Skip to main content

Advertisement

Log in

Insights into Translational and Biomedical Applications of Hydrogels as Versatile Drug Delivery Systems

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Hydrogels are a network of crosslinked polymers which can hold a huge amount of water in their matrix. These might be soft, flexible, and porous resembling living tissues. The incorporation of different biocompatible materials and nanostructures into the hydrogels has led to emergence of multifunctional hydrogels with advanced properties. There are broad applications of hydrogels such as tissue culture, drug delivery, tissue engineering, implantation, water purification, and dressings. Besides these, it can be utilized in the field of medical surgery, in biosensors, targeted drug delivery, and drug release. Similarly, hyaluronic acid hydrogels have vast applications in biomedicines such as cell delivery, drug delivery, molecule delivery, micropatterning in cellular biology for tissue engineering, diagnosis and screening of diseases, tissue repair and stem cell microencapsulation in case of inflammation, angiogenesis, and other biological developmental processes. The properties like swellability, de-swellability, biodegradability, biocompatibility, and inert nature of the hydrogels in contact with body fluids, blood, and tissues make its tremendous application in the field of modern biomedicines nowadays. Various modifications in hydrogel formulations have widened their therapeutic applicability. These include 3D printing, conjugation, thiolation, multiple anchoring, and reduction. Various hydrogel formulations are also capable of dual drug delivery, dental surgery, medicinal implants, bone diseases, and gene and stem cells delivery. The presented review summarizes the unique properties of hydrogels along with their methods of preparation and significant biomedical applications as well as different types of commercial products available in the market and the regulatory guidance.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Tanaka T. Gels. Scientific American. 1981;244(1):124-S-17.

  2. Ho T-C, Chang C-C, Chan H-P, Chung T-W, Shu C-W, Chuang K-P, et al. Hydrogels: properties and applications in biomedicine. Molecules. 2022;27(9):2902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Eelkema R, Pich A. Pros and cons: supramolecular or macromolecular: what is best for functional hydrogels with advanced properties? Adv Mater. 2020;32(20):1906012.

    Article  CAS  Google Scholar 

  4. Hahn SK, Park JK, Tomimatsu T, Shimoboji T. Synthesis and degradation test of hyaluronic acid hydrogels. Int J Biol Macromol. 2007;40(4):374–80.

    Article  CAS  PubMed  Google Scholar 

  5. Ranjha NM, Mudassir J, Akhtar N. Methyl methacrylate-co-itaconic acid (MMA-co-IA) hydrogels for controlled drug delivery. J Sol-Gel Sci Technol. 2008;47:23–30.

    Article  CAS  Google Scholar 

  6. Eagland D, Crowther N, Butler C. Complexation between polyoxyethylene and polymethacrylic acid—the importance of the molar mass of polyoxyethylene. Eur Polymer J. 1994;30(7):767–73.

    Article  CAS  Google Scholar 

  7. Yokoyama F, Masada I, Shimamura K, Ikawa T, Monobe K. Morphology and structure of highly elastic poly (vinyl alcohol) hydrogel prepared by repeated freezing-and-melting. Colloid Polym Sci. 1986;264:595–601.

    Article  CAS  Google Scholar 

  8. Cerchiara T, Luppi B, Bigucci F, Orienti I, Zecchi V. Physically cross-linked chitosan hydrogels as topical vehicles for hydrophilic drugs. J Pharm Pharmacol. 2002;54(11):1453–9.

    Article  CAS  PubMed  Google Scholar 

  9. Peppas NA, Merrill EW. Development of semicrystalline poly (vinyl alcohol) hydrogels for biomedical applications. J Biomed Mater Res. 1977;11(3):423–34.

    Article  CAS  PubMed  Google Scholar 

  10. Dror M, Elsabee M, Berry G. Interpenetrating polymer networks for biological applications. Biomater Med Devices Artif Organs. 1979;7(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  11. Peppas NA, Moynihan HJ, Lucht LM. The structure of highly crosslinked poly (2-hydroxyethyl methacrylate) hydrogels. J Biomed Mater Res. 1985;19(4):397–411.

