Skip to main content

Advertisement

Log in

Rate of Freeze Alters the Immunologic Response After Cryoablation of Breast Cancer

  • Translational Research and Biomarkers
  • Published:
Annals of Surgical Oncology Aims and scope Submit manuscript

Abstract

Background

Cryoablation has garnered significant interest as a treatment for solid tumors including breast cancer for both its local effects and potential in stimulating an antitumor immune response. We sought to examine the impact that variances in technique might have on the immune response and examine the mechanism by which cryoablation may stimulate an antitumor immune response.

Materials and Methods

Balb/c mice with established 4T1 mammary carcinomas were treated by cryoablation at either a high rate of freeze or low rate of freeze, or by surgical excision, after spontaneous metastases occurred. Tumor-draining lymph nodes (TDLN) were excised at 1 week for EliSPOT assay and immunophenotyping. Mice were followed after treatment for enumeration of pulmonary metastases and survival.

Results

Compared with surgical excision, cryoablation using a high freeze rate resulted in a significant increase in tumor-specific T cells in the TDLN, a reduction in pulmonary metastases, and improved survival. However, cryoablation using a low freeze rate resulted in an increase in regulatory T cells, a significant increase in pulmonary metastases, and decreased survival.

Conclusions

Cryoablation of breast cancer in mice can generate a tumor-specific immune response that can eradicate systemic micrometastases and improve outcome compared with surgical excision; however, the technique used to freeze the tissue may alter the immune response from stimulatory to suppressive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gursel E, Roberts M, Veenema RJ. Regression of prostatic cancer following sequential cryotherapy to the prostate. J Urol. 1972;108:928–32.

    CAS  PubMed  Google Scholar 

  2. Soanes WA, Ablin RJ, Gonder MJ. Remission of metatatic lesions following cryosurgery in prostatic cancer: immunologic considerations. J Urol. 1970;104:154–9.

    CAS  PubMed  Google Scholar 

  3. Tramoyeres Cases A, Sanchez-Cuenca J, Tramoyeres Celma A, Beaumud G. A la criocirugia transperineal en al tratamiento del cancer prostatico. Arch Esp Urol. 1976;29:119–42.

    Google Scholar 

  4. Tanaka S. Cryosurgical treatment of advanced breast cancer. Skin Cancer. 1995;10:9–18.

    Google Scholar 

  5. Suzuki Y. Cryosurgical treatment of advanced breast cancer and cryoimmunological responses. Skin Cancer. 1995;10:19–26.

    Google Scholar 

  6. Tanaka S. Immunological aspects of cryosurgery in general surgery. Cryobiology. 1982;19:247–62.

    Article  CAS  PubMed  Google Scholar 

  7. Horan AH. Sequential cryotherapy for prostatic carcinoma: does it palliate the bone pain? Conn Med. 1975;39:81–3.

    CAS  PubMed  Google Scholar 

  8. Ulschmid G, Kolb E, Largiader F. Cryosurgery of pulmonary metastases. Cryobiology. 1979;16:171–8.

    Article  Google Scholar 

  9. Ablin RJ, Soanes WA, Gonder MJ. Prospects for cryo-immunotherapy in cases of metastasizing carcinoma of the prostate. Cryobiology. 1971;8:271–9.

    Article  Google Scholar 

  10. Neel HBd, Ketcham AS, Hammond WG. Experimental evaluation of in situ oncocide for primary tumor therapy: Comparison of tumor-specific immunity after complete excision, cryonecrosis and ligation. Laryngoscope. 1973;83:376–87.

    Article  PubMed  Google Scholar 

  11. Bagley DH, Faraci RP, Marrone JC, Beazley RM. Lymphocyte mediated cytotoxicity after cryosurgery of a murine sarcoma. J Surg Res. 1974;17:404–6.

    Article  CAS  PubMed  Google Scholar 

  12. Blackwood CE, Cooper IS. Response of experimental tumor systems to cryosurgery. Cryobiology. 1972;9:508–15.

    Article  CAS  PubMed  Google Scholar 

  13. Hayakawa K, Yamashita T, Suzuki K, Tomita K, Hosokawa M, Kodama T, et al. Comparative immunological studies in rats following cryosurgery and surgical excision of 3-methylcholantrene-induced primary autochthousous tumors. Gann. 1982;73:462–9.

    CAS  PubMed  Google Scholar 

  14. Yamashita T, Hayakawa K, Hosokawa M, Kodama T, Inoue N, Tomita K, et al. Enhanced tumor metastases in rats following cryosurgery of primary tumor. Gann. 1982;73:222–8.

