Skip to main content

Advertisement

Log in

Drug Delivery Systems to the Posterior Segment of the Eye: Implants and Nanoparticles

  • Published:
BioNanoScience Aims and scope Submit manuscript

Abstract

Intraocular diseases in some cases lead to surgical treatment of posterior segments of the eye. In addition, lack of effective treatment culminates in partial or complete blindness in patients. Drug delivery systems have succeed to overcome anatomic and physiologic barriers and have developed efficacious treatment and targeted delivery of drugs to the posterior segments of the eye. In the field of drug delivery, nanostructured drug delivery systems are proposed to be able to defeat ocular barriers, target retina, and increase the amount of permeated drug with a controlled-release delivery. In this study, we outlined several drug delivery systems for the back of the eye, and available pathways including implants and nanostructures. These systems efficiently transport drugs to the posterior eye.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Resnikoff, S., Pascolini, D., Etya’ale, D., Kocur, I., Pararajasegaram, R., Pokharel, G. P., et al. (2004). Global data on visual impairment in the year 2002. Bulletin of the World Health Organization, 82, 844–851.

    Google Scholar 

  2. Ariga, K., Kawakami, K., Ebara, M., Kotsuchibashi, Y., Ji, Q., Hill, J. P. (2014). Bioinspired nanoarchitectonics as emerging drug delivery systems. New Journal of Chemistry, 38, 5149–5163.

    Article  Google Scholar 

  3. Patel, G. C., & Dalwadi, C. A. (2013). Recent patents on stimuli responsive hydrogel drug delivery system. Recent Patents on Drug Delivery & Formulation, 7, 206–215.

    Article  Google Scholar 

  4. Buwalda, S. J., Boere, K. W., Dijkstra, P. J., Feijen, J., Vermonden, T., Hennink, W. E. (2014). Hydrogels in a historical perspective: from simple networks to smart materials. Journal of controlled release: Official journal of the Controlled Release Society, 190, 254–273.

    Article  Google Scholar 

  5. Tomatsu, I., Peng, K., Kros, A. (2011). Photoresponsive hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 63, 1257–1266.

    Article  Google Scholar 

  6. Sortino, S. (2012). Photoactivated nanomaterials for biomedical release applications. Journal of Materials Chemistry, 22, 301–318.

    Article  Google Scholar 

  7. Neffe, A. T., Wischke, C., Racheva, M., Lendlein, A. (2013). Progress in biopolymer-based biomaterials and their application in controlled drug delivery. Expert Review of Medical Devices, 10, 813–833.

    Article  Google Scholar 

  8. Thrimawithana, T. R., Young, S., Bunt, C. R., Green, C., Alany, R. G. (2011). Drug delivery to the posterior segment of the eye. Drug Discovery Today, 16, 270–277.

    Article  Google Scholar 

  9. Meng, E., & Hoang, T. (2012). MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications. Advanced Drug Delivery Reviews, 64, 1628–1638.

    Article  Google Scholar 

  10. Mura, S., Nicolas, J., Couvreur, P. (2013). Stimuli-responsive nanocarriers for drug delivery. Nature Materials, 12(11), 991–1003.

    Article  Google Scholar 

  11. Smith, T. J., Pearson, P. A., Blandford, D. L., Brown, J. D., Goins, K. A., Hollins, J. L., Schmeisser, E. T., Glavinos, P., Baldwin, L. B., Ashton, P. (1992). Intravitreal sustained-release ganciclovir. Archiv für Ophthalmologie, 110, 255–258.

    Article  Google Scholar 

  12. Kanski, J. J., & Bowling, B. (2012). Synopsis of clinical ophthalmology, expert consult-online and print, 3: Synopsis of clinical ophthalmology. Elsevier health sciences.

    Google Scholar 

  13. Edelhauser, H. F., Rowe-Rendleman, C. L., Robinson, M. R., Dawson, D. G., Chader, G. J., Grossniklaus, H. E., et al. (2010). Ophthalmic drug delivery systems for the treatment of retinal diseases: basic research to clinical applications. Investigative Ophthalmology & Visual Science, 51, 5403–5420.

