Skip to main content

Advertisement

Log in

Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The present work does not involve any additional data to represent.

Abbreviations

AMD:

Age-related macular disease

BRB:

Blood-retinal barrier

DM:

Diabetic mellitus

DME:

Diabetic macular edema

DR:

Diabetic retinopathy

EVA:

Ethylene-vinyl acetate

NDDS:

Novel drug delivery systems

NP:

Nanoparticles

NPDR:

Non-proliferative diabetic retinopathy

PCL:

Poly(caprolactone)

PDR:

Proliferative diabetic retinopathy

PEO:

Polyethylene oxides

PLA:

Polylactic acid,

PLGA:

Poly(lactic-co-glycolic acid)

PMMA:

Poly(methyl methacrylate)

PVA:

Polyvinyl alcohol

PVR:

Proliferative vitreoretinopathy

TA:

Triamcinolone acetonide

VEGF:

Vascular endothelial growth factor

References

  1. Wang Y, Wang C. Novel eye drop delivery systems: advance on formulation design strategies targeting anterior and posterior segments of the eye. Pharmaceutics. 2022;14:1150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Garkal A, Bangar P, Rajput A, Pingale P, Dhas N, Sami A, et al. Long-acting formulation strategies for protein and peptide delivery in the treatment of PSED. J Control Release. 2022;350:538–68.

    Article  CAS  PubMed  Google Scholar 

  3. Thrimawithana TR, Young S, Bunt CR, Green C, Alany RG. Drug delivery to the posterior segment of the eye. Drug Discov Today. 2011;16:270–7.

    Article  CAS  PubMed  Google Scholar 

  4. Das A. Diabetic retinopathy: battling the global epidemic. Investig Ophthalmol Vis Sci. 2016;57:6669–82.

    Article  CAS  Google Scholar 

  5. Silva M, Peng T, Zhao X, Li S, Farhan M, Zheng W. Recent trends in drug-delivery systems for the treatment of diabetic retinopathy and associated fibrosis. Adv Drug Deliv Rev. 2021;173:439–60.

    Article  CAS  PubMed  Google Scholar 

  6. Vaishya RD, Khurana V, Patel S, Mitra AK. Controlled ocular drug delivery with nanomicelles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014;6:422–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10:e1473.

    Article  Google Scholar 

  8. Yellepeddi VK, Palakurthi S. Recent advances in topical ocular drug delivery. J Ocul Pharmacol Ther. 2016;32:67–82.

    Article  CAS  PubMed  Google Scholar 

  9. Biswas A, Choudhury AD, Agrawal S, Bisen AC, Sanap SN, Verma SK, Kumar M, Mishra A, Kumar S, Chauhan M, Bhatta RS. Recent insights into the etiopathogenesis of diabetic retinopathy and its management. J Ocul Pharmacol Ther. https://doi.org/10.1089/jop.2023.0068

  10. Djebli N, Khier S, Griguer F, Coutant A-L, Tavernier A, Fabre G, et al. Ocular drug distribution after topical administration: population pharmacokinetic model in rabbits. Eur J Drug Metab Pharmacokinet. 2017;42:59–68.

    Article  CAS  PubMed  Google Scholar 

  11. Wang R, Gao Y, Liu A, Zhai G. A review of nanocarrier-mediated drug delivery systems for posterior segment eye disease: challenges analysis and recent advances. J Drug Target. 2021;29:687–702.

    Article  CAS  PubMed  Google Scholar 

  12. Suri R, Beg S, Kohli K. Target strategies for drug delivery bypassing ocular barriers. J Drug Deliv Sci Technol. 2020;55: 101389.

    Article  CAS  Google Scholar 

  13. Kim HM, Woo SJ. Ocular drug delivery to the retina: current innovations and future perspectives. Pharmaceutics. 2021;13:1–32.

    Google Scholar 

  14. Jiang S, Franco YL, Zhou Y, Chen J. Nanotechnology in retinal drug delivery. Int J Ophthalmol. 2018;11:1038–44.

    PubMed  PubMed Central  Google Scholar 

  15. Janagam DR, Wu L, Lowe TL. Nanoparticles for drug delivery to the anterior segment of the eye. Adv Drug Deliv Rev. 2017;122:31–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mandal A, Pal D, Agrahari V, Trinh HM, Joseph M, Mitra AK. Ocular delivery of proteins and peptides: challenges and novel formulation approaches. Adv Drug Deliv Rev. 2018;126:67–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Patel JK, Sutariya V, Kanwar JR, Pathak Y V. Drug delivery for the retina and posterior segment disease. Springer; 2018.

  18. Bisht R, Mandal A, Jaiswal JK, Rupenthal ID. Nanocarrier mediated retinal drug delivery: overcoming ocular barriers to treat posterior eye diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2018;10:1–21.

    Article  Google Scholar 

  19. Cholkar K, Dasari SR, Pal D, Mitra AK. Eye: Anatomy, physiology and barriers to drug delivery. Ocul Transp Recept. Elsevier; 2013. p. 1–36.