    Article  CAS  PubMed  Google Scholar 

  12. Douglas AM, Fragkopoulos AA, Gaines MK, Lyon LA, Fernandez-Nieves A, Barker TH. Dynamic assembly of ultrasoft colloidal networks enables cell invasion within restrictive fibrillar polymers. Proc Natl Acad Sci. 2017;114(5):885–90.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nair SK, Basu S, Sen B, Lin M-H, Kumar AN, Yuan Y, et al. Colloidal gels with tunable mechanomorphology regulate endothelial morphogenesis. Sci Rep. 2019;9(1):1072.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Liu Y, Liu J, Guo P, Heng L. Super water absorbency OMMT/PAA hydrogel materials with excellent mechanical properties. RSC Adv. 2017;7(24):14504–10.

    Article  ADS  CAS  Google Scholar 

  15. Chen G, Tang W, Wang X, Zhao X, Chen C, Zhu Z. Applications of hydrogels with special physical properties in biomedicine. Polymers. 2019;11(9):1420.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sabzi M, Samadi N, Abbasi F, Mahdavinia GR, Babaahmadi M. Bioinspired fully physically cross-linked double network hydrogels with a robust, tough and self-healing structure. Mater Sci Eng C. 2017;74:374–81.

    Article  CAS  Google Scholar 

  17. Thakur A, Jaiswal MK, Peak CW, Carrow JK, Gentry J, Dolatshahi-Pirouz A, et al. Injectable shear-thinning nanoengineered hydrogels for stem cell delivery. Nanoscale. 2016;8(24):12362–72.

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Ciccone G, Dobre O, Gibson GM, Rey JM, Gonzalez-Garcia C, Vassalli M, et al. what caging force cells feel in 3D hydrogels: a rheological perspective. Adv Healthcare Mater. 2020;9(17):2000517.

    Article  CAS  Google Scholar 

  19. Cabrera-Munguia DA, Claudio-Rizo JA, Becerra-Rodríguez JJ, Flores-Guia TE, Rico JL, Vásquez-García SR. Enhanced biocompatibility and bactericidal properties of hydrogels based on collagen–polyurethane–aluminium MOFs for biomedical applications. Bull Mater Sci. 2023;46(2):1–14.

    Article  Google Scholar 

  20. Zhu H, Zheng J, Oh XY, Chan CY, Low BQL, Tor JQ, et al. Nanoarchitecture-integrated hydrogel systems toward therapeutic applications. ACS Nano. 2023;17(9):7953–78.

    Article  CAS  PubMed  Google Scholar 

  21. Gan X, Li C, Sun J, Zhang X, Zhou M, Deng Y, et al. GelMA/κ-carrageenan double-network hydrogels with superior mechanics and biocompatibility. RSC Adv. 2023;13(3):1558–66.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  22. Song C, Liu R, Kong B, Gu Z, Chen G. Functional hydrogels for treatment of dental caries. Biomed Technol. 2024;5:73–81.

    Article  CAS  Google Scholar 

  23. Suneetha M, Zo S, Choi SM, Han SS. Antibacterial, biocompatible, hemostatic, and tissue adhesive hydrogels based on fungal-derived carboxymethyl chitosan-reduced graphene oxide-polydopamine for wound healing applications. Int J Biol Macromol. 2023;241: 124641.

    Article  CAS  PubMed  Google Scholar 

  24. Solanki D, Vinchhi P, Patel MM. Design considerations, formulation approaches, and strategic advances of hydrogel dressings for chronic wound management. ACS Omega. 2023;8(9):8172–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu Y, Dong T, Chen Y, Sun N, Liu Q, Huang Z, et al. Biodegradable and cytocompatible hydrogel coating with antibacterial activity for the prevention of implant-associated infection. ACS Appl Mater Interfaces. 2023;15(9):11507–19.

    Article  CAS  PubMed  Google Scholar 

  26. Liu L, Liu Y-x, Zhong H, Li X-r, Jun Y-l, Wang Q-l, et al. Folic acid conjugated palygorskite/Au hybrid microgels: temperature, pH and light triple-responsive and its application in drug delivery. Colloids Surf B Biointerfaces. 2023:113432.

