Skip to main content

Advertisement

Log in

Impact of Tumor Subclassifications for Identifying an Appropriate Surgical Strategy in Patients with Intrahepatic Cholangiocarcinoma

  • Hepatobiliary Tumors
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Intrahepatic cholangiocarcinoma (ICC) is subclassified into small and large duct types. The impact of these subclassifications for identifying appropriate surgical strategies remains unclear.

Patients and Methods

This study included 118 patients with ICC who underwent liver resection. Based on the pathological examination results, the participants were divided into the small duct-type ICC group (n = 64) and large duct-type ICC group (n = 54). The clinicopathological features and postoperative outcomes were compared between the two groups to investigate the impact of subclassification for selecting appropriate surgical strategies.

Results

Ten patients in the small duct-type ICC group had synchronous or metachronous hepatocellular carcinoma. The large duct-type ICC group had higher proportions of patients who underwent major hepatectomy, extrahepatic bile duct resection, portal vein resection, and lymph node sampling or dissection than the small duct-type ICC group. The large duct-type ICC group had significantly higher incidences of lymph node metastasis/recurrence and pathological major vessel invasion than the other. The small duct-type ICC group exhibited significantly higher recurrence-free and overall survival rates than the large duct-type ICC group. Further, the large duct-type ICC group had a significantly higher incidence of lymph node metastasis/recurrence than the small duct-type ICC at the perihilar region group.

Conclusions

Suitable surgical strategies may differ between the small and large duct-type ICCs. In patients with large duct-type ICCs, hepatectomy with lymph node dissection and/or biliary reconstruction should be considered, whereas hepatectomy without these advanced procedures can be suggested for patients with small duct-type ICCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bosman FT, Carneiro F, Hruban RH, Theise ND. WHO classification of tumours of the digestive system. 4th ed. Lyon: International Agency for Research on Cancer; 2010. p. 417.

    Google Scholar 

  2. Aishima S, Fujita N, Mano Y, et al. Different roles of S100P overexpression in intrahepatic cholangiocarcinoma: carcinogenesis of perihilar type and aggressive behavior of peripheral type. Am J Surg Pathol. 2011;35:590–8.

    Article  PubMed  Google Scholar 

  3. Yamashita YI, Wang H, Kurihara T, et al. Clinical significances of preoperative classification of intrahepatic cholangiocarcinoma: different characteristics of perihilar vs. peripheral ICC. Anticancer Res. 2016;36:6563–9.

    Article  PubMed  Google Scholar 

  4. Zhang XF, Bagante F, Chen Q, et al. Perioperative and long-term outcome of intrahepatic cholangiocarcinoma involving the hepatic hilus after curative-intent resection: comparison with peripheral intrahepatic cholangiocarcinoma and hilar cholangiocarcinoma. Surgery. 2018;163:1114–20.

    Article  PubMed  Google Scholar 

  5. Yamada M, Yamamoto Y, Sugiura T, et al. Comparison of the clinicopathological features in small bile duct and bile ductular type intrahepatic cholangiocarcinoma. Anticancer Res. 2019;39:2121–7.

    Article  CAS  PubMed  Google Scholar 

  6. Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76:182–8.

    Article  PubMed  Google Scholar 

  7. Liau JY, Tsai JH, Yuan RH, Chang CN, Lee HJ, Jeng YM. Morphological subclassification of intrahepatic cholangiocarcinoma: etiological, clinicopathological, and molecular features. Mod Pathol. 2014;27:1163–73.

    Article  CAS  PubMed  Google Scholar 

  8. Aishima S, Oda Y. Pathogenesis and classification of intrahepatic cholangiocarcinoma: different characters of perihilar large duct type versus peripheral small duct type. J Hepatobiliary Pancreat Sci. 2015;22:94–100.

    Article  PubMed  Google Scholar 

  9. Hayashi A, Misumi K, Shibahara J, et al. Distinct clinicopathologic and genetic features of 2 histologic subtypes of intrahepatic cholangiocarcinoma. Am J Surg Pathol. 2016;40:1021–30.

    Article  PubMed  Google Scholar 

  10. Kubo S, Nakanuma Y, Takemura S, et al. Case series of 17 patients with cholangiocarcinoma among young adult workers of a printing company in Japan. J Hepatobiliary Pancreat Sci. 2014;21:479–88.

    Article  PubMed  Google Scholar 

  11. Akita M, Fujikura K, Ajiki T, et al. Dichotomy in intrahepatic cholangiocarcinomas based on histologic similarities to hilar cholangiocarcinomas. Mod Pathol. 2017;30:986–97.

    Article  CAS  PubMed  Google Scholar 

  12. Akita M, Sofue K, Fujikura K, et al. Histological and molecular characterization of intrahepatic bile duct cancers suggests an expanded definition of perihilar cholangiocarcinoma. HPB (Oxford). 2019;21:226–34.

