Skip to main content

Advertisement

Log in

Metastatic Colorectal Cancer Treated with Combined Liver Resection, Cytoreductive Surgery, and Hyperthermic Intraperitoneal Chemotherapy (HIPEC): Predictive Factors for Early Recurrence

  • Peritoneal Surface Malignancy
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Selection of colorectal cancer patients with concomitant peritoneal (PM) and liver metastases (LM) for radical treatment with cytoreductive surgery (CRS), including liver resection and hyperthermic intraperitoneal chemotherapy (HIPEC), needs improvement. This retrospective, monocentric study was designed to evaluate the predictive factors for early recurrence, disease-free survival (DFS), and overall survival (OS) in such patients treated in a referral center.

Methods

Consecutive colorectal cancer patients with concomitant LM and PM treated with curative intent with perioperative systemic chemotherapy, simultaneous complete CRS, liver resection, and HIPEC in 2011–2022 were included. Clinical, radiological (before and after preoperative chemotherapy), surgical, and pathological data were investigated, along with long-term oncologic outcomes. A multivariate analysis was performed to identify predictive factors associated with early recurrence (diagnosed <6 months after surgery), DFS, and OS.

Results

Of more than 61 patients included, 31 (47.1%) had pT4 and 27 (40.9%) had pN2 primary tumors. Before preoperative chemotherapy, the median number of LM was 2 (1–4). The median surgical PCI (peritoneal carcinomatosis index) was 3 (5–8.5). The median DFS and OS were 8.15 (95% confidence interval [CI] 5.5–10.1) and 34.1 months (95% CI 28.1–53.5), respectively. In multivariate analysis, pT4 (odds ratio [OR] = 4.14 [1.2–16.78], p = 0.032]) and pN2 (OR = 3.7 [1.08–13.86], p = 0.042) status were independently associated with an early recurrence, whereas retroperitoneal lymph node metastasis (hazard ratio [HR] = 39 [8.67–175.44], p < 0.001) was independently associated with poor OS.

Conclusions

In colorectal cancer patients with concomitant PM and LM, an advanced primary tumor (pT4 and/or pN2) was associated with a higher risk of early recurrence following a radical multimodal treatment, whereas RLN metastases was strongly detrimental for OS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  PubMed  Google Scholar 

  2. Manfredi S, Lepage C, Hatem C, Coatmeur O, Faivre J, Bouvier A-M. Epidemiology and management of liver metastases from colorectal cancer. Ann Surg. 2006;244(2):254–9.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Koppe MJ, Boerman OC, Oyen WJG, Bleichrodt RP. Peritoneal carcinomatosis of colorectal origin: Incidence and current treatment strategies. Ann Surg. 2006;243(2):212–22.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Franko J, Shi Q, Meyers JP, et al. Prognosis of patients with peritoneal metastatic colorectal cancer given systemic therapy: an analysis of individual patient data from prospective randomised trials from the Analysis and Research in Cancers of the Digestive System (ARCAD) database. Lancet Oncol. 2016;17(12):1709–19.

    Article  PubMed  Google Scholar 

  5. Cremolini C, Antoniotti C, Stein A, et al. Individual patient data meta-analysis of FOLFOXIRI plus bevacizumab versus doublets plus bevacizumab as initial therapy of unresectable metastatic colorectal cancer. J Clin Oncol. 2020;38(28):3314–24.

    Article  CAS  Google Scholar 

  6. Molla M, Fernandez-Plana J, Albiol S, et al. Limited liver or lung colorectal cancer metastases. Systemic treatment, surgery, ablation or SBRT. J Clin Med. 2021;10(10):2131.

  7. Rijsemus CJV, Kok NFM, Aalbers AGJ, et al. Diagnostic performance of MRI for staging peritoneal metastases in patients with colorectal cancer after neoadjuvant chemotherapy. Eur J Radiol. 2022;149:110225.

    Article  CAS  PubMed  Google Scholar 

  8. Kambakamba P, Hoti E, Cremen S, Braun F, Becker T, Linecker M. The evolution of surgery for colorectal liver metastases: A persistent challenge to improve survival. Surgery. 2021;170(6):1732–40.

    Article  PubMed  Google Scholar 

  9. Hübner M, Kusamura S, Villeneuve L, et al. Guidelines for perioperative care in cytoreductive surgery (CRS) with or without hyperthermic IntraPEritoneal chemotherapy (HIPEC): Enhanced Recovery After Surgery (ERAS®) Society Recommendations — Part II: Postoperative management and special considerations. Eur J Surg Oncol. 2020;46(12):2311–23.