  27. Moura D, Pereira AT, Ferreira HP, Barrias CC, Magalhães FD, Bergmeister H, et al. Poly (2-hydroxyethyl methacrylate) hydrogels containing graphene-based materials for blood-contacting applications: From soft inert to strong degradable material. Acta Biomater. 2023;164:253–68.

    Article  CAS  PubMed  Google Scholar 

  28. Fan Y, Luchow M, Badria A, Hutchinson DJ, Malkoch M. Placenta powder-infused thiol-ene PEG hydrogels as potential tissue engineering scaffolds. Biomacromolecules. 2023;24(4):1617–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Morello G, De Iaco G, Gigli G, Polini A, Gervaso F. Chitosan and pectin hydrogels for tissue engineering and in vitro modeling. Gels. 2023;9(2):132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yu W, Gong E, Liu B, Zhou L, Che C, Hu S, et al. Hydrogel-mediated drug delivery for treating stroke. Chin Chem Lett. 2023;10:108205.

  31. Wang G, Zhang X, Bu X, An Y, Bi H, Zhao Z. The application of cartilage tissue engineering with cell-laden hydrogel in plastic surgery: a systematic review. Tissue Eng Regen Med. 2022;1:1–9.

    Article  Google Scholar 

  32. Ahmadian E, Dizaj SM, Eftekhari A, Dalir E, Vahedi P, Hasanzadeh A, et al. The potential applications of hyaluronic acid hydrogels in biomedicine. Drug Res. 2020;70(01):6–11.

    Article  CAS  Google Scholar 

  33. Fang Y, Shi L, Duan Z, Rohani S. Hyaluronic acid hydrogels, as a biological macromolecule-based platform for stem cells delivery and their fate control: a review. Int J Biol Macromol. 2021;189:554–66.

    Article  CAS  PubMed  Google Scholar 

  34. Bonhome-Espinosa AB, Campos F, Durand-Herrera D, Sánchez-López JD, Schaub S, Durán JD, et al. In vitro characterization of a novel magnetic fibrin-agarose hydrogel for cartilage tissue engineering. J Mech Behav Biomed Mater. 2020;104: 103619.

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Lv Y, Zhu D, Mei X, Huang K, Wang X, et al. Intrapericardial hydrogel injection generates high cell retention and augments therapeutic effects of mesenchymal stem cells in myocardial infarction. Chem Eng J. 2022;427: 131581.

    Article  CAS  Google Scholar 

  36. Zhao X, Huang Y-f, Tian X, Luo J, Wang H, Wang J, et al. Polysaccharide-based adhesive antibacterial and self-healing hydrogel for sealing hemostasis. Biomacromolecules. 2022;23(12):5106–15.

  37. Sharma AD, Jarman EH, Fox PM. Scoping review of hydrogel therapies in the treatment of diabetic chronic wounds. Plast Reconstr Surg Glob Open. 2023;11(5):e4984.

  38. Grigatti A, Gefen A. What makes a hydrogel-based dressing advantageous for the prevention of medical device-related pressure ulcers. Int Wound J. 2022;19(3):515–30.

    Article  PubMed  Google Scholar 

  39. Zhang Y, Chen K, Li Y, Lan J, Yan B, Shi L, et al. High-strength, self-healable, temperature-sensitive, MXene-containing composite hydrogel as a smart compression sensor. ACS Appl Mater Interfaces. 2019;11(50):47350–7.

    Article  CAS  PubMed  Google Scholar 

  40. Zhao L, Zhao J, Zhang F, Xu Z, Chen F, Shi Y, et al. Highly stretchable, adhesive, and self-healing silk fibroin-dopted hydrogels for wearable sensors. Adv Healthcare Mater. 2021;10(10):2002083.

    Article  CAS  Google Scholar 

  41. Zhang D, Zhang M, Wang J, Sun H, Liu H, Mi L, et al. Impedance response behavior and mechanism study of axon-like ionic conductive cellulose-based hydrogel strain sensor. Adv Compos Hybrid Mater. 2022;5(3):1812–20.