  20. Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, et al. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10:27835–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kumar D, Jain N, Gulati N, Nagaich U. Nanoparticles laden in situ gelling system for ocular drug targeting. J Adv Pharm Technol Res. 2013;4:9–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nisha S, Deepak K. An insight to ophtalmic drug delivery system. Int J Pharm Stud Res. 2012;3:9–13.

    Google Scholar 

  23. Lee J, Pelis RM. Drug transport by the blood-aqueous humor barrier of the eye. Drug Metab Dispos. 2016;44:1675–81.

    Article  PubMed  Google Scholar 

  24. Kuno N, Fujii S. Recent advances in ocular drug delivery systems. Polymers (Basel). 2011;3:193–221.

    Article  CAS  Google Scholar 

  25. Booij JC, Baas DC, Beisekeeva J, Gorgels TGMF, Bergen AAB. The dynamic nature of Bruch’s membrane. Prog Retin Eye Res. 2010;29:1–18.

    Article  CAS  PubMed  Google Scholar 

  26. Watson PG, Young RD. Scleral structure, organisation and disease. A review Exp Eye Res. 2004;78:609–23.

    Article  CAS  PubMed  Google Scholar 

  27. Coudrillier B, Pijanka J, Jefferys J, Sorensen T, Quigley HA, Boote C, et al. Collagen structure and mechanical properties of the human sclera: analysis for the effects of age. J Biomech Eng. 2015;137:41006.

    Article  Google Scholar 

  28. Robinson MR, Lee SS, Kim H, Kim S, Lutz RJ, Galban C, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res. 2006;82:479–87.

    Article  CAS  PubMed  Google Scholar 

  29. Peynshaert K, Devoldere J, De Smedt SC, Remaut K. In vitro and ex vivo models to study drug delivery barriers in the posterior segment of the eye. Adv Drug Deliv Rev. 2018;126:44–57.

    Article  CAS  PubMed  Google Scholar 

  30. Varela-Fernández R, Díaz-Tomé V, Luaces-Rodríguez A, Conde-Penedo A, García-Otero X, Luzardo-álvarez A, et al. Drug delivery to the posterior segment of the eye: biopharmaceutic and pharmacokinetic considerations. Pharmaceutics. 2020;12:1–39.

    Article  Google Scholar 

  31. Cunha-Vaz J, Bernardes R, Lobo C. Blood-retinal barrier. Eur J Ophthalmol. 2011;21:3–9.

    Article  Google Scholar 

  32. Díaz-Coránguez M, Ramos C, Antonetti DA. The inner blood-retinal barrier: cellular basis and development. Vision Res. 2017;139:123–37.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Campbell M, Humphries P. The blood-retina barrier tight junctions and barrier modulation. Adv Exp Med Biol. 2013;763:70–84.

    Article  Google Scholar 

  34. Kim YC, Chiang B, Wu X, Prausnitz MR. Ocular delivery of macromolecules. J Control Release. 2014;190:172–81.

    Article  CAS  PubMed  Google Scholar 

  35. Alshaikh RA, Waeber C, Ryan KB. Polymer based sustained drug delivery to the ocular posterior segment: barriers and future opportunities for the treatment of neovascular pathologies. Adv Drug Deliv Rev. 2022;187:114342.

    Article  CAS  PubMed  Google Scholar 

  36. Kim S, Kim J-H, Jeon O, Kwon IC, Park K. Engineered polymers for advanced drug delivery. Eur J Pharm Biopharm. 2009;71:420–30.

    Article  CAS  PubMed  Google Scholar 

  37. Okabe K, Kimura H, Okabe J, Kato A, Kunou N, Ogura Y. Intraocular tissue distribution of betamethasone after intrascleral administration using a non-biodegradable sustained drug delivery device. Investig Ophthalmol Vis Sci. 2003;44:2702–7.

    Article  Google Scholar 

  38. Okabe J, Kimura H, Kunou N, Okabe K, Kato A, Ogura Y. Biodegradable intrascleral implant for sustained intraocular delivery of betamethasone phosphate. Investig Ophthalmol Vis Sci. 2003;44:740–4.

    Article  Google Scholar 

  39. Van Hove AH, Benoit DSW. Depot-based delivery systems for pro-angiogenic peptides: a review. Front Bioeng Biotechnol. 2015;3:1–18.

    Google Scholar 

  40. Khiev D, Mohamed ZA, Vichare R, Paulson R, Bhatia S, Mohapatra S, et al. Emerging nano-formulations and nanomedicines applications for ocular drug delivery. Nanomaterials. 2021;11:1–19.

    Article  Google Scholar 

  41. Qamar Z, Qizilbash FF, Iqubal MK, Ali A, Narang JK, Ali J, et al. Nano-based drug delivery system: recent strategies for the treatment of ocular disease and future perspective. Recent Pat Drug Deliv Formul. 2019;13:246–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang J, Jiao J, Niu M, Gao X, Zhang G, Yu H, et al. Ten years of knowledge of nano-carrier based drug delivery systems in ophthalmology: current evidence, challenges, and future prospective. Int J Nanomedicine. 2021;16:6497–530.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chingunpituk J. Nanosuspension technology for drug delivery. Walailak J Sci Tech. 2007;4:139–53.