    CAS  PubMed  Google Scholar 

  15. Shibata T, Suzuki K, Yamashita T, Takeichi N, Mark M, Hosokawa M, et al. Immunological analysis of enhanced spontaneous metastasis in WKA rats following cryosurgery. Anticancer Res. 1998;18:2483–6.

    CAS  PubMed  Google Scholar 

  16. Shibata T, Yamashita T, Suzuki K, Takeichi N, Micallef M, Hosokawa M, et al. Enhancement of experimental pulmonary metastasis and inhibition of subcutaneously transplanted tumor growth following cryosurgery. Anticancer Res. 1998;18:4443–8.

    CAS  PubMed  Google Scholar 

  17. Hanawa S. An experimental study on the induction of anti-tumor immunological activity after cryosurgery for liver carcinoma, and the effect of concomitant immunotherapy with OK432. J Jpn Surg Soc. 1993;94:57–65.

    CAS  Google Scholar 

  18. Miya K, Saji S, Morita T, Niwa H, Sakata K. Experimental study on mechanism of absorption of cryonecrotized tumor antigens. Cryobiology. 1987;24:135–9.

    Article  CAS  PubMed  Google Scholar 

  19. Misao A, Sakata K, Saji S, Kuneida T. Late appearance of resistance to tumor rechallenge following cryosurgery: a study in an experimental mammary tumor of the rat. Cryobiology. 1981;18:386–9.

    Article  CAS  PubMed  Google Scholar 

  20. Miha K, Saji S, Morita T, Niwa H, Takao H, Kida H, et al. Immunological response of regional lymph nodes after tumor cryosurgery: experimental study in rats. Cryobiology. 1986;23:290–5.

    Article  Google Scholar 

  21. Urano M, Tanaka C, Sugiyama T, Miya K, Saji S. Antitumor effects of residual tumor after cryoablation: the combined effect of residual tumor and a protein-bound polysaccharaide on multiple liver metastases in a murine model. Cryobiology. 2003;46:238–45.

    Article  CAS  PubMed  Google Scholar 

  22. Shibata T, Yamashita T, Suzuki K, Takeichi N, Micallef M, Hosokawa M, et al. Enhancement of experimental pulmonary metastaseis and inhibition of subcutaneously transplanted tumor growth following cryosurgery. Anticancer Res. 1998;18:4443–8.

    CAS  PubMed  Google Scholar 

  23. Sabel MS, Nehs MA, Su G, Lowler KP, Ferrara JL, Chang AE. Immunologic response to cryoablation of breast cancer. Breast Cancer Res Treat. 2005;90:97–104.

    Article  CAS  PubMed  Google Scholar 

  24. Pulaski BA, Ostrand-Rosenberg S. Mouse 4T1 breast tumor model. In: John E. Coligen, editor. Current protocols in immunology, 2001; Chapter 20 (Unit 20.2).

  25. Schultz J, Heinzerling L, Pavlovic J, Moelling K. Induction of long-lasting cytokine effect by injection of IL-12 encoding plasmid DNA. Cancer Gene Ther. 2000;7:1557–65.

    Article  CAS  PubMed  Google Scholar 

  26. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.

    CAS  PubMed  Google Scholar 

  27. Fuchs EJ, Matzinger P. Is cancer dangerous to the immune system? Semin Immunol 1996;8:271–80.

    Article  CAS  PubMed  Google Scholar 

  28. Demaria S, Bhardwaj N, McBride WH, Formenti SC. Combining radiotherapy and immunotherapy: a revived partnership. Int J Radiat Oncol Biol Phys. 2005;63:655–66.

    PubMed  Google Scholar 

  29. Smiley ST, King JA, Hancock WW. Fibrinogen stimulates macrophage chemokine secretion through toll-like receptor 4. J Immunol. 2001;167:2887–94.

    CAS  PubMed  Google Scholar 

  30. Termeer C, Benedix F, Sleeman J, Fieber C, Voith U, Ahrens T, et al. Oligosaccharides of Hyaluronan activate dendritic cells via toll-like receptor 4. J Exp Med. 2002;195:99–111.

    Article  CAS  PubMed  Google Scholar 

  31. Okamura Y, Watari M, Jerud ES, Young DW, Ishizaka ST, Rose J, et al. The extra domain A of fibronectin activates Toll-like receptor 4. J Biol Chem. 2002;276:10229–33.