    Article  CAS  Google Scholar 

  42. Li H, Zou R, Su C, Zhang N, Wang Q, Zhang Y, et al. Ratiometric fluorescent hydrogel for point-of-care monitoring of organophosphorus pesticide degradation. J Hazard Mater. 2022;432: 128660.

    Article  CAS  PubMed  Google Scholar 

  43. Zou Q, Zhang S, Su Q, Xue T, Lan K. Flexible multimodal sensor based on double-network hydrogel for human and robotic applications. ChemistrySelect. 2023;8(11): e202204319.

    Article  CAS  Google Scholar 

  44. Lu Y, Yue Y, Ding Q, Mei C, Xu X, Jiang S, et al. Environment-tolerant ionic hydrogel–elastomer hybrids with robust interfaces, high transparence, and biocompatibility for a mechanical–thermal multimode sensor. InfoMat. 2023;5(4): e12409.

    Article  CAS  Google Scholar 

  45. Ni A, Fu D, Lin P, Xia Y, Pei D, Han X, et al. Rapid fabrication of porous photothermal hydrogel coating for efficient solar-driven water purification. ACS Appl Mater Interfaces. 2022;14(39):44809–20.

    Article  CAS  PubMed  Google Scholar 

  46. Cai W, Zhao S, Zhang K, Guo K, Wang Y, Chen Q, et al. Synergy of light trapping and water management in interconnected porous PEDOT: PSS hydrogels for efficient solar-driven water purification. Ind Eng Chem Res. 2023;62:10175–83.

    Article  CAS  Google Scholar 

  47. Zhou L, Wang Y, Liu Z, Huang Q. Characteristics of equilibrium, kinetics studies for adsorption of Hg (II), Cu (II), and Ni (II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater. 2009;161(2–3):995–1002.

    Article  CAS  PubMed  Google Scholar 

  48. Zhou Y-T, Nie H-L, Branford-White C, He Z-Y, Zhu L-M. Removal of Cu2+ from aqueous solution by chitosan-coated magnetic nanoparticles modified with α-ketoglutaric acid. J Colloid Interface Sci. 2009;330(1):29–37.

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Hernández R, Mijangos C. In situ synthesis of magnetic iron oxide nanoparticles in thermally responsive alginate-poly (N-isopropylacrylamide) semi-interpenetrating polymer networks. Macromol Rapid Commun. 2009;30(3):176–81.

    Article  PubMed  Google Scholar 

  50. Place ES, George JH, Williams CK, Stevens MM. Synthetic polymer scaffolds for tissue engineering. Chem Soc Rev. 2009;38(4):1139–51.

    Article  CAS  PubMed  Google Scholar 

  51. Patenaude M, Hoare T. Injectable, mixed natural-synthetic polymer hydrogels with modular properties. Biomacromolecules. 2012;13(2):369–78.

    Article  CAS  PubMed  Google Scholar 

  52. Kim I-Y, Seo S-J, Moon H-S, Yoo M-K, Park I-Y, Kim B-C, et al. Chitosan and its derivatives for tissue engineering applications. Biotechnol Adv. 2008;26(1):1–21.

    Article  CAS  PubMed  Google Scholar 

  53. Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polymer J. 2013;49(4):780–92.

    Article  CAS  Google Scholar 

  54. Rajabi M, McConnell M, Cabral J, Ali MA. Chitosan hydrogels in 3D printing for biomedical applications. Carbohyd Polym. 2021;260: 117768.

    Article  CAS  Google Scholar 

  55. Jafari H, Delporte C, Bernaerts KV, Alimoradi H, Nie L, Podstawczyk D, et al. Synergistic complexation of phenol functionalized polymer induced in situ microfiber formation for 3D printing of marine-based hydrogels. Green Chem. 2022;24(6):2409–22.

    Article  CAS  Google Scholar 

  56. Hewawasam RS, Blomberg R, Šerbedžija P, Magin CM. Chemical modification of human decellularized extracellular matrix for incorporation into phototunable hybrid-hydrogel models of tissue fibrosis. ACS Appl Mater Interfaces. 2023;15(12):15071–83.