    Article  PubMed  Google Scholar 

  13. Nakamura H, Arai Y, Totoki Y, et al. Genomic spectra of biliary tract cancer. Nat Genet. 2015;47:1003–10.

    Article  CAS  PubMed  Google Scholar 

  14. Javle M, Bekaii-Saab T, Jain A, et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer. 2016;122:3838–47.

    Article  CAS  PubMed  Google Scholar 

  15. Lowery MA, Ptashkin R, Jordan E, et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention. Clin Cancer Res. 2018;24:4154–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bekaii-Saab TS, Bridgewater J, Normanno N. Practical considerations in screening for genetic alterations in cholangiocarcinoma. Ann Oncol. 2021;32:1111–26.

    Article  CAS  PubMed  Google Scholar 

  17. Maruki Y, Morizane C, Arai Y, et al. Molecular detection and clinicopathological characteristics of advanced/recurrent biliary tract carcinomas harboring the FGFR2 rearrangements: a prospective observational study (Prelude Study). J Gastroenterol. 2021;56:250–60.

    Article  CAS  PubMed  Google Scholar 

  18. Kinoshita M, Kubo S, Nakanuma Y, et al. Pathological spectrum of bile duct lesions from chronic bile duct injury to invasive cholangiocarcinoma corresponding to bile duct imaging findings of occupational cholangiocarcinoma. J Hepatobiliary Pancreat Sci. 2016;23:92–101.

    Article  PubMed  Google Scholar 

  19. Kubo S, Tanaka S, Kinoshita M, Shinkawa H, Ishizawa T, Sato Y. Development of intraductal papillary neoplasm of the bile duct in patients with occupational cholangiocarcinoma. Virchows Arch. 2023;482:745–53.

    Article  CAS  PubMed  Google Scholar 

  20. Song G, Shi Y, Meng L, et al. Single-cell transcriptomic analysis suggests two molecularly subtypes of intrahepatic cholangiocarcinoma. Nat Commun. 2022;13:1642.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  21. Nam JG, Lee JM, Joo I, et al. Intrahepatic mass-forming cholangiocarcinoma: relationship between computed tomography characteristics and histological subtypes. J Comput Assist Tomogr. 2018;42:340–9.

    Article  PubMed  Google Scholar 

  22. Xiao Y, Zhou C, Ni X, et al. Preoperative subcategorization based on magnetic resonance imaging in intrahepatic cholangiocarcinoma. Cancer Imaging. 2023;23:15.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Rafiq N, Bai C, Fang Y, et al. Long-term follow-up of patients with nonalcoholic fatty liver. Clin Gastroenterol Hepatol. 2009;7:234–8.

    Article  PubMed  Google Scholar 

  24. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kinoshita M, Kubo S, Tanaka S, et al. The association between non-alcoholic steatohepatitis and intrahepatic cholangiocarcinoma: a hospital based case-control study. J Surg Oncol. 2016;113:779–83.

    Article  PubMed  Google Scholar 

  26. Fujimoto A, Furuta M, Shiraishi Y, et al. Whole-genome mutational landscape of liver cancers displaying biliary phenotype reveals hepatitis impact and molecular diversity. Nat Commun. 2015;6:6120.

    Article  CAS  PubMed  ADS  Google Scholar 

  27. Asaoka T, Kobayashi S, Hanaki T, et al. Clinical significance of preoperative CA19-9 and lymph node metastasis in intrahepatic cholangiocarcinoma. Surg Today. 2020;50:1176–86.

    Article  PubMed  Google Scholar 

  28. Yamada T, Nakanishi Y, Okamura K, et al. Impact of serum carbohydrate antigen 19–9 level on prognosis and prediction of lymph node metastasis in patients with intrahepatic cholangiocarcinoma. J Gastroenterol Hepatol. 2018;33:1626–33.

    Article  CAS  Google Scholar 

  29. Kinoshita M, Kanazawa A, Takemura S, et al. Indications for laparoscopic liver resection of mass-forming intrahepatic cholangiocarcinoma. Asian J Endosc Surg. 2020;13:46–58.

    Article  PubMed  Google Scholar 

  30. Lee AJ, Chun YS. Intrahepatic cholangiocarcinoma: the AJCC/UICC 8th edition updates. Chin Clin Oncol. 2018;7:52.

    Article  PubMed  Google Scholar 

  31. Sposito C, Ratti F, Cucchetti A, et al. Survival benefit of adequate lymphadenectomy in patients undergoing liver resection for clinically node-negative intrahepatic cholangiocarcinoma. J Hepatol. 2023;78:356–63.

    Article  CAS  PubMed  Google Scholar 

  32. Sahara K, Tsilimigras DI, Merath K, et al. Therapeutic index associated with lymphadenectomy among patients with intrahepatic cholangiocarcinoma: Which patients benefit the most from nodal evaluation? Ann Surg Oncol. 2019;26:2959–68.

    Article  PubMed  Google Scholar 

  33. Kang CM, Suh KS, Yi NJ, et al. Should lymph nodes be retrieved in patients with intrahepatic cholangiocarcinoma? A collaborative Korea–Japan study. Cancers (Basel). 2021;13:445–449.