  14. Kompella, U. B., & Lee, V. H. L. (1999). Barriers to drug transport in ocular epithelia. In G. L. Amidon, P. I. Lee, & E. M. Topp (Eds.), Transport processes in pharmaceutical systems (pp. 317–376). New York: Marcel Dekker.

    Google Scholar 

  15. Gaudana, R., Ananthula, H. K., Parenky, A., Mitra, A. K. (2010). Ocular drug delivery. The AAPS Journal, 12, 348–360.

    Article  Google Scholar 

  16. Souza, J. G., Dias, K., Pereira, T. A., Bernardi, D. S., Lopez, R. F. (2014). Topical delivery of ocular therapeutics: carrier systems and physical methods. Journal of Pharmacy and Pharmacology, 66(4), 507–530. doi:10.1111/jphp.12132.

  17. Taís, G., & Kalia, Y. N. (2014). Topical iontophoresis for targeted local drug delivery to the eye and skin. Focal Controlled Drug Delivery (pp. 263-248). New York: Springer US.

  18. Myles, M. E., Loutsch, J. M., Higaki, S., Hill, J. M. (2002). Ocular iontophoresis. In A. K. Mitra (Ed.), Ophthalmic drug delivery systems (pp. 309–334). New York: Marcel Dekker.

    Google Scholar 

  19. Isowaki, A., et al. (2003). Drug delivery to the eye with a transdermal therapeutic system. Biological and Pharmaceutical Bulletin, 26(1), 69–72.

    Article  Google Scholar 

  20. Mahnama, A., Nourbakhsh, A., Ghorbaniasl, G. (2014). A survey on the applications of implantable micropump systems in drug delivery. Current Drug Delivery, 11(1), 123–131.

    Article  Google Scholar 

  21. Sen, H. N., et al. (2014). Periocular corticosteroid injections in uveitis: effects and complications. Ophthalmology, 121(11), 2275–2286.

    Article  Google Scholar 

  22. Kaur, I. P., et al. (2004). Vesicular systems in ocular drug delivery: an overview. International Journal of Pharmaceutics, 269.1, 1–14.

    Article  Google Scholar 

  23. Boddu, S. H. S., & Nesamony, J. (2013). Utility of transporter/receptor(s) in drug delivery to the eye. World Journal of Pharmacology, 2, 1–17.

    Article  Google Scholar 

  24. Bansal, R., Bansal, P., Kulkarni, P., Gupta, V., Sharma, A., Gupta, A. (2012). Wandering Ozurdex® implant. Journal Ophthalmic Inflammation Infectious, 2, 1–5.

    Article  Google Scholar 

  25. Kuno, N., & Fujii, S. (2010). Biodegradable intraocular therapies for retinal disorders: progress to date. Drugs & Aging, 27, 117–134.

    Article  Google Scholar 

  26. Kane, F. E., et al. (2008). Iluvien™: a new sustained delivery technology for posterior eye disease. Expert Opinion Drug Delivery, 5(9), 1039-1046.

  27. Kost, J., & Langer, R. (2012). Responsive polymeric delivery systems. Advanced Drug Delivery Reviews, 64, 327–341.

    Article  Google Scholar 

  28. Coppeta, J. R., Horne, K. N., Poutiatine, A., Santini, Jr, J. T., Scholl, J. A., Shams, N., Spooner, G. J., Stevenson, C. L. Low-permeability, laser-activated drug delivery device. US Patent 13/023,370 B1, 09/02/2012.

  29. Callanan, D. G., et al. (2008). Treatment of posterior uveitis with a fluocinolone acetonide implant: three-year clinical trial results. Archives of Ophthalmology, 126.9, 1191.

    Google Scholar 

  30. Peng, Y., Ang, M., Foo, S., Lee, W. S., Ma, Z., Venkatraman, S. S., Wong, T. T. (2011). Biocompatibility and biodegradation studies of subconjunctival implants in rabbit eyes. PloS One, 6, e22507.

    Article  Google Scholar 

  31. Honda, M., et al. (2013). Liposomes and nanotechnology in drug development: focus on ocular targets. International Journal of Nanomedicine, 8, 495.