    Google Scholar 

  44. Wang X, Wang S, Zhang Y. Advance of the application of nano-controlled release system in ophthalmic drug delivery. Drug Deliv. 2016;23:2897–901.

    Article  CAS  PubMed  Google Scholar 

  45. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2010;56:827–40.

    Article  Google Scholar 

  46. Garnett E, Mai L, Yang P. Introduction: 1D nanomaterials/nanowires. Chem Rev. 2019;119:8955–7.

    Article  CAS  PubMed  Google Scholar 

  47. Delcassian D, Patel AK, Cortinas AB, Langer R. Drug delivery across length scales. J Drug Target. 2019;27:229–43.

    Article  CAS  PubMed  Google Scholar 

  48. Christiansen AT, Tao SL, Smith M, Wnek GE, Prause JU, Young MJ, et al. Subretinal implantation of electrospun, short nanowire, and smooth poly(ε-caprolactone) Scaffolds to the Subretinal Space of Porcine Eyes. Stem Cells Int. 2012; 2012.

  49. Lockman PR, Mumper RJ, Khan MA, Allen DD. Nanoparticle technology for drug delivery across the blood-brain barrier. Drug Dev Ind Pharm. 2002;28:1–13.

    Article  CAS  PubMed  Google Scholar 

  50. Hee DH, Da EN, Dong HS, Tae WK, Byung CS, Ho SC. Preparation and biodegradation of thermosensitive chitosan hydrogel as a function of pH and temperature. Macromol Res. 2004;12:507–11.

    Article  Google Scholar 

  51. Abrego G, Alvarado H, Souto EB, Guevara B, Bellowa LH, Parra A, et al. Biopharmaceutical profile of pranoprofen-loaded PLGA nanoparticles containing hydrogels for ocular administration. Eur J Pharm Biopharm. 2015;95:261–70.

    Article  CAS  PubMed  Google Scholar 

  52. Barar J, Aghanejad A, Fathi M, Omidi Y. Advanced drug delivery and targeting technologies for the ocular diseases. BioImpacts. 2016;6:49–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. da Silva R, Fialho SL, Siqueira RC, Jorge R, da Silva Cunha Júnior A. Implants as drug delivery devices for the treatment of eye diseases. Brazilian J Pharm Sci. 2010;46:585–95.

  54. Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, et al. Intraocular implants for extended drug delivery: therapeutic applications. Adv Drug Deliv Rev. 2006;58:1182–202.

    Article  CAS  PubMed  Google Scholar 

  55. Eljarrat-Binstock E, Pe’er J, Domb AJ. New techniques for drug delivery to the posterior eye segment. Pharm Res. 2010;27:530–43.

    Article  CAS  PubMed  Google Scholar 

  56. Janoria KG, Gunda S, Boddu SHS, Mitra AK. Novel approaches to retinal drug delivery. Expert Opin Drug Deliv. 2007;4:371–88.

    Article  CAS  PubMed  Google Scholar 

  57. Musch DC, Martin DF, Gordon JF, Davis MD, Kuppermann BD, Group GIS. Treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant. N Engl J Med. 1997;337:83–90.

    Article  Google Scholar 

  58. Yasukawa T, Ogura Y, Kimura H, Sakurai E, Tabata Y. Drug delivery from ocular implants. Expert Opin Drug Deliv. 2006;3:261–73.

    Article  CAS  PubMed  Google Scholar 

  59. del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13:135–43.

  60. Lee SS, Hughes P, Ross AD, Robinson MR. Biodegradable implants for sustained drug release in the eye. Pharm Res. 2010;27:2043–53.

    Article  CAS  PubMed  Google Scholar 

  61. Jiang J, Gill HS, Ghate D, McCarey BE, Patel SR, Edelhauser HF, et al. Coated microneedles for drug delivery to the eye. Investig Ophthalmol Vis Sci. 2007;48:4038–43.

    Article  Google Scholar 

  62. Thakur Singh RR, Tekko I, McAvoy K, McMillan H, Jones D, Donnelly RF. Minimally invasive microneedles for ocular drug delivery. Expert Opin Drug Deliv. 2017;14:525–37.

    Article  CAS  PubMed  Google Scholar 

  63. Jung JH, Chiang B, Grossniklaus HE, Prausnitz MR. Ocular drug delivery targeted by iontophoresis in the suprachoroidal space using a microneedle. J Control Release. 2018;277:14–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lee KJ, Song HB, Cho W, Kim JH, Kim JH, Ryu WH. Intracorneal injection of a detachable hybrid microneedle for sustained drug delivery. Acta Biomater. 2018;80:48–57.