    Article  CAS  PubMed  Google Scholar 

  34. Umeda Y, Mitsuhashi T, Kojima T, et al. Impact of lymph node dissection on clinical outcomes of intrahepatic cholangiocarcinoma: inverse probability of treatment weighting with survival analysis. J Hepatobiliary Pancreat Sci. 2022;29:217–29.

    Article  PubMed  Google Scholar 

  35. Iida H, Kaibori M, Tanaka S, et al. Low incidence of lymph node metastasis after resection of hepatitis virus-related intrahepatic cholangiocarcinoma. World J Surg. 2017;41:1082–8.

    Article  PubMed  Google Scholar 

  36. Lavanchy D. Evolving epidemiology of hepatitis C virus. Clin Microbiol Infect. 2011;17:107–15.

    Article  CAS  PubMed  Google Scholar 

  37. Schmit N, Nayagam S, Thursz MR, Hallett TB. The global burden of chronic hepatitis B virus infection: comparison of country-level prevalence estimates from four research groups. Int J Epidemiol. 2021;50:560–9.

    Article  PubMed  Google Scholar 

  38. Kubo S, Shinkawa H, Asaoka Y, et al. Liver cancer study group of japan clinical practice guidelines for intrahepatic cholangiocarcinoma. Liver Cancer. 2022;11:290–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bagante F, Spolverato G, Weiss M, et al. Surgical management of intrahepatic cholangiocarcinoma in patients with cirrhosis: impact of lymphadenectomy on peri-operative outcomes. World J Surg. 2018;42:2551–60.

    Article  PubMed  Google Scholar 

  40. Shen Z, Tao L, Cai J, et al. Safety and feasibility of laparoscopic liver resection for intrahepatic cholangiocarcinoma: a propensity score-matched study. World J Surg Oncol. 2023;21:126.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Machairas N, Kostakis ID, Schizas D, Kykalos S, Nikiteas N, Sotiropoulos GC. Meta-analysis of laparoscopic versus open liver resection for intrahepatic cholangiocarcinoma. Update Surg. 2021;73:59–68.

    Article  Google Scholar 

  42. Guerrini GP, Esposito G, Tarantino G, et al. Laparoscopic versus open liver resection for intrahepatic cholangiocarcinoma: the first meta-analysis. Langenbecks Arch Surg. 2020;405:265–75.

    Article  PubMed  Google Scholar 

  43. Wei F, Lu C, Cai L, Yu H, Liang X, Cai X. Can laparoscopic liver resection provide a favorable option for patients with large or multiple intrahepatic cholangiocarcinomas? Surg Endosc. 2017;31:3646–55.

    Article  PubMed  Google Scholar 

  44. Hobeika C, Cauchy F, Fuks D, et al. Laparoscopic versus open resection of intrahepatic cholangiocarcinoma: nationwide analysis. Br J Surg. 2021;108:419–26.

    Article  CAS  PubMed  Google Scholar 

  45. Salehi O, Kazakova V, Vega EA, et al. Selection criteria for minimally invasive resection of intrahepatic cholangiocarcinoma-a word of caution: a propensity score matched analysis using the national cancer database. Surg Endosc. 2022;36:5382–91.

    Article  PubMed  Google Scholar 

  46. Lubner MG, Larison WG, Watson R, et al. Efficacy of percutaneous image-guided biopsy for diagnosis of intrahepatic cholangiocarcinoma. Abdom Radiol (NY). 2022;47:2647–57.

    Article  PubMed  Google Scholar 

  47. Navaneethan U, Njei B, Lourdusamy V, Konjeti R, Vargo JJ, Parsi MA. Comparative effectiveness of biliary brush cytology and intraductal biopsy for detection of malignant biliary strictures: a systematic review and meta-analysis. Gastrointest Endosc. 2015;81:168–76.

    Article  PubMed  Google Scholar 

  48. Buscarini L, Fornari F, Bolondi L, et al. Ultrasound-guided fine-needle biopsy of focal liver lesions: techniques, diagnostic accuracy and complications. A retrospective study on 2091 biopsies. J Hepatol. 1990;11:344–8.

    Article  CAS  PubMed  Google Scholar 

  49. Silva MA, Hegab B, Hyde C, Guo B, Buckels JA, Mirza DF. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut. 2008;57:1592–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by JSPS KAKENHI, grant number JP 22K16495.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiko Kinoshita MD, PhD.

Ethics declarations

Disclosures

The authors have no conflicts of interest to declare. All data generated or analyzed during this study are included in this article. Further inquiries can be directed to the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kinoshita, M., Sato, Y., Shinkawa, H. et al. Impact of Tumor Subclassifications for Identifying an Appropriate Surgical Strategy in Patients with Intrahepatic Cholangiocarcinoma. Ann Surg Oncol 31, 2579–2590 (2024). https://doi.org/10.1245/s10434-023-14833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-023-14833-1

Keywords

Navigation