    Article  Google Scholar 

  32. Wanner, M., et al. (2015). Use of photodynamic therapy and sterile water to target adipose tissue. Dermatologic Surgery, 41(7), 803–811.

    Article  Google Scholar 

  33. Seyfoddin, A., Shaw, J., Al-Kassas, R. (2010). Solid lipid nanoparticles for ocular drug delivery. Drug Delivery, 17, 1–23.

    Article  Google Scholar 

  34. Puglia, B. C., et al. (2015). Lipid nanocarriers (LNC) and their applications in ocular drug delivery. Current Medicinal Chemistry, 22(13), 1589–1602.

    Article  Google Scholar 

  35. Neslihan, Ü.-O., et al. (2015). Novel nanostructured lipid carrier-based inserts for controlled ocular drug delivery: Evaluation of corneal bioavailability and treatment efficacy in bacterial keratitis. Expert opinion on drug delivery ahead-of-print: 1-17.

  36. Miyata, K., Christie, R. J., Kataoka, K. (2011). Polymeric micelles for nano-scale drug delivery. Reactive and Functional Polymers, 71(3), 227–234.

    Article  Google Scholar 

  37. Di Tommasso, C., et al. (2012). Novel micelle carriers for cyclosporin a topical ocular delivery: in vivo cornea penetration, ocular distribution and efficacy studies. European Journal of Pharmaceutics and Biopharmaceutics, 81(2), 257–264.

  38. Mitra, A. K., Velageleti, P. R., Grau, U. M. (2015). Topical drug delivery systems for ophthalmic use. U.S. Patent No. 9,017,725. 28 Apr.

  39. Souza, J. G., et al. (2014). Topical delivery of ocular therapeutics: carrier systems and physical methods. Journal of Pharmacy and Pharmacology, 66(4), 507–530.

    Article  Google Scholar 

  40. Shakeel, F., & Ramadan, W. (2010). Transdermal delivery of anticancer drug caffeine from water-in-oil nanoemulsions. Colloids and Surfaces B: Biointerfaces, 75, 356–362.

    Article  Google Scholar 

  41. Reimondez-Troitiño, S., et al. (2015). Nanotherapies for the treatment of ocular diseases. European Journal of Pharmaceutics and Biopharmaceutics. 95, 279–293. Special Issue on Ocular Drug Deliver.

  42. Roya, Y., Vasilev, K., & Simovic, S. (2014). Nanosuspension technologies for delivery of poorly soluble drugs. Journal of Nanomaterials, 2015(2015), 216375. 13 pages. http://dx.doi.org/10.1155/2015/216375.

  43. Zhao, X., et al. (2014). Enhanced bioavailability of orally administered flurbiprofen by combined use of hydroxypropyl-cyclodextrin and poly (alkyl-cyanoacrylate) nanoparticles. European Journal of Drug Metabolism and Pharmacokinetics, 39(1), 61–67.

    Article  Google Scholar 

  44. O’Rourke, M., & Hanes, J. (2014). Ocular drug delivery via micro-and nanoparticles. Retina Today, 84-87.

  45. Bourges, J.-L., et al. (2003). Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Investigative Ophthalmology & Visual Science, 44(8), 3562–3569.

    Article  Google Scholar 

  46. Costa, J. R., et al. (2015). Potential chitosan-coated alginate nanoparticles for ocular delivery of daptomycin. European Journal of Clinical Microbiology & Infectious Diseases, 34(6), 1255–1262.

    Article  Google Scholar 

  47. Mintzer, M. A., & Grinstaff, M. W. (2011). Biomedical applications of dendrimers: a tutorial. Chemical Society Reviews, 40(1), 173–190.

    Article  Google Scholar 

  48. Kambhampati, S. P., & Kannan, R. M. (2013). Dendrimer nanoparticles for ocular drug delivery. Journal of Ocular Pharmacology and Therapeutics, 29(2), 151–165.

    Article  Google Scholar 

  49. Loftsson, T. (2014). Self-assembled cyclodextrin nanoparticles and drug delivery. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 80(1–2), 1–7.