    Article  CAS  PubMed  Google Scholar 

  65. Park SH, Jo DH, Cho CS, Lee KJ, Kim JH, Ryu S, et al. Depthwise-controlled scleral insertion of microneedles for drug delivery to the back of the eye. Eur J Pharm Biopharm. 2018;133:31–41.

    Article  CAS  PubMed  Google Scholar 

  66. Patel SR, Berezovsky DE, McCarey BE, Zarnitsyn V, Edelhauser HF, Prausnitz MR. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Investig Ophthalmol Vis Sci. 2012;53:4433–41.

    Article  CAS  Google Scholar 

  67. Biswal MR, Bhatia S. Carbon dot nanoparticles: exploring the potential use for gene delivery in ophthalmic diseases. Nanomaterials. 2021;11:1–12.

    Article  Google Scholar 

  68. Wang L, Pan H, Gu D, Sun H, Chen K, Tan G, et al. A novel carbon dots/thermo-sensitive in situ gel for a composite ocular drug delivery system: characterization, ex-vivo imaging, and in vivo evaluation. Int J Mol Sci. 2021;22:9934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Zhang Y, Han L, Zhang Y, Chang YQ, Chen XW, He RH, et al. Glutathione-mediated mesoporous carbon as a drug delivery nanocarrier with carbon dots as a cap and fluorescent tracer. Nanotechnology. 2016;27:1–9.

    Article  Google Scholar 

  70. Sharma DS, Wadhwa S, Gulati M, Kadukkattil Ramanunny A, Awasthi A, Singh SK, et al. Recent advances in intraocular and novel drug delivery systems for the treatment of diabetic retinopathy. Expert Opin Drug Deliv. 2021;18:553–76.

    Article  CAS  PubMed  Google Scholar 

  71. Bian F, Shin CS, Wang C, Pflugfelder SC, Acharya G, de Paiva CS. Dexamethasone drug eluting nanowafers control inflammation in alkali-burned corneas associated with dry eye. Investig Ophthalmol Vis Sci. 2016;57:3222–30.

    Article  CAS  Google Scholar 

  72. Sivaram AJ, Rajitha P, Maya S, Jayakumar R, Sabitha M. Nanogels for delivery, imaging and therapy. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015;7:509–33.

    Article  CAS  PubMed  Google Scholar 

  73. Gupta H, Aqil M, Khar RK, Ali A, Bhatnagar A, Mittal G. Nanoparticles laden in situ gel of levofloxacin for enhanced ocular retention. Drug Deliv. 2013;20:306–9.

    Article  CAS  PubMed  Google Scholar 

  74. Sepahvandi A, Eskandari M, Moztarzadeh F. Drug delivery systems to the posterior segment of the eye: implants and nanoparticles. Bionanoscience. 2016;6:276–83.

    Article  Google Scholar 

  75. Kompella UB, Amrite AC, Pacha Ravi R, Durazo SA. Nanomedicines for back of the eye drug delivery, gene delivery, and imaging. Prog Retin Eye Res. 2013;36:172–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Karim K, Mandal A, Biswas N, Guha A, Chatterjee S, Behera M, et al. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1:374–80.

    Article  CAS  Google Scholar 

  77. Shastri DH, Silva AC, Almeida H. Ocular delivery of therapeutic proteins: a review. Pharmaceutics. 2023;15:205.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Puras G, Martínez-Navarrete G, Mashal M, Zárate J, Agirre M, Ojeda E, et al. Protamine/DNA/niosome ternary nonviral vectors for gene delivery to the retina: the role of protamine. Mol Pharm. 2015;12:3658–71.

    Article  CAS  PubMed  Google Scholar 

  79. Elsaid N, Somavarapu S, Jackson TL. Cholesterol-poly(ethylene) glycol nanocarriers for the transscleral delivery of sirolimus. Exp Eye Res. 2014;121:121–9.

    Article  CAS  PubMed  Google Scholar 

  80. Rajala A, Wang Y, Zhu Y, Ranjo-Bishop M, Ma JX, Mao C, et al. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett. 2014;14:5257–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Campos EJ, Campos A, Martins J, Ambrósio AF. Opening eyes to nanomedicine: where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomed Nanotechnol Biol Med. 2017;13:2101–13.

    Article  CAS  Google Scholar 

  82. Nagarwal RC, Kant S, Singh PN, Maiti P, Pandit JK. Polymeric nanoparticulate system: a potential approach for ocular drug delivery. J Control Rel. 2009;136:2–13.

    Article  CAS  Google Scholar 

  83. Li Q, Weng J, Wong SN, Thomas Lee WY, Chow SF. Nanoparticulate drug delivery to the retina. Mol Pharm. 2021;18:506–21.

    Article  CAS  PubMed  Google Scholar 

  84. Sanap SN, Bisen AC, Mishra A, Biswas A, Agrawal S, Yadav KS, Krishna A, Chopra S, Mugale MN, Bhatta RS. QbD based antifungal drug-loaded ophthalmic liposomal formulation for the management of fungal keratitis: In vitro, ex vivo and in vivo pharmacokinetic studies. J Drug Delivery Sci Technol. 2022;74:103517. https://doi.org/10.1016/j.jddst.2022.103517

  85. Nayak K, Misra M. A review on recent drug delivery systems for posterior segment of eye. Biomed Pharmacother. 2018;107:1564–82.