    Article  PubMed  Google Scholar 

  10. Kotani D, Oki E, Nakamura Y, et al. Molecular residual disease and efficacy of adjuvant chemotherapy in patients with colorectal cancer. Nat Med. 2023;29(1):127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Buisman FE, Filipe WF, Galjart B, et al. Adjuvant intra-arterial chemotherapy for patients with resected colorectal liver metastases: a systematic review and meta-analysis. HPB. 2022;24(3):299–308.

    Article  PubMed  Google Scholar 

  12. Arjona-Sánchez A, Espinosa-Redondo E, Gutiérrez-Calvo A, et al. Efficacy and safety of intraoperative hyperthermic intraperitoneal chemotherapy for locally advanced colon cancer: A phase 3 randomized clinical trial. JAMA Surg [Internet] 2023 [cited 2023 May 16];Available from: https://jamanetwork.com/journals/jamasurgery/fullarticle/2804110

  13. Van Cutsem E, Cervantes A, Adam R, et al. ESMO consensus guidelines for the management of patients with metastatic colorectal cancer. Ann Oncol. 2016;27(8):1386–422.

    Article  PubMed  Google Scholar 

  14. Di Carlo S, Cavallaro G, La Rovere F, et al. Synchronous liver and peritoneal metastases from colorectal cancer: Is cytoreductive surgery and hyperthermic intraperitoneal chemotherapy combined with liver resection a feasible option? Front Surg. 2022;9:1006591.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Jayne DG, Fook S, Loi C, Seow-Choen F. Peritoneal carcinomatosis from colorectal cancer. Br J Surg. 2002;89(12):1545–50.

    Article  CAS  PubMed  Google Scholar 

  16. Glehen O, Kwiatkowski F, Sugarbaker PH, et al. Cytoreductive surgery combined with perioperative intraperitoneal chemotherapy for the management of peritoneal carcinomatosis from colorectal cancer: A Multi-Institutional Study. J Clin Oncol. 2004;22(16):3284–92.

    Article  CAS  PubMed  Google Scholar 

  17. Kianmanesh R, Scaringi S, Sabate J-M, et al. Iterative cytoreductive surgery associated with hyperthermic intraperitoneal chemotherapy for treatment of peritoneal carcinomatosis of colorectal origin with or without liver metastases. Ann Surg. 2007;245(4):597–603.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Alzahrani N, Ung L, Valle SJ, Liauw W, Morris DL. Synchronous liver resection with cytoreductive surgery for the treatment of liver and peritoneal metastases from colon cancer: results from an Australian centre: Synchronous liver resection with CRS. ANZ J Surg. 2017;87(11):E167–72.

    Article  PubMed  Google Scholar 

  19. Pinto A, Hobeika C, Philis A, Kirzin S, Carrère N, Ghouti L. Synchronous liver metastases and peritoneal carcinomatosis from colorectal cancer: different strategies for curative treatment? Langenbecks Arch Surg. 2019;404(4):477–88.

    Article  PubMed  Google Scholar 

  20. de Cuba EMV, Kwakman R, Knol DL, Bonjer HJ, Meijer GA, te Velde EA. Cytoreductive surgery and HIPEC for peritoneal metastases combined with curative treatment of colorectal liver metastases. Cancer Treat Rev. 2013;39(4):321–7.

    Article  PubMed  Google Scholar 

  21. Flood MP, Das AA, Soucisse ML, et al. Synchronous liver resection, cytoreductive surgery, and hyperthermic intraperitoneal chemotherapy for colorectal liver and peritoneal metastases: A systematic review and meta-analysis. Dis Colon Rectum. 2021;64(6):754–64.

    Article  PubMed  Google Scholar 

  22. Zou Y, Chen X, Zhang X, et al. Clinical outcomes of curative treatment for colorectal liver metastases combined with cytoreductive surgery and intraperitoneal chemotherapy for peritoneal metastases: a systematic review and meta-analysis of current evidence. Int J Hyperthermia. 2020;37(1):944–54.

    Article  PubMed  Google Scholar 

  23. Andersen BL, Shapiro CL, Farrar WB, Crespin T, Wells-DiGregorio S. Psychological responses to cancer recurrence: A controlled prospective study. Cancer. 2005;104(7):1540–7.

