):3. https://doi.org/10.1007/s41115-020-0008-5

    Article  ADS  Google Scholar 

  5. Blondin JM, Mezzacappa A, DeMarino C (2003) Astrophys J 584:971. https://doi.org/10.1086/345812

    Article  ADS  Google Scholar 

  6. Burrows A, Radice D, Vartanyan D, Nagakura H, Skinner MA, Dolence JC (2020) Mon Not R Astron Soc 491(2):2715. https://doi.org/10.1093/mnras/stz3223

    Article  ADS  Google Scholar 

  7. Kotake K, Kuroda T (2017) Gravitational waves from core-collapse supernovae, p 1671. https://doi.org/10.1007/978-3-319-21846-5_9

  8. Richers S, Ott CD, Abdikamalov E, O’Connor E, Sullivan C (2017) Phys Rev D 95(6):063019. https://doi.org/10.1103/PhysRevD.95.063019

    Article  ADS  Google Scholar 

  9. Kotake K (2013) Comptes Rendus Physique 14(4):318. https://doi.org/10.1016/j.crhy.2013.01.008

    Article  ADS  Google Scholar 

  10. Murphy JW, Ott CD, Burrows A (2009) Astrophys J 707(2):1173. https://doi.org/10.1088/0004-637X/707/2/1173

    Article  ADS  Google Scholar 

  11. Radice D, Morozova V, Burrows A, Vartanyan D, Nagakura H (2019) Astrophys J Lett 876(1):L9. https://doi.org/10.3847/2041-8213/ab191a

    Article  ADS  Google Scholar 

  12. Deheuvels S, Doğan G, Goupil MJ, Appourchaux T, Benomar O, Bruntt H, Campante TL, Casagrande L, Ceillier T, Davies GR, De Cat P, Fu JN, García RA, Lobel A, Mosser B, Reese DR, Regulo C, Schou J, Stahn T, Thygesen AO, Yang XH, Chaplin WJ, Christensen-Dalsgaard J, Eggenberger P, Gizon L, Mathis S, Molenda-Żakowicz J, Pinsonneault M (2014) Astron Astrophys 564:A27. https://doi.org/10.1051/0004-6361/201322779

    Article  Google Scholar 

  13. Yakunin KN, Marronetti P, Mezzacappa A, Bruenn SW, Lee CT, Chertkow MA, Hix WR, Blondin JM, Lentz EJ, Messer OEB, Yoshida S (2010) Class Quantum Gravity 27(19):194005. https://doi.org/10.1088/0264-9381/27/19/194005

    Article  ADS  Google Scholar 

  14. Müller B, Janka HT, Marek A (2013) Astrophys J 766(1):43. https://doi.org/10.1088/0004-637X/766/1/43

    Article  ADS  Google Scholar 

  15. Andresen H, Müller B, Müller E, Janka HT (2017) Mon Not R Astron Soc 468(2):2032. https://doi.org/10.1093/mnras/stx618

    Article  ADS  Google Scholar 

  16. Nagakura H, Burrows A, Radice D, Vartanyan D (2020) Mon Not R Astron Soc 492(4):5764. https://doi.org/10.1093/mnras/staa261

    Article  ADS  Google Scholar 

  17. Mezzacappa A, Marronetti P, Landfield RE, Lentz EJ, Yakunin KN, Bruenn SW, Hix WR, Messer OEB, Endeve E, Blondin JM, Harris JA (2020) Phys Rev D 102(2):023027. https://doi.org/10.1103/PhysRevD.102.023027

    Article  ADS  Google Scholar 

  18. Powell J, Müller B (2019) Mon Not R Astron Soc 487(1):1178. https://doi.org/10.1093/mnras/stz1304

    Article  ADS  Google Scholar 

  19. Foglizzo T, Scheck L, Janka HT (2006) Astrophys J 652:1436. https://doi.org/10.1086/508443

    Article  ADS  Google Scholar 

  20. Foglizzo T, Galletti P, Scheck L, Janka HT (2007) Astrophys J 654:1006. https://doi.org/10.1086/509612

    Article  ADS  Google Scholar 

  21. Janka HT (2001) Astron Astrophys 368:527. https://doi.org/10.1051/0004-6361:20010012

    Article  ADS  Google Scholar 

  22. Friedman JL, Schutz BF (1978) Astrophys J 221:937. https://doi.org/10.1086/156098

    Article  ADS  MathSciNet  Google Scholar 

  23. Kokkotas KD, Schmidt BG (1999) Living Rev Relativ 2(1):2. https://doi.org/10.12942/lrr-1999-2

    Article  ADS  Google Scholar 

  24. Bruenn SW, Dineva T (1996) Astrophys J Lett 458:L71. https://doi.org/10.1086/309921

    Article  ADS  Google Scholar 

  25. Ferrari V, Miniutti G, Pons JA (2003) Mon Not R Astron Soc 342(2):629. https://doi.org/10.1046/j.1365-8711.2003.06580.x