    Article  CAS  PubMed  Google Scholar 

  86. Ramos-Cabrer P, Campos F. Liposomes and nanotechnology in drug development: focus on neurological targets. Int J Nanomed. 2013;8:951–60.

    Article  Google Scholar 

  87. Sapra P, Tyagi P, Allen T. Ligand-targeted liposomes for cancer treatment. Curr Drug Deliv. 2005;2:369–81.

    Article  CAS  PubMed  Google Scholar 

  88. Hagigit T, Abdulrazik M, Orucov F, Valamanesh F, Lambert M, Lambert G, et al. Topical and intravitreous administration of cationic nanoemulsions to deliver antisense oligonucleotides directed towards VEGF KDR receptors to the eye. J Control Release. 2010;145:297–305.

    Article  CAS  PubMed  Google Scholar 

  89. Vandamme TF. Microemulsions as ocular drug delivery systems: recent developments and future challenges. Prog Retin Eye Res. 2002;21:15–34.

    Article  CAS  PubMed  Google Scholar 

  90. Bhanushali RS, Gatne MM, Gaikwad RV, Bajaj AN, Morde MA. Nanoemulsion based intranasal delivery of antimigraine drugs for nose to brain targeting. Indian J Pharm Sci. 2009;71:707–9.

    PubMed Central  Google Scholar 

  91. Pawar VK, Panchal SB, Singh Y, Meher JG, Sharma K, Singh P, et al. Immunotherapeutic vitamin e nanoemulsion synergies the antiproliferative activity of paclitaxel in breast cancer cells via modulating Th1 and Th2 immune response. J Control Release. 2014;196:295–306.

    Article  CAS  PubMed  Google Scholar 

  92. Khani S, Keyhanfar F, Amani A. Design and evaluation of oral nanoemulsion drug delivery system of mebudipine. Drug Deliv. 2016;23:2035–43.

    Article  CAS  PubMed  Google Scholar 

  93. Singh Y, Meher JG, Raval K, Khan FA, Chaurasia M, Jain NK, et al. Nanoemulsion: concepts, development and applications in drug delivery. J Control Release. 2017;252:28–49.

    Article  CAS  PubMed  Google Scholar 

  94. Phytosomes BS. PORACOM Academic Publishers Phytosomes: the new technology for enhancement of bioavailability of botanicals and nutraceuticals. Int J Heal Res. 2009;2:224–5.

    Google Scholar 

  95. Navarro-Partida J, Castro-Castaneda CR, Cruz-Pavlovich FJS, Aceves-Franco LA, Guy TO, Santos A. Lipid-based nanocarriers as topical drug delivery systems for intraocular diseases. Pharmaceutics. 2021;13:1–25.

    Article  Google Scholar 

  96. Lalu L, Tambe V, Pradhan D, Nayak K, Bagchi S, Maheshwari R, et al. Novel nanosystems for the treatment of ocular inflammation: current paradigms and future research directions. J Control Release. 2017;268:19–39.

    Article  CAS  PubMed  Google Scholar 

  97. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21:789–801.

    Article  CAS  PubMed  Google Scholar 

  98. Burhan AM, Klahan B, Cummins W, Andrés-Guerrero V, Byrne ME, O’reilly NJ, et al. Posterior segment ophthalmic drug delivery: role of muco-adhesion with a special focus on chitosan. Pharmaceutics. 2021;13(10):1685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Chopra P, Hao J, Li SK. Sustained release micellar carrier systems for iontophoretic transport of dexamethasone across human sclera. J Control Release. 2012;160:96–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Vadlapudi AD, Cholkar K, Vadlapatla RK, Mitra AK. Aqueous nanomicellar formulation for topical delivery of biotinylated lipid prodrug of acyclovir: formulation development and ocular biocompatibility. J Ocul Pharmacol Ther. 2014;30:49–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Mandal A, Gote V, Pal D, Ogundele A, Mitra AK. Ocular pharmacokinetics of a topical ophthalmic nanomicellar solution of cyclosporine (Cequa®) for dry eye disease. Pharm Res. 2019;36.

  102. Mandal A, Bisht R, Rupenthal ID, Mitra AK. Polymeric micelles for ocular drug delivery: from structural frameworks to recent preclinical studies. J Control Release. 2017;248:96–116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Kedar U, Phutane P, Shidhaye S, Kadam V. Advances in polymeric micelles for drug delivery and tumor targeting. Nanomed Nanotechnol Biol Med. 2010;6:714–29.

    Article  CAS  Google Scholar 

  104. Ameeduzzafar A, Ali J, Fazil M, Qumbar M, Khan N, Ali A. Colloidal drug delivery system: amplify the ocular delivery. Drug Deliv. 2016;23:710–26.