    Article  CAS  PubMed  Google Scholar 

  57. Chen J, Yang J, Wang L, Zhang X, Heng BC, Wang D-A, et al. Modified hyaluronic acid hydrogels with chemical groups that facilitate adhesion to host tissues enhance cartilage regeneration. Bioact Mater. 2021;6(6):1689–98.

    CAS  PubMed  Google Scholar 

  58. Wu J, Wei Y, Ding H, Wu Z, Yang X, Li Z, et al. Green synthesis of 3D chemically functionalized graphene hydrogel for high-performance NH3 and NO2 detection at room temperature. ACS Appl Mater Interfaces. 2020;12(18):20623–32.

    Article  CAS  PubMed  Google Scholar 

  59. Zhang Q, Zhou X, Du H, Ha Y, Xu Y, Ao R, et al. Bifunctional hydrogel-integrated 3D printed scaffold for repairing infected bone defects. ACS Biomater Sci Eng. 2023;9(8):4583–93.

    Article  CAS  PubMed  Google Scholar 

  60. Chen Q, Li J, Han F, Meng Q, Wang H, Wei Q, et al. A multifunctional composite hydrogel that rescues the ROS microenvironment and guides the immune response for repair of osteoporotic bone defects. Adv Func Mater. 2022;32(27):2201067.

    Article  CAS  Google Scholar 

  61. Wang L, Hu P, Jiang H, Zhao J, Tang J, Jiang D, et al. Mild hyperthermia-mediated osteogenesis and angiogenesis play a critical role in magnetothermal composite-induced bone regeneration. Nano Today. 2022;43: 101401.

    Article  CAS  Google Scholar 

  62. Ingavle GC, Gionet-Gonzales M, Vorwald CE, Bohannon LK, Clark K, Galuppo LD, et al. Injectable mineralized microsphere-loaded composite hydrogels for bone repair in a sheep bone defect model. Biomaterials. 2019;197:119–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Xu R-J, Ma J-J, Yu X, Zhou X-Q, Zhang J-Y, Li Y-D, et al. A biphasic calcium phosphate/acylated methacrylate gelatin composite hydrogel promotes osteogenesis and bone repair. Connect Tissue Res. 2023;64(5):45–456.

    Google Scholar 

  64. Wang Y, Peng Z, Zhang D, Song D. Tough, Injectable calcium phosphate cement based composite hydrogels to promote osteogenesis. Gels. 2023;9(4):302.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Solé-Martí X, Labay C, Raymond Y, Franch J, Benitez R, Ginebra MP, et al. Ceramic-hydrogel composite as carrier for cold-plasma reactive-species: safety and osteogenic capacity in vivo. Plasma Process Polym. 2023;20(1):2200155.

    Article  Google Scholar 

  66. Chronopoulou L, Cacciotti I, Amalfitano A, Di Nitto A, D’Arienzo V, Nocca G, et al. Biosynthesis of innovative calcium phosphate/hydrogel composites: Physicochemical and biological characterisation. Nanotechnology. 2020;32(9): 095102.

    Article  ADS  Google Scholar 

  67. Guo Z-X, Zhang Z, Yan J-F, Xu H-Q, Wang S-Y, Ye T, et al. A biomaterial-based therapy using a sodium hyaluronate/bioglass composite hydrogel for the treatment of oral submucous fibrosis. Acta Biomater. 2023;157:639–54.

    Article  CAS  PubMed  Google Scholar 

  68. Sadeghian A, Kharaziha M, Khoroushi M. Dentin extracellular matrix loaded bioactive glass/GelMA support rapid bone mineralization for potential pulp regeneration. Int J Biol Macromol. 2023;234: 123771.

    Article  CAS  PubMed  Google Scholar 

  69. Manoochehri H, Ghorbani M, MoosazadehMoghaddam M, Nourani MR, Makvandi P, Sharifi E. Strontium doped bioglass incorporated hydrogel-based scaffold for amplified bone tissue regeneration. Sci Rep. 2022;12(1):10160.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yang Z, Zhao F, Zhang W, Yang Z, Luo M, Liu L, et al. Degradable photothermal bioactive glass composite hydrogel for the sequential treatment of tumor-related bone defects: From anti-tumor to repairing bone defects. Chem Eng J. 2021;419: 129520.