    Article  Google Scholar 

  32. Skoberne M, Beignon AS, Bhardwaj N. Danger signals: a time and space continuum. Trends Mol Med. 2004;10:251–7.

    Article  CAS  PubMed  Google Scholar 

  33. Savill J, Dransfield I, Gregory C, Haslett C. A blast from the past: clearance of apoptotic cells regulates immune responses. Nat Rev Immunol. 2002;2:965–75.

    Article  CAS  PubMed  Google Scholar 

  34. Fadok VA, Bratton DL, Konowal A, Freed PW, Westcott JY, Henson PM. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2 and PAF. J Clin Invest. 1998;101:890–8.

    Article  CAS  PubMed  Google Scholar 

  35. Peng Y, Martin DA, Kenkel J, Zhang K, Ogden CA, Elkon KB. Innate and adaptive immune response to apoptotic cells. J Autoimmun. 2007;29:303–9.

    Article  CAS  PubMed  Google Scholar 

  36. Viorritto ICB, Nikolov NP, Siegel RM. Autoimmunity versus tolerance: can dying cells tip the balance? Clin Immunol. 2007;122:125–34.

    Article  CAS  PubMed  Google Scholar 

  37. Scheinecker C, McHugh R, Shevach EM, Germain RN. Constitutive presentation of a natural tissue autoantigen exclusively by dendritic cells in the draining lymph node. J Exp Med. 2002;196:1079–90.

    Article  CAS  PubMed  Google Scholar 

  38. Huang FP, Platt N, Wykes M, Major JR, Powell TJ, Jenkins CD, et al. A discrete subpopulation of dendritic cells transports apoptotic intestinal epithelial cells to T-cell areas of mesenteric lymph nodes. J Exp Med. 2000;191:435–44.

    Article  CAS  PubMed  Google Scholar 

  39. Stuart LM, Lucas M, Simpson C, Lamb J, Savill J, Lacy-Hulbert A. Inhibitory effects of apoptotic cell ingestion upon endotoxin-driven myeloid dendritic cell maturation. J Immunol. 2002;168:1627–35.

    CAS  PubMed  Google Scholar 

  40. Liu K, Iyoda T, Saternus M, Kimura Y, Inaba K, Steinman RM. Immune tolerance after delivery of dying cells to dendritic cells in situ. J Exp Med. 2002;196:1091–7.

    Article  CAS  PubMed  Google Scholar 

  41. Rock KL, Hearn A, Chen CJ, Shi Y. Natural endogenous adjuvants. Springer Semin Immunopathol. 2005;26:231–46.

    Article  PubMed  Google Scholar 

  42. Scheffer SR, Nave H, Korangy F, Schlote K, Pabst R, Jaffee EM, et al. Apoptotic, but not necrotic, tumor cell vaccines induce a potent immune response in vivo. Int J Cancer. 2003;103:205–11.

    Article  CAS  PubMed  Google Scholar 

  43. Henry F, Boisteau O, Bretaudeau L, Lieubeau B, Meflah K, Grégoire M. Antigen-presenting cells that phagocytose apoptotic tumor-derived cells are potent tumor vaccines. Cancer Res. 1999;59:3329–32.

    CAS  PubMed  Google Scholar 

  44. Schnurr M, Scholz C, Rothenfusser S, Galambos P, Dauer M, Röbe J, et al. Apoptotic pancreatic tumor cells are superior to cell lysates in promoting cross-priming of cytotoxic T-cells and activate NK and gammadelta T cells. Cancer Res. 2002;62:2347–52.

    CAS  PubMed  Google Scholar 

  45. Jenne L, Arrighi JF, Jonuleit H, Saurat JH, Hauser C. Dendritic cells containing apoptotic melanoma cells prime human CD8+ T cells for efficient tumor cell lysis. Cancer Res. 2000;60:4446–52.

    CAS  PubMed  Google Scholar 

  46. Rovere P, Vallinoto C, Bondanza A, Crosti MC, Rescigno M, Ricciardi-Castagnoli P. Cutting edge: by-stander apoptosis triggers dendritic cells maturation and antigen-presenting function. J Immunol. 1998;161:4467–71.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael S. Sabel MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabel, M.S., Su, G., Griffith, K.A. et al. Rate of Freeze Alters the Immunologic Response After Cryoablation of Breast Cancer. Ann Surg Oncol 17, 1187–1193 (2010). https://doi.org/10.1245/s10434-009-0846-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1245/s10434-009-0846-1

Keywords

Navigation