    Article  Google Scholar 

  105. Vandamme TF, Brobeck L. Poly(amidoamine) dendrimers as ophthalmic vehicles for ocular delivery of pilocarpine nitrate and tropicamide. J Control Release. 2005;102:23–38.

    Article  CAS  PubMed  Google Scholar 

  106. Gote V, Sikder S, Sicotte J, Pal D. Ocular drug delivery: present innovations and future challenges. J Pharmacol Exp Ther. 2019;370:602–24.

    Article  CAS  PubMed  Google Scholar 

  107. Bhargava N, Shanmugaiah V, Saxena M, Sharma M, Sethy NK, Singh SK, et al. Nanocerium oxide increases the survival of adult rod and cone photoreceptor in culture by abrogating hydrogen peroxide-induced oxidative stress. Biointerphases. 2016;11:031016.

    Article  PubMed  Google Scholar 

  108. de Araújo RV, da Silva Santos S, Ferreira EI, Giarolla J. New advances in general biomedical applications of PAMAM dendrimers. Molecules. 2018;23:1–27.

    Article  Google Scholar 

  109. Ikuta Y, Aoyagi S, Tanaka Y, Sato K, Inada S, Koseki Y, et al. Creation of nano eye-drops and effective drug delivery to the interior of the eye. Sci Rep. 2017;7:1–10.

    Article  CAS  Google Scholar 

  110. Kambhampati SP, Mishra MK, Mastorakos P, Oh Y, Lutty GA, Kannan RM. Intracellular delivery of dendrimer triamcinolone acetonide conjugates into microglial and human retinal pigment epithelial cells. Eur J Pharm Biopharm. 2015;95:239–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Rieke ER, Amaral J, Becerra SP, Lutz RJ. Sustained subconjunctival protein delivery using a thermosetting gel delivery system. J Ocul Pharmacol Ther. 2010;26:55–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Patel A. Ocular drug delivery systems: an overview. World J Pharmacol. 2013;2:47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bisht R, Nirmal S, Agrawal R, Jain GK, Nirmal J. Injectable in-situ gel depot system for targeted delivery of biologics to the retina. J Drug Target. 2021;29:46–59.

    Article  CAS  PubMed  Google Scholar 

  114. Gandhi A, Paul A, Sen SO, Sen KK. Studies on thermoresponsive polymers: phase behaviour, drug delivery and biomedical applications. Asian J Pharm Sci. 2015;10:99–107.

    Article  Google Scholar 

  115. Wu Y, Liu Y, Li X, Kebebe D, Zhang B, Ren J, et al. Research progress of in-situ gelling ophthalmic drug delivery system. Asian J Pharm Sci. 2019;14:1–15.

    Article  PubMed  Google Scholar 

  116. Vigani B, Rossi S, Sandri G, Bonferoni MC, Caramella CM, Ferrari F. Recent advances in the development of in situ gelling drug delivery systems for non-parenteral administration routes. Pharmaceutics. 2020;12:1–29.

    Article  Google Scholar 

  117. Saraf SA, Alexander A, Khan J, Giri TK, Tripathi DK, et al. Advancement in stimuli triggered in situ gelling delivery for local and systemic route. Expert Opin Drug Deliv. 2012;9:1573–92.

    Article  PubMed  Google Scholar 

  118. Venkatraman S, Joseph RR, Boey YCF. Subconjunctival depot forming formulations for ocular drug delivery. Google Patents; 2019. https://patents.google.com/patent/EP3445335A4/en

  119. Venkatraman et al. Stable liposomal formulations for ocular drug delivery. Google Patents; 2015. https://patents.google.com/patent/US20150190359A1/en

  120. Tundisi LL, Mostaço GB, Carricondo PC, Petri DFS. Hydroxypropyl methylcellulose: physicochemical properties and ocular drug delivery formulations. Eur J Pharm Sci. 2021;159:105736.

    Article  CAS  PubMed  Google Scholar 

  121. Souto EB, Dias-Ferreira J, López-Machado A, Ettcheto M, Cano A, Espuny AC, et al. Advanced formulation approaches for ocular drug delivery: state-of-the-art and recent patents. Pharmaceutics. 2019;11:1–29.

    Article  Google Scholar 

  122. Vadlapudi AD, Patel A, Cholkar K, Mitra AK. Recent patents on emerging therapeutics for the treatment of glaucoma, age related macular degeneration and uveitis. Recent Pat Biomed Eng. 2012;5:83–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Timmins P. Industry update: the latest developments in the field of therapeutic delivery, August 2022. Ther Deliv. 2022;13:429–44.

    Article  CAS  Google Scholar 

  124. García-Estrada P, García-Bon MA, López-Naranjo EJ, Basaldúa-Pérez DN, Santos A, Navarro-Partida J. Polymeric implants for the treatment of intraocular eye diseases: trends in biodegradable and non-biodegradable materials. Pharmaceutics. 2021;13:701.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Shen HH, Chan EC, Lee JH, Bee YS, Lin TW, Dusting GJ, et al. Nanocarriers for treatment of ocular neovascularization in the back of the eye: new vehicles for ophthalmic drug delivery. Nanomedicine. 2015;10:2093–107.