    Article  Google Scholar 

  50. Rodriguez-Aller, Marta, et al. (2015). New prostaglandin analog formulation for glaucoma treatment containing cyclodextrins for improved stability, solubility and ocular tolerance. European Journal of Pharmaceutics and Biopharmaceutics, 95, 203–214.

  51. Hashim, A., Ibrahim, I., et al. (2014). Potential use of niosomal hydrogel as an ocular delivery system for atenolol. Biological and Pharmaceutical Bulletin, 37(4), 541–551.

    Article  Google Scholar 

  52. Abdelkader, H., et al. (2012). Niosomes and discomes for ocular delivery of naltrexone hydrochloride: morphological, rheological, spreading properties and photo-protective effects. International Journal of Pharmaceutics, 433(1), 142–148.

    Article  Google Scholar 

  53. Abdelkader, H., et al. (2011). Design and evaluation of controlled‐release niosomes and discomes for naltrexone hydrochloride ocular delivery. Journal of Pharmaceutical Sciences, 100(5), 1833–1846.

    Article  Google Scholar 

  54. Vinogradov, S. V., & Thulani, S. (2013). Nanogel–drug conjugates: a step towards increasing the chemotherapeutic efficacy. Nanomedicine (London, England), 8.8, 1229.

    Article  Google Scholar 

  55. Nathan, R. (2012). Hydrogel nanocompsites for ophthalmic applications. U.S. Patent No. 8,153,156. 10 Apr.

  56. Averick, S. E., et al. (2012). Preparation of cationic nanogels for nucleic acid delivery. Biomacromolecules, 13(11), 3445–3449.

    Article  Google Scholar 

  57. Yasin, M. N., et al. (2014). Implants for drug delivery to the posterior segment of the eye: a focus onstimuli-responsive and tunable release systems. Journal of Controlled Release, 196, 208–221.

    Article  Google Scholar 

  58. Indu Pal, K., et al. (2014). Nanotherapy for posterior eye diseases. Journal of Controlled Release, 193, 100–112.

    Article  Google Scholar 

  59. Sahoo, S. K., et al. (2008). Nanotechnology in ocular drug delivery. Drug Discovery Today, 13(3/4), 144-151.

  60. Nagai, N., et al. (2011). Evaluation of ocular tissue distribution of drugs delivered transsclerally from a non-biodegradable polymeric capsule device. Investigative Ophthalmology & Visual Science, 52(14), 3236–3236.

    MathSciNet  Google Scholar 

  61. Liechty, W. B., Kryscio, D. R., Slaughter, B. V., Peppas, N. A. (2010). Polymers for drug delivery systems. Annual Review Chemistry Biomolecular Engineering, 1, 149–173.

    Article  Google Scholar 

  62. Ong, F. S., Kuo, J. Z., Wu, W., Cheng, C., Blackwell, W. B., Taylor, B. L., et al. (2013). Personalized medicine in ophthalmology: from pharmacogenetic biomarkers to therapeutic and dosage optimization. Journal of Perinatal Medicinea, 3, 40–69.

  63. Molokhia, S. A., Sant, H., Simonis, J., Bishop, C. J., Burr, R. M., Gale, B. K., Ambati, B. K. (2010). The capsule drug device: novel approach for drug delivery to the eye. Vision Research, 50, 680–685.

    Article  Google Scholar 

  64. Laganovska, G., et al. (2012). First-in-human results of a refillable drug delivery implant providing release of ranibizumab in patients with neovascular AMD. Paper presented at American Academy of Ophthalmology, Retina Subspecialty Day; November 9, 2012; Chicago IL.

  65. Cima, M. J., et al. (2014). Single compartment drug delivery. Journal of Controlled Release, 190, 157–171.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahnaz Eskandari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sepahvandi, A., Eskandari, M. & Moztarzadeh, F. Drug Delivery Systems to the Posterior Segment of the Eye: Implants and Nanoparticles. BioNanoSci. 6, 276–283 (2016). https://doi.org/10.1007/s12668-016-0219-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12668-016-0219-8

Keywords

Navigation