    Article  PubMed  Google Scholar 

  24. Navez J, Remue C, Leonard D, et al. Surgical treatment of colorectal cancer with peritoneal and liver metastases using combined liver and cytoreductive surgery and hyperthermic intraperitoneal chemotherapy: Report from a single-centre experience. Ann Surg Oncol. 2016;23(S5):666–73.

    Article  PubMed  Google Scholar 

  25. Bacalbasa N, Balescu I, Cretoiu D, et al. Determination of whether HIPEC is beneficial in patients with synchronous peritoneal and liver metastases from colorectal cancer (review). Exp Ther Med. 2021;22(5):1267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lo Dico R, Faron M, Yonemura Y, et al. Combined liver resection and cytoreductive surgery with HIPEC for metastatic colorectal cancer: Results of a worldwide analysis of 565 patients from the Peritoneal Surface Oncology Group International (PSOGI). Eur J Surg Oncol. 2021;47(1):89–100.

    Article  CAS  PubMed  Google Scholar 

  27. Schwartz LH, Litière S, deVries E, et al. RECIST 1.1—Update and clarification: From the RECIST committee. Eur J Cancer. 2016;62:132–7.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sasaki K, Morioka D, Conci S, et al. The tumor burden score: A new, “metro-ticket” prognostic tool for colorectal liver metastases based on tumor size and number of tumors. Ann Surg. 2018;267(1):132–41.

    Article  PubMed  Google Scholar 

  29. Villeneuve L, Thivolet A, Bakrin N, et al. A new internet tool to report peritoneal malignancy extent. PeRitOneal malignancy stage evaluation (PROMISE) application. Eur J Surg Oncol (EJSO). 2016;42(6):877–82.

    Article  CAS  PubMed  Google Scholar 

  30. Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis [Internet]. In: Sugarbaker PH, editor. Peritoneal Carcinomatosis: Principles of Management. Boston, MA: Springer US; 1996 [cited 2023 Apr 16]. pp. 359–74. https://doi.org/10.1007/978-1-4613-1247-5_23

  31. Sugarbaker PH. Peritonectomy procedures [Internet]. In: Ceelen WP (ed). Peritoneal carcinomatosis. Boston, MA: Springer US; 2007 [cited 2023 May 23]. pp. 247–64. https://doi.org/10.1007/978-0-387-48993-3_15

  32. Clavien PA, Barkun J, de Oliveira ML, et al. The Clavien-Dindo classification of surgical complications: five-year experience. Ann Surg. 2009;250(2):187–96.

    Article  PubMed  Google Scholar 

  33. Baratti D, Kusamura S, Iusco D, et al. Postoperative complications after cytoreductive surgery and hyperthermic intraperitoneal chemotherapy affect long-term outcome of patients with peritoneal metastases from colorectal cancer: a two-center study of 101 patients. Dis Colon Rectum. 2014;57(7):858–68.

    Article  CAS  PubMed  Google Scholar 

  34. Maggiori L, Goéré D, Viana B, et al. Should patients with peritoneal carcinomatosis of colorectal origin with synchronous liver metastases be treated with a curative intent? A case-control study. Ann Surg. 2013;258(1):116–21.

    Article  PubMed  Google Scholar 

  35. Cavaliere F, DeSimone M, Virzì S, et al. Prognostic factors and oncologic outcome in 146 patients with colorectal peritoneal carcinomatosis treated with cytoreductive surgery combined with hyperthermic intraperitoneal chemotherapy: Italian multicenter study S.I.T.I.L.O. Eur J Surg Oncol (EJSO). 2011;37(2):148–54.

    Article  CAS  PubMed  Google Scholar 

  36. Lorimier G, Linot B, Paillocher N, et al. Curative cytoreductive surgery followed by hyperthermic intraperitoneal chemotherapy in patients with peritoneal carcinomatosis and synchronous resectable liver metastases arising from colorectal cancer. Eur J Surg Oncol. 2017;43(1):150–8.

    Article  CAS  PubMed  Google Scholar 

  37. Duraj FF, Cashin PH. Cytoreductive surgery and intraperitoneal chemotherapy for colorectal peritoneal and hepatic metastases: a case-control study. J Gastrointest Oncol. 2013;4(4):388–96.