    Article  CAS  PubMed  Google Scholar 

  126. Grumezescu AM. Design of nanostructures for versatile therapeutic applications. Des Nanostructures Versatile Ther Appl. William Andrew; 2018. p. 1–663.

  127. Aukunuru J, Tyagi P, Durairaj C, Kompella UB. Drug suspension development for the back of the eye. Drug Prod Dev Back Eye. Springer; 2011. p. 449–68.

  128. Pooja D, Kadari A, Kulhari H, Sistla R. Lipid-based nanomedicines: current clinical status and future perspectives. Lipid Nanocarriers Drug Target. Elsevier; 2018. p. 509–28.

  129. Kang-Mieler JJ, Rudeen KM, Liu W, Mieler WF. Advances in ocular drug delivery systems. Eye. 2020;34:1371–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Shahiwala A. Applications of polymers in ocular drug delivery. Appl Polym Drug Deliv. INC; 2020. p. 355–92.

  131. Robbie SJ, von Leithner PL, Ju M, Lange CA, King AG, Adamson P, et al. Assessing a novel depot delivery strategy for noninvasive administration of VEGF/PDGF RTK inhibitors for ocular neovascular disease. Investig Ophthalmol Vis Sci. 2013;54:1490–500.

    Article  Google Scholar 

  132. Liao DS, Grossi FV, El Mehdi D, Gerber MR, Brown DM, Heier JS, et al. Complement C3 inhibitor pegcetacoplan for geographic atrophy secondary to age-related macular degeneration: a randomized phase 2 trial. Ophthalmology. 2020;127:186–95.

    Article  PubMed  Google Scholar 

  133. Zhu C, Zhang Y, Pardridge WM. Widespread expression of an exogenous gene in the eye after intravenous administration. Investig Ophthalmol Vis Sci. 2002;43:3075–80.

    Google Scholar 

  134. Rimpelä AK, Reinisalo M, Hellinen L, Grazhdankin E, Kidron H, Urtti A, et al. Implications of melanin binding in ocular drug delivery. Adv Drug Deliv Rev. 2018;126:23–43.

    Article  PubMed  Google Scholar 

  135. Diaferia C, Morelli G, Accardo A. Fmoc-diphenylalanine as a suitable building block for the preparation of hybrid materials and their potential applications. J Mater Chem B. 2019;7:5142–55.

    Article  CAS  PubMed  Google Scholar 

  136. Cespi M, Casettari L, Palmieri GF, Perinelli DR, Bonacucina G. Rheological characterization of polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer (Soluplus®) water dispersions. Colloid Polym Sci. 2014;292:235–41.

    Article  CAS  Google Scholar 

  137. Lakshman D, Chegireddy M, Hanegave GK, Sree KN, Kumar N, Lewis SA, et al. Investigation of drug-polymer miscibility, biorelevant dissolution, and bioavailability improvement of Dolutegravir-polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer solid dispersions. Eur J Pharm Sci. 2020;142:105137.

    Article  CAS  PubMed  Google Scholar 

  138. Sun F, Zheng Z, Lan J, Li X, Li M, Song K, et al. New micelle myricetin formulation for ocular delivery: improved stability, solubility, and ocular anti-inflammatory treatment. Drug Deliv. 2019;26:575–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Koutsoviti M, Siamidi A, Pavlou P, Vlachou M. Recent advances in the excipients used for modified ocular drug delivery. Materials (Basel). 2021;14:4290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Hu KK, Hui YN, Du HJ. Dexamethasone intravitreal implant in the treatment of diabetic macular edema. Int Eye Sci. 2022;22:1992–6.

    Google Scholar 

  141. Iovino C, Mastropasqua R, Lupidi M, Bacherini D, Pellegrini M, Bernabei F, et al. Intravitreal dexamethasone implant as a sustained release drug delivery device for the treatment of ocular diseases: a comprehensive review of the literature. Pharmaceutics. 2020;12:1–26.

    Article  Google Scholar 

  142. Mochizuki M, Ikeda E, Yoshimura K, Hikita N, Nagata Y, Iwamoto A, et al. Treatment of cytomegalovirus retinitis in AIDS with an intraocular sustained-release ganciclovir implant. J Japanese Ophthalmol Soc. 1998;102:515–21.

    CAS  Google Scholar 

  143. Degenring RF, Jonas JB. Intravitreal injection of triamcinolone acetonide as treatment for chronic uveitis. Br J Ophthalmol. 2003;87:361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Sangwan VS, Pearson PA, Paul H, Comstock TL. Use of the fluocinolone acetonide intravitreal implant for the treatment of noninfectious posterior uveitis: 3-year results of a randomized clinical trial in a predominantly Asian population. Ophthalmol Ther. 2015;4:1–19.

