Skip to main content

Advertisement

Log in

Three-dimensional adipose tissue model using low shear bioreactors

  • Articles
  • Cell and Tissue Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Presented here are techniques developed to culture and analyze three-dimensional (3-D) adipose-like tissues as a means to bridge the gap between current liminations in culturing preadipocytes (PAs) and that of providing clinically relevant volumes of adipose tissue useful for soft tissue engineering stratgies in reconstructive surgery. Pilot studies were performed to determine techniques to visualize and analyze 3-D PA-like tissues as well as to develop successful strategies to culture 3T3-L1 cells in a high aspect ratio vessel rotating-wall bioreactor both with and without microcarriers. Next, a series of cultures were accessed to verify these techniques as well as to compare the culture of the cells with and without microcarriers. Finally, a perfused rotating-wall bioreactor was used to further investigate the nature of the aggregates or tissues being generated. The aggregates that formed in the perfused system were analyzed via histology and in vivo animal studies. PA-like tissues as large as 4–5 mm in diameter without microcarriers that were capable of lipid-loading and composed of viable cells were achieved. We have successfully demonstrated that large tissue aggregates can be grown in bioreactor culture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alhadlaq, A.; Tang, M.; Mao, J. J. Engineered adipose tissue from human mesenchymal stem cells maintains predefined shape and dimension: implications in soft tissue augmentation and reconstruction. Tissue Eng. 11:556–566; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Anonymous. Microcarrier cell culture: principles and methods. Uppsala, Sweden: Pharmacia Fine Chemicals; 1981.

  • Botchwey, E. A.; Pollack, S. R.; Levine, E. M.; Laurencin, C. T. Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system. J. Biomed. Mater. Res. 55:242–253; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Brey, E. M.; King, T. W.; Johnston, C.; McIntire, L. V.; Reece, G. P.; Patrick, Jr., C. W. A technique for quantitative 3-D analysis of microvascular networks. Microvasc. Res. 63:279–294; 2002.

    Article  PubMed  Google Scholar 

  • Cho, S. W.; Kim, S. S.; Rhie, J. W.; Cho, H. M.; Cha, Y. C.; Kim, B. S.; Engineering of volume-stable adipose tissues. Biomaterials 26:3577–3585; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y. S.; Park, S. N.; Suh, H. Adipose tissue engineering using mesenchymal stem cells attached to injectable PLGA spheres. Biomaterials 26:5855–5863; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Dutt, K.; Harris-Hocker, S.; Ellerson, D.; Layne, D.; Kumar, R.; Hunt, R. Generation of 3-D retina-like structures from a human retinal cell line in a NASA bioreactor. Cell Transplant. 12:717–731; 2003.

    PubMed  Google Scholar 

  • Fischbach, C.; Sprub, T.; Weiser, B.; Neubauer, M.; Becker, C.; Hocker, M.; Gopferich, A.; Blunk, T. Generation of mature fat pads in vitro and in vivo 3-D long-term culture of 3T3-L1 preadipocytes. Exp. Cell Res. 300:54–64; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Freed, L. E.; Pellis, N.; Sealby, N.; De Luis, J.; Preda, C.; Bordonaro, J.; Vunjak-Novakovic, G.: Microgravity cultivation of cells and tissues. Gravit. Space Biol. Bull. 12:57–66; 1999.

    PubMed  CAS  Google Scholar 

  • Gonda, S. R.; Wu, H.; Pingerelli, P. L.; Glickman, B. W. Three-dimensional transgenic cell model to quantify genotoxic effects of space enviroment. Adv. Space Res. 27:421–430; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Green, H.; Meuth, M. An established pre-adipose cell line and its differentiation in culture. Cell 3:127–133; 1974.

    Article  PubMed  CAS  Google Scholar 

  • Hong, L.; Peptan, I.; Clark, P.; Mao, J. J. Ex vivo adipose engineering by human marrow stromal cell seeded gelatin sponge. Ann. Biomed. Eng. 33:511–517; 2005.

    Article  PubMed  Google Scholar 

  • Jessup, J. M.; Goodwin, T. J.: Spaulding, G. Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. J. Cell. Biochem. 51:290–300; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Kang, X.; Xie, Y.; Kniss, D. A. Adipose tissue model using three-dimensional cultivation of preadipocytes seeded onto fibrous polymer scaffolds. Tissue Eng. 11:458–468; 2005.