    Article  CAS  Google Scholar 

  71. Wang Y, Liu Q, Yang Y, Qiu C, Jiao A, Jin Z. Impact of pH on pea protein–hydroxypropyl starch hydrogel based on interpenetrating network and its application in 3D-printing. Food Res Int. 2023;170: 112966.

    Article  CAS  PubMed  Google Scholar 

  72. Hao X, Miao S, Li Z, Wang T, Xue B, Chen J, et al. 3D printed structured porous hydrogel promotes osteogenic differentiation of BMSCs. Mater Des. 2023;227: 111729.

    Article  CAS  Google Scholar 

  73. Emir AA, Erunsal SC. Impact of oleuropein on LCD-based stereolithography-assisted fabrication of 3D printed PEGDMA hydrogels. Eur Polymer J. 2022;180: 111592.

    Article  CAS  Google Scholar 

  74. Dong M, Han Y, Hao XP, Yu HC, Yin J, Du M, et al. Digital light processing 3D printing of tough supramolecular hydrogels with sophisticated architectures as impact-absorption elements. Adv Mater. 2022;34(34):2204333.

    Article  CAS  Google Scholar 

  75. Duong HY, Roccuzzo A, Stähli A, Salvi GE, Lang NP, Sculean A. Oral health‐related quality of life of patients rehabilitated with fixed and removable implant‐supported dental prostheses. Periodontology 2000. 2022;88(1):201–37.

  76. Xia P, Lopes AM, Restivo MT. Virtual reality and haptics for dental surgery: a personal review. Vis Comput. 2013;29:433–47.

    Article  Google Scholar 

  77. Luo L, He Y, Jin L, Zhang Y, Guastaldi FP, Albashari AA, et al. Application of bioactive hydrogels combined with dental pulp stem cells for the repair of large gap peripheral nerve injuries. Bioact Mater. 2021;6(3):638–54.

    CAS  PubMed  Google Scholar 

  78. Struillou X, Rakic M, Badran Z, Macquigneau L, Colombeix C, Pilet P, et al. The association of hydrogel and biphasic calcium phosphate in the treatment of dehiscence-type peri-implant defects: an experimental study in dogs. J Mater Sci Mater Med. 2013;24:2749–60.

    Article  CAS  PubMed  Google Scholar 

  79. Kim S-y, Choi A-j, Park J-E, Jang Y-s, Lee M-h. Antibacterial activity and biocompatibility with the concentration of ginger fraction in biodegradable gelatin methacryloyl (GelMA) hydrogel coating for medical implants. Polymers. 2022;14(23):5317.

  80. Siddiqui Z, Sarkar B, Kim K-K, Kadincesme N, Paul R, Kumar A, et al. Angiogenic hydrogels for dental pulp revascularization. Acta Biomater. 2021;126:109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhou X, Cornel EJ, He S, Du J. Recent advances in bone-targeting nanoparticles for biomedical applications. Mater Chem Front. 2021;5(18):6735–59.

    Article  CAS  Google Scholar 

  82. Nafo W. Polymer-based nanosystems and their applications in bone anticancer therapy. Front Chem. 2023;11:1218511.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Siddiqui L, Mahtab A, Rabbani SA, Verma A, Talegaonkar S. Polymeric nanoparticles-assisted macrophage targeting: basic concepts and therapeutic goals. Macrophage Targeted Delivery Systems: Basic Concepts and Therapeutic Applications: Springer; 2022. p. 123–43.

  84. Sabir F, Asad MI, Qindeel M, Afzal I, Dar MJ, Shah KU, et al. Polymeric nanogels as versatile nanoplatforms for biomedical applications. J Nanomater. 2019;2019:1526186.

    Article  Google Scholar 

  85. Guo X, Yang N, Ji W, Zhang H, Dong X, Zhou Z, et al. Mito-bomb: targeting mitochondria for cancer therapy. Adv Mater. 2021;33(43):2007778.