    Article  PubMed  Google Scholar 

  145. Hikal M, Celik N, Auffarth GU, Khoramnia R, Kessler LJ, Mayer CS. Intravitreal 0.19 mg fluocinolone acetonide implant in non-infectious uveitis. J Clin Med. 2021;10:3966.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Pearson PA, Comstock TL, Ip M, Callanan D, Morse LS, Ashton P, et al. Fluocinolone acetonide intravitreal implant for diabetic macular edema: a 3-year multicenter, randomized, controlled clinical trial. Ophthalmology. 2011;118:1580–7.

    Article  PubMed  Google Scholar 

  147. Sudhalkar A, Vasavada A, Bhojwani D, Vasavada V, Vasavada S, Vasavada V, et al. Intravitreal dexamethasone implant as an alternative to systemic steroids as prophylaxis for uveitic cataract surgery: a randomized trial. Eye. 2020;34:491–8.

    Article  CAS  PubMed  Google Scholar 

  148. Allyn MM, Luo RH, Hellwarth EB, Swindle-Reilly KE. Considerations for polymers used in ocular drug delivery. Front Med. 2022;8:1–25.

    Article  Google Scholar 

  149. Regillo C, Berger B, Brooks L, Clark WL, Mittra R, Wykoff CC, et al. Archway phase 3 trial of the port delivery system with ranibizumab for neovascular age-related macular degeneration 2-year results. Ophthalmology. 2023;130:735–47.

    Article  PubMed  Google Scholar 

  150. Sobha S. Role of pegaptanib sodium in the treatment of neovascular age-related macular degeneration. Clin Ophthalmol. 2008;2:339.

    Article  Google Scholar 

  151. Schultz C. Safety and efficacy of cyclosporine in the treatment of chronic dry eye. Ophthalmol Eye Dis. 2014;6:OED.S16067.

    Article  Google Scholar 

  152. Yang Y, Lockwood A. Topical ocular drug delivery systems: innovations for an unmet need. Exp Eye Res. 2022;218:109006.

    Article  CAS  PubMed  Google Scholar 

  153. Mazet R, Yaméogo JBG, Wouessidjewe D, Choisnard L, Gèze A. Recent advances in the design of topical ophthalmic delivery systems in the treatment of ocular surface inflammation and their biopharmaceutical evaluation. Pharmaceutics. 2020;12:1–56.

    Article  Google Scholar 

  154. Opitz DL, Harthan JS. Review of azithromycin ophthalmic 1% solution (AzaSite®) for the treatment of ocular infections. Ophthalmol Eye Dis. 2012;4:OED.S7791.

    Article  Google Scholar 

  155. Savaroglu G, Genc L. Determination of micelle formation of ketorolac tromethamine in aqueous media by acoustic measurements. Thermochim Acta. 2013;552:5–9.

    Article  CAS  Google Scholar 

  156. Acharya A, Goudanavar P, Chitti R, Dinnimath BM. Preparation of gellan gum and chitosan based in-situ gel of timolol maleate for ophthalmic drug delivery and evaluation of physicochemical properties and drug release profile. Acta Sci Pharm Sci. 2019;3:68–78.

    Google Scholar 

  157. Agrawal P, Bhardwaj P. Glaucoma drainage implants. Int J Ophthalmol. 2020;13:1318.

    Article  PubMed  PubMed Central  Google Scholar 

  158. King AJ, Shah A, Nikita E, Hu K, Mulvaney CA, Stead R, et al. Subconjunctival draining minimally-invasive glaucoma devices for medically uncontrolled glaucoma. Cochrane Database Syst Rev. 2018;12. https://doi.org/10.1002/14651858.CD012742.pub2

Download references

Acknowledgements

The authors of this review work are thankful to the director, CSIR-Central Drug Research Institute, for providing all the support to complete the work. The authors acknowledge Biorender.com that was used for preparation of graphical abstract. Arpon Biswas, Amol Chhatrapati Bisen, Sristi Agrawal, and Sachin Nashik Sanap are also thankful to the Indian Council of Medical Research for providing the necessary funds. CSIR-CDRI allotted communication number is 10682.

Funding

This work is financially supported by the Indian Council of Medical Research, Senior Research Fellowship. Fellowship Number: 3/1/3(2)/OPH/2020-NCD-II.

Author information

Authors and Affiliations

Authors

Contributions

AB conceived the topic, wrote the manuscript, and created tables and figures. ADC, ACB, SA, SNS, SKV, AM, and SK performed proof reading along with preparation of graphical abstract. RSB revised, edited, and approved the final version of the draft.

Corresponding author

Correspondence to Rabi Sankar Bhatta.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, A., Choudhury, A.D., Bisen, A.C. et al. Trends in Formulation Approaches for Sustained Drug Delivery to the Posterior Segment of the Eye. AAPS PharmSciTech 24, 217 (2023). https://doi.org/10.1208/s12249-023-02673-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02673-x

Keywords

Navigation