    PubMed  PubMed Central  Google Scholar 

  38. Delhorme J-B, Dupont-Kazma L, Addeo P, et al. Peritoneal carcinomatosis with synchronous liver metastases from colorectal cancer: Who will benefit from complete cytoreductive surgery? Int J Surg. 2016;25:98–105.

    Article  PubMed  Google Scholar 

  39. Franco F, Monaco D, Volpi A, Marcato C, Larini P, Rossi C. The role of arterial embolization in blunt splenic injury. Radiol Med. 2011;116(3):454–65.

    Article  CAS  PubMed  Google Scholar 

  40. Schell F, Kefleyesus A, Benzerdjeb N, et al. Influence of extraperitoneal metastases on the curative-intent management of colorectal peritoneal metastases. Ann Surg Oncol. 2023. https://doi.org/10.1245/s10434-023-13279-9.

    Article  PubMed  Google Scholar 

  41. Japanese Society for Cancer of the Colon and Rectum, Watanabe T, Itabashi M, et al. Japanese Society for Cancer of the Colon and Rectum (JSCCR) guidelines 2010 for the treatment of colorectal cancer. Int J Clin Oncol. 2012;17(1):1–29.

  42. Zizzo M, Dorma MPF, Zanelli M, et al. Long-term outcomes of surgical resection of pathologically confirmed isolated para-aortic lymph node metastases in colorectal cancer: A systematic review. Cancers. 2022;14(3):661.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Aylward C, Noori J, Tyrrell J, et al. Survival outcomes after synchronous para-aortic lymph node metastasis in colorectal cancer: A systematic review. J Surg Oncol. 2023;127(4):645–56.

    Article  PubMed  Google Scholar 

  44. Fadel MG, Ahmed M, Pellino G, et al. Retroperitoneal lymph node dissection in colorectal cancer with lymph node metastasis: A systematic review. Cancers. 2023;15(2):455.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bae SU, Hur H, Min BS, Baik SH, Lee KY, Kim NK. Which patients with isolated para-aortic lymph node metastasis will truly benefit from extended lymph node dissection for colon cancer? Cancer Res Treat. 2018;50(3):712–9.

    Article  CAS  PubMed  Google Scholar 

  46. Gagnière J, Dupré A, Chabaud S, Peyrat P, Meeus P, Rivoire M. Retroperitoneal nodal metastases from colorectal cancer: Curable metastases with radical retroperitoneal lymphadenectomy in selected patients. Eur J Surg Oncol (EJSO). 2015;41(6):731–7.

    Article  PubMed  Google Scholar 

  47. Lee J, Chang JS, Shin SJ, et al. Incorporation of radiotherapy in the multidisciplinary treatment of isolated retroperitoneal lymph node recurrence from colorectal cancer. Ann Surg Oncol. 2015;22(5):1520–6.

    Article  PubMed  Google Scholar 

  48. Shu P, Ouyang G, Wang F, et al. The role of radiotherapy in the treatment of retroperitoneal lymph node metastases from colorectal cancer. CMAR. 2020;12:8913–21.

    Article  CAS  Google Scholar 

  49. Nakai N, Yamaguchi T, Kinugasa Y, et al. Diagnostic value of computed tomography (CT) and positron emission tomography (PET) for paraaortic lymph node metastasis from left-sided colon and rectal cancer. Asian J Surg. 2020;43(6):676–82.

    Article  PubMed  Google Scholar 

  50. Rosenthal MH, Kim KW, Fuchs CS, Meyerhardt JA, Ramaiya NH. CT predictors of overall survival at initial diagnosis in patients with stage IV colorectal cancer. Abdom Imaging. 2015;40(5):1170–6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hale GR, Teplitsky S, Truong H, Gold SA, Bloom JB, Agarwal PK. Lymph node imaging in testicular cancer. Transl Androl Urol. 2018;7(5):864–74.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kwak JY, Kim JS, Kim HJ, Ha HK, Yu CS, Kim JC. Diagnostic value of FDG-PET/CT for lymph node metastasis of colorectal cancer. World J Surg. 2012;36(8):1898–905.

    Article  PubMed  Google Scholar 

  53. Klaver CEL, Wasmann KATGM, Verstegen M, et al. Postoperative abdominal infections after resection of T4 colon cancer increase the risk of intra-abdominal recurrence. Eur J Surg Oncol. 2018;44(12):1880–8.

  54. Zhang Y, Qin X, Chen W, et al. Risk factors for developing peritoneal metastases after curative surgery for colorectal cancer: A systematic review and meta-analysis. Colorectal Dis. 2021;23(11):2846–58.