    Article  ADS  Google Scholar 

  26. Sotani H, Takiwaki T (2016) Phys Rev D 94(4):044043. https://doi.org/10.1103/PhysRevD.94.044043

    Article  ADS  Google Scholar 

  27. Torres-Forné A, Cerdá-Durán P, Passamonti A, Obergaulinger M, Font JA (2019) Mon Not R Astron Soc 482(3):3967. https://doi.org/10.1093/mnras/sty2854

    Article  ADS  Google Scholar 

  28. Powell J, Müller B (2020) Mon Not R Astron Soc 494(4):4665. https://doi.org/10.1093/mnras/staa1048

    Article  ADS  Google Scholar 

  29. Sotani H, Takiwaki T (2020) Phys Rev D 102(2):023028. https://doi.org/10.1103/PhysRevD.102.023028

    Article  ADS  Google Scholar 

  30. Saio H (1993) Astrophys Space Sci 210(1–2):61. https://doi.org/10.1007/BF00657873

    Article  ADS  Google Scholar 

  31. Sotani H, Kuroda T, Takiwaki T, Kotake K (2019) Phys Rev D 99(12):123024. https://doi.org/10.1103/PhysRevD.99.123024

    Article  ADS  Google Scholar 

  32. Gossan SE, Fuller J, Roberts LF (2020) Mon Not R Astron Soc 491(4):5376. https://doi.org/10.1093/mnras/stz3243

    Article  ADS  Google Scholar 

  33. Morozova V, Radice D, Burrows A, Vartanyan D (2018) Astrophys J 861(1):10. https://doi.org/10.3847/1538-4357/aac5f1

    Article  ADS  Google Scholar 

  34. Abdikamalov E, Gossan S, DeMaio AM, Ott CD (2014) Phys Rev D 90(4):044001. https://doi.org/10.1103/PhysRevD.90.044001

    Article  ADS  Google Scholar 

  35. Ott CD, Abdikamalov E, O’Connor E, Reisswig C, Haas R, Kalmus P, Drasco S, Burrows A, Schnetter E (2012) Phys Rev D 86(2):024026. https://doi.org/10.1103/PhysRevD.86.024026

    Article  ADS  Google Scholar 

  36. Ott CD (2009) Class Quantum Gravity 26(6):063001. https://doi.org/10.1088/0264-9381/26/6/063001

    Article  ADS  Google Scholar 

  37. Fuller J, Klion H, Abdikamalov E, Ott CD (2015) Mon Not R Astron Soc 450(1):414. https://doi.org/10.1093/mnras/stv698

    Article  ADS  Google Scholar 

  38. Gossan SE, Sutton P, Stuver A, Zanolin M, Gill K, Ott CD (2016) Phys Rev D 93(4):042002. https://doi.org/10.1103/PhysRevD.93.042002

    Article  ADS  Google Scholar 

  39. Paschalidis V, Stergioulas N (2017) Living Rev Relativ 20(1):7. https://doi.org/10.1007/s41114-017-0008-x

    Article  ADS  Google Scholar 

  40. Shibata M, Baumgarte TW, Shapiro SL (2000) Astrophys J 542(1):453. https://doi.org/10.1086/309525

    Article  ADS  Google Scholar 

  41. Centrella JM, New KCB, Lowe LL, Brown JD (2001) Astrophys J Lett 550(2):L193. https://doi.org/10.1086/319634

    Article  ADS  Google Scholar 

  42. Fryer CL, Holz DE, Hughes SA (2002) Astrophys J 565(1):430. https://doi.org/10.1086/324034

    Article  ADS  Google Scholar 

  43. Dimmelmeier H, Ott CD, Marek A, Janka HT (2008) Phys Rev D 78(6):064056. https://doi.org/10.1103/PhysRevD.78.064056

    Article  ADS  Google Scholar 

  44. Watts AL, Andersson N, Jones DI (2005) Astrophys J Lett 618(1):L37. https://doi.org/10.1086/427653

    Article  ADS  Google Scholar 

  45. Shibagaki S, Kuroda T, Kotake K, Takiwaki T (2020) Mon Not R Astron Soc 493(1):L138. https://doi.org/10.1093/mnrasl/slaa021

    Article  ADS  Google Scholar 

  46. Nakamura K, Horiuchi S, Tanaka M, Hayama K, Takiwaki T, Kotake K (2016) Mon Not R Astron Soc 461(3):3296. https://doi.org/10.1093/mnras/stw1453

    Article  ADS  Google Scholar 

  47. Cerdá-Durán P, DeBrye N, Aloy MA, Font JA, Obergaulinger M (2013) Astrophys J Lett 779(2):L18. https://doi.org/10.1088/2041-8205/779/2/L18