    Article  CAS  Google Scholar 

  86. Chaturvedi M, Kumar M, Pathak K. A review on mucoadhesive polymer used in nasal drug delivery system. J Adv Pharm Technol Res. 2011;2(4):215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. Smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew Chem Int Ed. 2021;60(5):2232–56.

    Article  CAS  Google Scholar 

  88. Tabish TA, Hamblin MR. Mitochondria-targeted nanoparticles (mitoNANO): An emerging therapeutic shortcut for cancer. Biomater Biosyst. 2021;3: 100023.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Huang L, Sun Z, Shen Q, Huang Z, Wang S, Yang N, et al. Rational design of nanocarriers for mitochondria-targeted drug delivery. Chin Chem Lett. 2022;33(9):4146–56.

    Article  CAS  Google Scholar 

  90. Wang M, Wang M, Zhang S, Chen J. Pickering gel emulsion stabilized by enzyme immobilized polymeric nanoparticles: a robust and recyclable biocatalyst system for biphasic catalysis. React Chem Eng. 2019;4(8):1459–65.

    Article  CAS  Google Scholar 

  91. Amir Z, Saaid IM, MohdJunaidi MU, Wan Bakar WZ. Weakened PAM/PEI polymer gel for oilfield water control: Remedy with silica nanoparticles. Gels. 2022;8(5):265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Cao J, Du X, Zhao H, Zhu C, Li C, Zhang X, et al. Sequentially degradable hydrogel-microsphere loaded with doxorubicin and pioglitazone synergistically inhibits cancer stemness of osteosarcoma. Biomed Pharmacother. 2023;165: 115096.

    Article  CAS  PubMed  Google Scholar 

  93. Ying H, Wang H, Jiang G, Tang H, Li L, Zhang J. Injectable agarose hydrogels and doxorubicin-encapsulated iron-gallic acid nanoparticles for chemodynamic-photothermal synergistic therapy against osteosarcoma. Front Chem. 2022;10:1045612.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  94. Wu W, Dai Y, Liu H, Cheng R, Ni Q, Ye T, et al. Local release of gemcitabine via in situ UV-crosslinked lipid-strengthened hydrogel for inhibiting osteosarcoma. Drug Deliv. 2018;25(1):1642–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang Q, Zuo Z, Cheung CKC, Leung SSY. Updates on thermosensitive hydrogel for nasal, ocular and cutaneous delivery. Int J Pharm. 2019;559:86–101.

    Article  CAS  PubMed  Google Scholar 

  96. Abdelkader DH, Tambuwala MM, Mitchell CA, Osman MA, El-Gizawy SA, Faheem AM, et al. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly (vinyl alcohol)-borate hydrogels. Drug Deliv Transl Res. 2018;8:1053–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Furlani F, Rossi A, Grimaudo MA, Bassi G, Giusto E, Molinari F, et al. Controlled liposome delivery from chitosan-based thermosensitive hydrogel for regenerative medicine. Int J Mol Sci. 2022;23(2):894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Jøraholmen MW, Johannessen M, Gravningen K, Puolakkainen M, Acharya G, Basnet P, et al. Liposomes-in-hydrogel delivery system enhances the potential of resveratrol in combating vaginal chlamydia infection. Pharmaceutics. 2020;12(12):1203.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Wang Q, Zhang H, Huang J, Xia N, Li T, Xia Q. Self-double-emulsifying drug delivery system incorporated in natural hydrogels: a new way for topical application of vitamin C. J Microencapsul. 2018;35(1):90–101.

    Article  PubMed  Google Scholar 

  100. Yasasvini S, Anusa R, VedhaHari B, Prabhu P, RamyaDevi D. Topical hydrogel matrix loaded with Simvastatin microparticles for enhanced wound healing activity. Mater Sci Eng, C. 2017;72:160–7.

    Article  CAS  Google Scholar 

  101. Fliervoet LA, Engbersen JF, Schiffelers RM, Hennink WE, Vermonden T. Polymers and hydrogels for local nucleic acid delivery. J Mater Chem B. 2018;6(36):5651–70.