    Article  PubMed  CAS  Google Scholar 

  • Khaoustov, V. I.; Darlington, G. S.; Soriano, H. E.; Krishnan, B.; Risin, D.; Pellis, N.; Yoffe, B. Induction of three-dimensional assembly of human liver cells by simulated microgravity. In Vitro Cell. Dev. Biol. 35A:501–509; 1999.

    Google Scholar 

  • Klement, B. J.; Spooner, B. S. Utilization of microgravity bioreactors for differentiation of mammalian skeletal tissue. J. Cell. Biochem. 51:252–256; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Lappa, M. Organic tissues in rotating bioreactors: fluid-mechanical aspects, dynamic growth models, and morphological evolution. Biotechnol. Bioeng. 84:518–532; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Martin, I.; Wendt, D.; Heberer, M. The role of bioreactors in tissue engineering. Trends Biotechnol. 22:80–86; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Mitteregger, G.; Vogt, E.; Rossmanith, D.; Falkenhagen, D. Rotary cell culture system (RCCS): a new method for cultivating hepatocytes on microcarriers. Int. J. Artif. Organs 22:816–822; 1999.

    PubMed  CAS  Google Scholar 

  • Molnar, G.; Schroedl, N. A.; Gonda, S. R.; Hartzell, C. R. Skeletal muscle satellite cells cultured in simulated microgravity. In Vitro Cell. Dev. Biol. 33A:386–391; 1997.

    Google Scholar 

  • Nakamura, K.; Kuga, H.; Morisake, T., et al. Simulated microgravity culture system for a 3-D carcinoma tissue model. BioTechniques 33:1068–1076; 2002.

    PubMed  CAS  Google Scholar 

  • Obradovic, B.; Carrier, R. L.; Vunjak-Novakovic, G.; Freed L. E. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63:197–205; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, Jr., C. W.; Chauvin, P. B.; Hobley, J.; Reece, G. P. Preadipocyte seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng. 5:139–151; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Patrick, Jr., C. W.; Adipose Tissue Engineering: the future of breast and soft tissue reconstruction following tumor resection. Semin. Surg. Oncol. 19:302–311; 2000.

    Article  PubMed  Google Scholar 

  • Patrick, Jr., C. W.; Zheng, B.; Johnston, C.; Reece, G. P. Long-term implantation of preadipocyte-seeded PLGA scaffolds. Tissue Eng. 8:283–293; 2002.

    Article  PubMed  CAS  Google Scholar 

  • Prewett, T. L.; Goodwin, T. J.; Spaulding, G. F. Three-dimensional modeling of T-cell human bladder carcinoma cell line: a new simulated microgravity culture vessel. J. Tissue Cult. Methods, 29–36; 1993.

  • Schwarz, R. P.; Goodwin, T. J.; Wolf, D. A. Cell culture for three-dimensional modeling in rotating-wall vessels: an application of simulated microgravity. J. Tissue Cult. Methods 14:51–58; 1992.

    Article  PubMed  CAS  Google Scholar 

  • Unsworth, B. R.; Lelkes, P. I. Growing tissues in microgravity. Nat. Med. 4:901–907; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Viravaidya, K.; Shuler, M. Incorporation or 3T3-L1 cells to mimic bioaccumulation in a microscale cell culture analog device for toxicity studies. Biotechnol. Prog. 20:590–597; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Vunjak-Novakovic, G. The fundamentals of tissue engineering: scaffolds and bioreactors. In: Tissue Engineering of Cartilage and Bone (A.I. Caplan, ed), London: John Wiley, pp. 34–51 (2003).

    Chapter  Google Scholar 

  • Vunjak-Novakovic, G.; Searby, N.; De Luis, J.; Freed, L. E. Microgravity studies of cells and tissues. Ann. NY Acad. Sci. 974:504–517; 2002.

    Article  PubMed  Google Scholar 

  • Zuk, P. A.; Zhu, M.; Mizuno, H., et al., Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–28; 2001.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles W. Patrick Jr..

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frye, C.A., Patrick, C.W. Three-dimensional adipose tissue model using low shear bioreactors. In Vitro Cell.Dev.Biol.-Animal 42, 109–114 (2006). https://doi.org/10.1290/0509055.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/0509055.1

Key words

Navigation