    Article  PubMed  Google Scholar 

  55. Simkens GA, Van Oudheusden TR, Nieboer D, et al. Development of a prognostic nomogram for patients with peritoneally metastasized colorectal cancer treated with cytoreductive surgery and HIPEC. Ann Surg Oncol. 2016;23(13):4214–21.

    Article  PubMed  Google Scholar 

  56. Vassos N, Förtsch T, Aladashvili A, Hohenberger W, Croner RS. Repeated cytoreductive surgery (CRS) with hyperthermic intraperitoneal chemotherapy (HIPEC) in patients with recurrent peritoneal carcinomatosis. World J Surg Oncol. 2016;14(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Elias D, De Baere T, Smayra T, Ouellet JF, Roche A, Lasser P. Percutaneous radiofrequency thermoablation as an alternative to surgery for treatment of liver tumour recurrence after hepatectomy. Br J Surg. 2002;89(6):752–6.

    Article  CAS  PubMed  Google Scholar 

  58. Malla M, Loree JM, Kasi PM, Parikh AR. Using circulating tumor DNA in colorectal cancer: Current and evolving practices. J Clin Oncol. 2022;40(24):2846–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Engstrand J, Nilsson H, Strömberg C, Jonas E, Freedman J. Colorectal cancer liver metastases – a population-based study on incidence, management and survival. BMC Cancer. 2018;18(1):78.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Downs-Canner S, Shuai Y, Ramalingam L, et al. Safety and efficacy of combined resection of colorectal peritoneal and liver metastases. J Surg Res. 2017;219:194–201.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Elias D, Faron M, Goéré D, et al. A simple tumor load-based nomogram for surgery in patients with colorectal liver and peritoneal metastases. Ann Surg Oncol. 2014;21(6):2052–8.

    Article  PubMed  Google Scholar 

  62. Esquivel J, Sticca R, Sugarbaker P, et al. Cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in the management of peritoneal surface malignancies of colonic origin: a consensus statement. Society of Surgical Oncology. Ann Surg Oncol. 2007;14(1):128–33.

    Article  CAS  PubMed  Google Scholar 

  63. Bhatt A, Rousset P, Benzerdjeb N, et al. Prospective correlation of the radiological, surgical and pathological findings in patients undergoing cytoreductive surgery for colorectal peritoneal metastases: implications for the preoperative estimation of the peritoneal cancer index. Colorectal Dis. 2020;22(12):2123–32.

    Article  CAS  PubMed  Google Scholar 

  64. Faron M, Macovei R, Goéré D, Honoré C, Benhaim L, Elias D. Linear relationship of peritoneal cancer index and survival in patients with peritoneal metastases from colorectal cancer. Ann Surg Oncol. 2016;23(1):114–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vahan Kepenekian MD, PhD.

Ethics declarations

Disclosure

OG is consultant for GAMIDA.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

A 69-year-old female was referred for synchronous PM and LM from sigmoid pT4N2 adenocarcinoma. Initial CT scan at portal phase revealed 9 LM, the largest of which measured 35 mm (arrow) (A). Initial PCI score was 4, including a 10-mm peritoneal nodule of the left pre-renal fascia (dotted arrow) (B). Preoperative CT scan after 12 cycles of Folfirinox-Cetuximab showed a significant reduction in size of the nine LM (partial response according RECIST 1.1 classification), the largest measuring 25 mm with necrotic modification (arrow) (C). Peritoneal analysis assessed the PCI score at 3, with reduction in size of the nodule, and a thickening of the left pre-renal fascia (dotted arrow) (D). PCI score was assessed at 5 intraoperatively. The patient had a complete resection of the PM (completeness of cytoreduction score at 0) with four hepatic wedge resections combined with five radiofrequency ablations. The patient had a postoperative ileus. The patient presented an early recurrence at 2 months, treated with chemotherapy. The patient was still alive 14 months after surgery (JPG 69 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grange, R., Rousset, P., Williet, N. et al. Metastatic Colorectal Cancer Treated with Combined Liver Resection, Cytoreductive Surgery, and Hyperthermic Intraperitoneal Chemotherapy (HIPEC): Predictive Factors for Early Recurrence. Ann Surg Oncol 31, 2378–2390 (2024). https://doi.org/10.1245/s10434-023-14840-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-14840-2

Keywords

Navigation