    Article  CAS  PubMed  Google Scholar 

  102. Rey-Rico A, Cucchiarini M. Supramolecular cyclodextrin-based hydrogels for controlled gene delivery. Polymers. 2019;11(3):514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Weiss DJ, Bates JH, Gilbert T, Liles WC, Lutzko C, Rajagopal J, et al. Stem cells and cell therapies in lung biology and diseases: conference report. Ann Am Thorac Soc. 2013;10(5):S25–44.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Lei Y, Rahim M, Ng Q, Segura T. Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J Control Release. 2011;153(3):255–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Carballo-Pedrares N, Fuentes-Boquete I, Díaz-Prado S, Rey-Rico A. Hydrogel-based localized nonviral gene delivery in regenerative medicine approaches—an overview. Pharmaceutics. 2020;12(8):752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Li Z, Ning W, Wang J, Choi A, Lee P-Y, Tyagi P, et al. Controlled gene delivery system based on thermosensitive biodegradable hydrogel. Pharm Res. 2003;20:884–8.

    Article  CAS  PubMed  Google Scholar 

  107. Bidarra SJ, Barrias CC, Granja PL. Injectable alginate hydrogels for cell delivery in tissue engineering. Acta Biomater. 2014;10(4):1646–62.

    Article  CAS  PubMed  Google Scholar 

  108. Shin H, Olsen BD, Khademhosseini A. Gellan gum microgel-reinforced cell-laden gelatin hydrogels. J Mater Chem B. 2014;2(17):2508–16.

    Article  CAS  PubMed  Google Scholar 

  109. Qayyum AS, Jain E, Kolar G, Kim Y, Sell SA, Zustiak SP. Design of electrohydrodynamic sprayed polyethylene glycol hydrogel microspheres for cell encapsulation. Biofabrication. 2017;9(2): 025019.

    Article  ADS  PubMed  Google Scholar 

  110. Al-Tabbaa O, Ankrah S. Social capital to facilitate ‘engineered’university–industry collaboration for technology transfer: a dynamic perspective. Technol Forecast Soc Chang. 2016;104:1–15.

    Article  Google Scholar 

  111. Aswathy S, Narendrakumar U, Manjubala I. Commercial hydrogels for biomedical applications. Heliyon. 2020;6(4):e03719.

  112. Juric D, Rohner NA, von Recum HA. Molecular imprinting of cyclodextrin supramolecular hydrogels improves drug loading and delivery. Macromol Biosci. 2019;19(1):1800246.

    Article  Google Scholar 

  113. Trattnig S, Ohel K, Mlynarik V, Juras V, Zbyn S, Korner A. Morphological and compositional monitoring of a new cell-free cartilage repair hydrogel technology–GelrinC by MR using semi-quantitative MOCART scoring and quantitative T2 index and new zonal T2 index calculation. Osteoarthr Cartil. 2015;23(12):2224–32.

    Article  CAS  Google Scholar 

  114. Catoira MC, González-Payo J, Fusaro L, Ramella M, Boccafoschi F. Natural hydrogels R&D process: technical and regulatory aspects for industrial implementation. J Mater Sci Mater Med. 2020;31:1–16.

    Article  Google Scholar 

  115. Donawa M. Regulation of novel biomedical hydrogel products. Biomedical Hydrogels: Elsevier; 2011. p. 81–100.

    Book  Google Scholar 

  116. Mohapatra S, Mirza MA, Hilles AR, Zakir F, Gomes AC, Ansari MJ, et al. Biomedical application, patent repository, clinical trial and regulatory updates on hydrogel: an extensive review. Gels. 2021;7(4):207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

R. K. and M. G. have written the manuscript. J. A. S. and A. S. have helped in drawing the diagrams. N. R. and R. B. have validated the manuscript.

Corresponding author

Correspondence to Rohit Bhatia.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohar, R., Ghosh, M., Sawale, J.A. et al. Insights into Translational and Biomedical Applications of Hydrogels as Versatile Drug Delivery Systems. AAPS PharmSciTech 25, 17 (2024). https://doi.org/10.1208/s12249-024-02731-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-024-02731-y

Keywords

Navigation