    Article  ADS  Google Scholar 

  48. Mueller E, Janka HT (1997) Astron Astrophys 317:140

    ADS  Google Scholar 

  49. Abdikamalov EB, Dimmelmeier H, Rezzolla L, Miller JC (2009) Mon Not R Astron Soc 392(1):52. https://doi.org/10.1111/j.1365-2966.2008.14056.x

    Article  ADS  Google Scholar 

  50. Zha S, O’Connor EP, Chu Mc, Lin LM, Couch SM (2020) Phys Rev Lett 125(5):051102. https://doi.org/10.1103/PhysRevLett.125.051102

  51. Matzner CD, McKee CF (1999) Astrophys J 510:379. https://doi.org/10.1086/306571

    Article  ADS  Google Scholar 

  52. Waxman E, Katz B (2016). https://doi.org/10.1007/978-3-319-20794-0_33-1

    Google Scholar 

  53. Odrzywolek A, Misiaszek M, Kutschera M (2004) Astropart Phys 21:303. https://doi.org/10.1016/j.astropartphys.2004.02.002

    Article  ADS  Google Scholar 

  54. Aasi J et al (2015) Class Quant Grav 32:074001. https://doi.org/10.1088/0264-9381/32/7/074001

    Article  ADS  Google Scholar 

  55. Acernese F et al (2015) Class Quant Grav 32(2):024001. https://doi.org/10.1088/0264-9381/32/2/024001

    Article  ADS  Google Scholar 

  56. Abbott B et al (2019) Phys Rev D 100(2):024017. https://doi.org/10.1103/PhysRevD.100.024017

    Article  ADS  Google Scholar 

  57. Klimenko S et al (2016) Phys Rev D 93(4):042004. https://doi.org/10.1103/PhysRevD.93.042004

    Article  ADS  Google Scholar 

  58. Pagliaroli G, Vissani F, Costantini M, Ianni A (2009) Astropart Phys 31:163. https://doi.org/10.1016/j.astropartphys.2008.12.010

    Article  ADS  Google Scholar 

  59. Scholberg K (2012) Ann Rev Nucl Part Sci 62:81. https://doi.org/10.1146/annurev-nucl-102711-095006

    Article  ADS  Google Scholar 

  60. Casentini C, Pagliaroli G, Vigorito C, Fafone V (2018) JCAP 08:010. https://doi.org/10.1088/1475-7516/2018/08/010

    Article  ADS  Google Scholar 

  61. Antonioli P et al (2004) New J Phys 6:114. https://doi.org/10.1088/1367-2630/6/1/114

    Article  Google Scholar 

  62. Asakura K et al (2016) Astrophys J 818(1):91. https://doi.org/10.3847/0004-637X/818/1/91

    Article  ADS  Google Scholar 

  63. An F et al (2016) J Phys G43(3):030401. https://doi.org/10.1088/0954-3899/43/3/030401

    Article  ADS  Google Scholar 

  64. Ankowski A et al (2016) In: Supernova physics at DUNE

    Google Scholar 

  65. Abbott B et al (2020) Phys Rev D 101(8):084002. https://doi.org/10.1103/PhysRevD.101.084002

    Article  ADS  Google Scholar 

  66. Pagliaroli G, Vissani F, Coccia E, Fulgione W (2009) Phys Rev Lett 103:031102. https://doi.org/10.1103/PhysRevLett.103.031102

    Article  ADS  Google Scholar 

  67. Leonor I et al (2010) Class Quant Grav 27:084019. https://doi.org/10.1088/0264-9381/27/8/084019

    Article  ADS  Google Scholar 

  68. Kuroda T, Kotake K, Hayama K, Takiwaki T (2017) Astrophys J 851(1):62. https://doi.org/10.3847/1538-4357/aa988d

    Article  ADS  Google Scholar 

  69. Gallo Rosso A, Vissani F, Volpe MC (2017) JCAP 11:036. https://doi.org/10.1088/1475-7516/2017/11/036

    Article  ADS  Google Scholar 

  70. Warren ML, Couch SM, O’Connor EP, Morozova V (2020) Astrophys J 898(2):139. https://doi.org/10.3847/1538-4357/ab97b7

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank Adam Burrows and Kei Kotake for helpful comments. The work of G.P. was partially supported by the research grant number 2017W4HA7S “NAT-NET: Neutrino and Astroparticle Theory Network” under the program PRIN 2017 funded by the Italian Ministero dell’Istruzione, dell’Universita’ e della Ricerca (MIUR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernazar Abdikamalov .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Abdikamalov, E., Pagliaroli, G., Radice, D. (2021). Gravitational Waves from Core-Collapse Supernovae. In: Bambi, C., Katsanevas, S., Kokkotas, K.D. (eds) Handbook of Gravitational Wave Astronomy. Springer, Singapore. https://doi.org/10.1007/978-981-15-4702-7_21-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-4702-7_21-1

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-4702-7

  • Online ISBN: 978-981-15-4702-7

  • eBook Packages: Springer Reference Physics and AstronomyReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics