Skip to main content

Advertisement

Log in

New Techniques for Drug Delivery to the Posterior Eye Segment

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Ocular drug delivery has become an increasingly important field of research especially when treating posterior segment diseases of the eye, such as age-related macular degeneration, diabetic retinopathy, posterior uveitis and retinitis. These diseases are the leading causes of vision loss in developed countries which require repeated long-term administration of therapeutic agents. New drugs for the medication of the posterior ocular segment have emerged, but most drugs are delivered by repeated intravitreal injections associated with ocular complications. Advances in ocular drug delivery system research are expected to provide new tools for the treatment of the posterior segment diseases, providing improved drug penetration, prolonged action, higher efficacy, improved safety and less invasive administration, resulting in higher patient compliance. This review provides an insight into the recent progress and trends in ocular drug delivery systems for treating posterior eye segment diseases, with an emphasis on transscleral iontophoresis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Del Amo EM, Urtti A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 2008;13:135–43.

    PubMed  Google Scholar 

  2. Ranta VP, Urtti A. Transscleral drug delivery to the posterior eye: Prospects of pharmacokinetic modeling. Adv Drug Deliv Rev. 2006;58:1164–81.

    CAS  PubMed  Google Scholar 

  3. Chastain JE. General considerations in ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker, Inc.; 2003. p. 59–107.

    Google Scholar 

  4. Ali Y, Lehmussaari K. Industrial perspective in ocular drug delivery. Advanced Drug Delivery Reviews. 2006;58:1258–68.

    CAS  PubMed  Google Scholar 

  5. Ding SL. Recent developments in ophthalmic drug delivery. Pharm Sci Technol Today. 1998;1:328–35.

    CAS  Google Scholar 

  6. Sultana Y, Jain R, Aqil M, Ali A. Review of ocular drug delivery. Current Drug Delivery. 2006;3:207–17.

    CAS  PubMed  Google Scholar 

  7. K. M. Bapatla and G. Hecht. Ophthalmic ointments and suspensions. In H. A. Lieberman, R. M. Rieger, and G. S. Banker (eds.), Pharmaceutical dosage forms: disperse systems, Marcel Dekker, Inc., 2006, pp. 357–397

  8. Schoenwald RD. Ocular drug delivery — pharmacokinetic considerations. Clin Pharmacokinet. 1990;18:225–69.

    Google Scholar 

  9. Lee VHL, Robinson JR. Topical ocular drug delivery: recent developments and future challenges. J Ocul Pharmacol. 1986;2:67.

    CAS  PubMed  Google Scholar 

  10. Davies NM. Biopharmaceutical considerations in topical ocular drug delivery. Clin Exp Pharm Phys. 2000;27:558–62.

    CAS  Google Scholar 

  11. Ellis PP. Basic considerations. In: Ellis PP, editor. Ocular therapeutics and pharmacology. St Louis, Missouri: The C.V. Mosby Company; 1985. p. 3–27.

    Google Scholar 

  12. Rabinovich-Guilatt L, Couvreur P, Lambert G, Dubernet C. Cationic vectors in ocular drug delivery. J Drug Target. 2004;12:623–33.

    CAS  PubMed  Google Scholar 

  13. Robinson JR. Ocular anatomy and physiology relevant to ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker; 1993. p. 29–57.

    Google Scholar 

  14. Le Bourlais C, Acar L, Zia H, Sado PA, Needham T, Leverge R. Ophthalmic drug delivery systems — Recent advances. Prog Retin Eye Res. 1998;17:33–58.

    CAS  PubMed  Google Scholar 

  15. Eljarrat-Binstock E, Frucht-Pery J, Domb A. Iontophoresis for ocular drug delivery. In: Touitou E, Barry BW, editors. Enhancement in drug delivery. Boca Raton: CRC press; 2006.

    Google Scholar 

  16. Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: Emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57:2063–79.

    CAS  PubMed  Google Scholar 

  17. Sasaki H, Yamamura K, Mukai T, Nishida K, Nakamura J, Nakashima M, et al. Enhancement of ocular drug penetration. Crit Rev Ther Drug Carrier Syst. 1999;16:85–146.

    CAS  PubMed  Google Scholar 

  18. Raviola G. The stractural basis of the blod-ocular barriers. Exp Eye Res. 1977;25:27.

    PubMed  Google Scholar 

  19. Weijtens O, Feron EJ, Schoemaker RC, Cohen AF, Lentjes E, Romijn F, et al. High concentration of dexamethasone in aqueous and vitreous after subconjunctival injection. American Journal of Ophthalmology. 1999;128:192–7.

    CAS  PubMed  Google Scholar 

  20. Weijtens O, Schoemaker RC, Romijn F, Cohen AF, Lentjes E, Van Meurs JC. Intraocular penetration and systemic absorption after topical application of dexamethasone disodium phosphate. Ophthalmology. 2002;109:1887–91.

    PubMed  Google Scholar 

  21. Lee TWY, Robinson JR. Drug delivery to the posterior segment of the eye: some insights on the penetration pathways after subconjunctival injection. J Ocul Pharm Ther. 2001;17:565–72.

    CAS  Google Scholar 

  22. Kothuri MK, Pinnamaneni S, Das NG. and D. S. K. Microparticles and nanoparticles in ocular drug delivery. In: Mitra AK, editor. Ophthalmic drug delivery systems. NY: Marcel Dekker, Inc.; 2003. p. 437–66.

    Google Scholar 

  23. Baeyens V, Percicot C, Zignani M, Deshpande AA, Kaltsatos V, Gurny R. Ocular drug delivery in veterinary medicine. Adv Drug Deliv Rev. 1997;28:335–61.

    CAS  PubMed  Google Scholar 

  24. Mitra AK, Anand BS, Duvvuri S. Drug delivery to the eye. Advances in Organ Biology. 2006;10:307–51.

    CAS  Google Scholar 

  25. Jaffe GJ, Martin D, Callanan D, Pearson PA, Levy B, Comstock T. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis - Thirty-four-week results of a multicenter randomized clinical study. Ophthalmology. 2006;113:1020–7.

    PubMed  Google Scholar 

  26. Guidetti B, Azema J, Malet-Martino M, Martino R. Delivery systems for the treatment of proliferative vitreoretinopathy: materials, devices and colloidal carriers. Current Drug Delivery. 2008;5:7–19.

    CAS  PubMed  Google Scholar 

  27. Bourges JL, Bloquel C, Thomas A, Froussart F, Bochot A, Azan F, et al. Intraocular implants for extended drug delivery: Therapeutic applications. Advanced Drug Delivery Reviews. 2006;58:1182–202.

    CAS  PubMed  Google Scholar 

  28. Kane FE, Burdan J, Cutino A, Green KE. Iluvien (TM): a new sustained delivery technology for posterior eye disease. Expert Opinion on Drug Delivery. 2008;5:1039–46.

    CAS  PubMed  Google Scholar 

  29. Kato A, Kimura H, Okabe K, Okabe J, Kunou N, Ogura Y. Feasibility of drug delivery to the posterior pole of the rabbit eye with an episderal implant. Invest Ophthalmol Vis Sci. 2004;45:238–44.

    PubMed  Google Scholar 

  30. Heller J. Ocular delivery using poly(ortho esters). Advanced Drug Delivery Reviews. 2005;57:2053–62.

    CAS  PubMed  Google Scholar 

  31. Kuppermann BD, Blumenkranz MS, Haller JA, Williams GA, Weinberg DV, Chou C, et al. Randomized controlled study of an intravitreous dexamethasone drug delivery system in patients with persistent macular edema. Archives of Ophthalmology. 2007;125:309–17.

    CAS  PubMed  Google Scholar 

  32. Bochot A, Couvreur P, Fattal E. Intravitreal administration of antisense oligonucleotides: Potential of liposomal delivery. Progress in Retinal and Eye Research. 2000;19:131–47.

    CAS  PubMed  Google Scholar 

  33. Yasukawa T, Ogura Y, Tabata Y, Kimura H, Wiedemann P, Honda Y. Drug delivery systems for vitreoretinal diseases. Progress in Retinal and Eye Research. 2004;23:253–81.

    CAS  PubMed  Google Scholar 

  34. Cheng LY, Hostetler KY, Chaidhawangul S, Gardner MF, Beadle JR, Keefe KS, et al. Intravitreal toxicology and duration of efficacy of a novel antiviral lipid prodrug of ganciclovir in liposome formulation. Invest Ophthalmol Vis Sci. 2000;41:1523–32.

    CAS  PubMed  Google Scholar 

  35. Ruiz-Moreno JM, Montero JA, Arias L, Sanabria MR, Coco R, Silva R, et al. Photodynamic therapy in subfoveal and juxtafoveal idiopathic and postinflammatory choroidal neovascularization. Acta Ophthalmol Scand. 2006;84:743–8.

    PubMed  Google Scholar 

  36. Woodburn KW, Engelman CJ, Blumenkranz MS. CME photodynamic therapy for choroidal neovascularization — A review. Retin-J Retin Vitr Dis. 2002;22:391–405.

    Google Scholar 

  37. Kreuter J. Nanoparticles as bioadhesive ocular drug delivery systems. In: Lenaerts VM, Gurny R, editors. Bioadhesive Drug Delivery Systems. Boca Raton, Florida: CRC Press; 1990. p. 203–12.

    Google Scholar 

  38. Calvo P, Vila-Jato JL, Alonso MJ. Comparative in vitro evaluation of several colloidal systems, nanoparticles, nanocapsules and nanoemulsions, as ocular drug carriers. J Pharm Sci. 1996;85:530–6.

    CAS  PubMed  Google Scholar 

  39. De Campos AM, Sanchez A, Alonso MJ. Chitosan nanoparticles: a new vehicle for the improvement of the delivery of drugs to the ocular surface. Application to cyclosporin A, Int J Pharm. 2001;224:159–68.

    Google Scholar 

  40. Fitzgerald P, Hadgraft J, Wilson CG. A gamma sintigraphic evaluation of the precorneal residence of liposomal formulations in the rabbit. J Pharm Pharmacol. 1987;39:487–90.

    CAS  PubMed  Google Scholar 

  41. Gurny R, Boye T, Ibrahim H. Ocular therapy with nanoparticulate systems for controlled drug delivery. J Control Release. 1985;2:353–61.

    CAS  Google Scholar 

  42. Diepold RW, Kreuter J, Himber J, Gurny R, Lee VHL, Robinson JR, et al. Comparison of different models for the testing of pilocarpine eyedrops using conventional eyedrops as a novel depot formulation (nanoparticles). Graefe’s Arch Clin Exp Ophthalmol. 1989;227:188–93.

    CAS  Google Scholar 

  43. Zimmer AK, Chetoni P, Saettone MF, Zerbe H, Kreuter J. Evaluation of Pilocarpine-Loaded Albumin Particles as Controlled Drug-Delivery Systems for the Eye. 2. Coadministration with Bioadhesive and Viscous Polymers. J Control Release. 1995;33:31–46.

    CAS  Google Scholar 

  44. Vandervoort J, Ludwig A. Preparation and evaluation of drug-loaded gelatin nanoparticles for topical ophthalmic use. Eur J Pharm Biopharm. 2004;57:251–61.

    CAS  PubMed  Google Scholar 

  45. Marchal-Heussler L, Fessi H, Devissaguet JP, Hoffman M, Maincent P. Colloidal drug delivery systems for the eye. A comparison of the efficacy of three different polymers: polyisobutylcyanoacrylate, polylactic-coglycolic acid, poly-epsilon-caprolactone. Pharm Sci. 1992;2:98–104.

    CAS  Google Scholar 

  46. Merodio M, Irache JM, Valamanesh F, Mirshahi M. Ocular disposition and tolerance of ganciclovir-loaded albumin nanoparticles after intravitreal injection in rats. Biomaterials. 2002;23:1587–94.

    CAS  PubMed  Google Scholar 

  47. Losa C, Calvo P, Castro E, Vilajato JL, Alonso MJ. Improvement of Ocular Penetration of Amikacin Sulfate by Association to Poly(Butylcyanoacrylate) Nanoparticles. J Pharm Pharmacol. 1991;43:548–52.

    CAS  PubMed  Google Scholar 

  48. Alonso MJ, Losu C, Seijo B, Torres D, Vila-Jato JL. Ner ophthalmic drug release systems: formulation and ocular disposition of amikacin loaded nanoparticles. 5th Int Conf Pharm Tech. 1989;1:77–83.

    CAS  Google Scholar 

  49. Pignatello R, Bucolo C, Ferrara P, Maltese A, Puleo A, Puglisi G. Eudragit RS100® nanosuspensions for the ophthalmic controlled delivery of ibuprofen. Eur J Pharm Sci. 2002;16:53–61.

    CAS  PubMed  Google Scholar 

  50. Calvo P, Alonso MJ, Vila-Jato JL, Robinson JR. Improved ocular bioavailability of indomethacin by novel ocular drug carriers. J Pharm Pharmacol. 1996;48:1147–52.

    CAS  PubMed  Google Scholar 

  51. Bucolo C, Maltese A, Maugeri F, Busa B, Puglisi G, Pignatello R. Eudragit RL100 nanoparticle system for the ophthalmic delivery of cloricromene. J Pharm Pharmacol. 2004;56:841–6.

    CAS  PubMed  Google Scholar 

  52. Calvo P, Sanchez A, Martinez J, Lopez MI, Calonge M, Pastor JC, et al. Polyester nanocapsules as new topical ocular delivery systems for cyclosporin A. Pharm Res. 1996;13:311–5.

    CAS  PubMed  Google Scholar 

  53. Le Bourlais C, Chevanne F, Turlin B, Acar L, Zia H, Sado PA, et al. Effect of cyclosporin A formulations on bovine corneal absorption: ex-vivo study. J microencapsul. 1997;14:457–67.

    PubMed  Google Scholar 

  54. De Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye-Goldenberg B, Naud MC, et al. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol. 2004;34:3702–12.

    PubMed  Google Scholar 

  55. Bejjani R, Benezra D, Cohen H, Rieger J, Andrieu C, Jeanny JC, et al. Nanoparticles for gene delivery to retinal pigment epithelial cells. Mol Vis. 2005;11:124–32.

    CAS  PubMed  Google Scholar 

  56. Bejjani RA, Behar-Cohen F, Benezra D, Gurny R, Delie F. Polymeric nanoparticles for drug delivery to the posterior segment of the eye. Chimia. 2005;59:344–7.

    Google Scholar 

  57. Bourges JL, Gautier SE, Delie F, Bejjani RA, Jeanny JC, Gurny R, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci. 2003;44:3562–9.

    PubMed  Google Scholar 

  58. Eljarrat-Binstock E, Domb AJ. Nanoparticles in ocular drug delivery. In: Domb AJ, Tabata Y, Ravi Kumar MNV, Farber S, editors. Nanoparticles for pharmaceutical applications. California: American Scientific Publishers; 2007. p. 367–76.

    Google Scholar 

  59. Hsu J. Drug delivery methods for posterior segment disease. Curr Opin Ophthalmol. 2007;18:235–9.

    PubMed  Google Scholar 

  60. Moritera T, Ogura Y, Yoshimura N, Honda Y, Wada R, Hyon SH, et al. Biodegradable Microspheres Containing Adriamycin in the Treatment of Proliferative Vitreoretinopathy. Invest Ophthalmol Vis Sci. 1992;33:3125–30.

    CAS  PubMed  Google Scholar 

  61. Peyman GA, Conway M, Khoobehi B, Soike K. Clearance of Microsphere-Entrapped 5-Fluorouracil and Cytosine-Arabinoside from the Vitreous of Primates. Int Ophthalmol. 1992;16:109–13.

    CAS  PubMed  Google Scholar 

  62. Moritera T, Ogura Y, Honda Y, Wada R, Hyon SH, Ikada Y. Microspheres of Biodegradable Polymers as a Drug-Delivery System in the Vitreous. Invest Ophthalmol Vis Sci. 1991;32:1785–90.

    CAS  PubMed  Google Scholar 

  63. Saishin Y, Silva RL, Saishin Y, Callahan K, Schoch C, Ahlheim M, et al. Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci. 2003;44:4989–93.

    PubMed  Google Scholar 

  64. Carrasquillo KG, Ricker JA, Rigas IK, Miller JW, Gragoudas ES, Adamis AP. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic) acid microspheres. Invest Ophthalmol Vis Sci. 2003;44:290–9.

    PubMed  Google Scholar 

  65. Conway BR. Recent patents on ocular drug delivery systems. Recent Patents on Drug Delivery & Formulation. 2008;2:1–8.

    CAS  Google Scholar 

  66. G. P. Cook, L. Burgess, J. Wing, T. Dowie, P. Calias, D. T. Shima, C. K., D. Allison, S. Volker, and P. Schmidt. Preparation and characterization of pegaptanib sustained release microsphere formulations for intraocular application, Invest Ophthalmol Vis Sci. 47:E-Abstract 5123 (2006).

  67. Mainardes RM, Urban MCC, Cinto PO, Khalil NM, Chaud MV, Evangelista RC, et al. Colloidal carriers for ophthalmic drug delivery. Curr Drug Targets. 2005;6:363–71.

    CAS  PubMed  Google Scholar 

  68. Fattal E, Bochot A. Ocular delivery of nucleic acids: antisense oligonucleotides, aptamers and siRNA. Advanced Drug Delivery Reviews. 2006;58:1203–23.

    CAS  PubMed  Google Scholar 

  69. Dos Santos ALG, Bochet A, Fattal E. Intraocular delivery of oligonucleotides. Current Pharmaceutical Biotechnology. 2005;6:7–15.

    Google Scholar 

  70. Cai X, Conley S, Naash M. Nanoparticle applications in ocular gene therapy. Vision Research. 2008;48:319–24.

    CAS  PubMed  Google Scholar 

  71. Paasonen L, Laaksonen T, Johans C, Yliperttula M, Kontturi K, Urth A. Gold nanoparticles enable selective light-induced contents release from liposomes. Journal of Controlled Release. 2007;122:86–93.

    CAS  PubMed  Google Scholar 

  72. Irache JM, Merodio M, Arnedo A, Camapanero MA, Mirshahi M, Espuelas S. Albumin nanoparticles for the intravitreal delivery of anticytomegaloviral drugs. Mini-Reviews in Medicinal Chemistry. 2005;5:293–305.

    CAS  PubMed  Google Scholar 

  73. Bochot A, Fattal E, Boutet V, Deverre JR, Jeanny JC, Chacun H, et al. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci. 2002;43:253–9.

    PubMed  Google Scholar 

  74. L. Pitkanen, J. Pelkonen, M. Ruponen, S. Ronkko, and A. Urtti. Neural retina limits the nonviral gene transfer to retinal pigment epithelium in an in vitro bovine eye model, Aaps Journal. 6:(2004).

  75. Pitkanen L, Ruponen M, Nieminen J, Urtti A. Vitreous is a barrier in nonviral gene transfer by cationic lipids and polymers. Pharmaceutical Research. 2003;20:576–83.

    PubMed  Google Scholar 

  76. Ng EWM, Shima DT, Calias P, Cunningham ET, Guyer DR, Adamis AP. Pegaptanib, a targeted anti-VEGF aptamer for ocular vascular disease. Nature Reviews Drug Discovery. 2006;5:123–32.

    CAS  PubMed  Google Scholar 

  77. Eljarrat-Binstock E, Domb AJ. Iontophoresis: A non-invasive ocular drug delivery. J Control Release. 2006;110:479–89.

    CAS  PubMed  Google Scholar 

  78. Kasting GB. Theoretical models for iontophoretic delivery. Adv Drug Deliv Rev. 1992;9:177–99.

    CAS  Google Scholar 

  79. Pikal MJ. The role of electroosmotic flow in transdermal iontophoresis. Adv Drug Deliv Rev. 2001;46:281–305.

    CAS  PubMed  Google Scholar 

  80. Molokhia S, Jeong EK, Higuchi W, Li K. Examination of barriers and barrier alteration in transscleral iontophoresis. Journal of Pharmaceutical Sciences. 2008;97:831–44.

    CAS  PubMed  Google Scholar 

  81. Bridger MW, Keene M, Graham JM, Healey R, Ammar MM. A device for iontophoretic anesthesia of the tympanic membrane. J Med Eng Technol. 1982;6:62–4.

    CAS  PubMed  Google Scholar 

  82. Zempsky WT, Sullivan J, Paulson DM, Hoath SB. Evaluation of a low-dose lidocaine iontophoresis system for topical anesthesia in adults and children: A randomized, controlled trial. Clin Ther. 2004;26:1110–9.

    CAS  PubMed  Google Scholar 

  83. Moppett IK, Szypula K, Yeoman PM. Comparison of EMLA and lidocaine iontophoresis for cannulation analgesia. Eur J Anaesthesiol. 2004;21:210–3.

    CAS  PubMed  Google Scholar 

  84. Decou JM, Abrams RS, Hammond JH, Lowder LR, Gauderer MWL. Iontophoresis: a needle-free, electrical system of local anesthesia delivery for pediatric surgical office procedures. J Pediatr Surg. 1999;34:946–9.

    CAS  PubMed  Google Scholar 

  85. Carter EP, Barrett AD, Heeley AF, Kuzemko JA. Improved sweat test method for the diagnosis of cystic fibrosis. Arch Dis Child. 1984;59:919–22.

    CAS  PubMed  Google Scholar 

  86. Gangarosa LP, Hill JM, Thompson BL, Leggett C, Rissing JP. Iontophoresis of vidarabine monophosphate for herpes orolabialis. J Infect Dis. 1986;154:930–4.

    PubMed  Google Scholar 

  87. Krauser JT. Hypersensitive teeth. Part II: Treatment. J Prosthet Dent. 1986;56:307–11.

    CAS  PubMed  Google Scholar 

  88. Rigano W, Yanik M, Barone FA, Baibak G, Cislo C. Antibiotic iontophoresis in the management of burned ears. J Burn Care Rehabilitation. 1992;13:407–9.

    CAS  Google Scholar 

  89. Wirtz R. Die ionentherapie in der augenheilkunde. Klin Monatsbl Augenheilkd. 1908;46:543–79.

    Google Scholar 

  90. Myles ME, Loutsch JM, Higaki S, Hill JM. Ocular iontophoresis. In: Mitra AK, editor. Ophthalmic drug delivery systems. New York: Marcel Dekker, Inc.; 2003. p. 365–408.

    Google Scholar 

  91. Barza M, Peckman C, Baum J. Transscleral Iontophoresis of cefazolin, ticarcillin, and gentamicin in the rabbit. Ophthalmology. 1986;93:133–9.

    CAS  PubMed  Google Scholar 

  92. Frucht-Pery J, Goren D, Solomon A, Siganos CS, Mechoulam H, Solomon A, et al. The distribution of gentamicin in the rabbit cornea following iontophoresis to the central cornea. J Ocul Pharmacol Ther. 1999;15:251–6.

    CAS  PubMed  Google Scholar 

  93. Rootman DS, Hobden JA, Jantzen JA, Gonzalez JR, Ocallaghan RJ, Hill JM. Iontophoresis of tobramycin for the treatment of experimental pseudomonas keratitis in the rabbit. Arch Ophthalmol. 1988;106:262–5.

    CAS  PubMed  Google Scholar 

  94. Yoshizumi MO, Cohen D, Verbukh I, Leinwand M, Kim J, Lee DA. Experimental transscleral iontophoresis of ciprofloxacin. J Ocular Pharmacol. 1991;7:163–7.

    CAS  Google Scholar 

  95. Eljarrat-Binstock E, Raiskup F, Stepensky D, Domb AJ, Frucht-Pery J. Delivery of gentamicin to the rabbit eye by drug-loaded hydrogel iontophoresis. Invest Ophthalmol Vis Sci. 2004;45:2543–8.

    PubMed  Google Scholar 

  96. Hill JM, Park NH, Gangarosa LP, Hull DS, Tuggle CL, Bowman K, et al. Iontophoresis of vidarabine monophosphate into rabbit eyes. Invest Ophthlmol Vis Sci. 1978;17:473–6.

    CAS  Google Scholar 

  97. Lam TT, Fu J, Chu R, Stojack K, Siew E, Tso MOM. Intravitreal delivery of ganciclovir in rabbits by transscleral iontophoresis. J Ocul Pharmacol. 1994;10:571–5.

    CAS  PubMed  Google Scholar 

  98. Grossman R, Lee DA. Transscleral and transcorneal iontophoresis of ketoconazole in the rabbit eye. Ophthalmology. 1989;96:724–9.

    CAS  PubMed  Google Scholar 

  99. Behar-Cohen FF, El Aouni A, Gautier S, David G, Davis J, Chapon P, et al. Transscleral Coulomb-controlled iontophoresis of methylprednisolone into the rabbit eye: Influence of duration of treatment, current intensity and drug concentration on ocular tissue and fluid levels. Exp Eye Res. 2002;74:51–9.

    CAS  PubMed  Google Scholar 

  100. Behar-Cohen FF, Parel JM, Pouliquen Y, Thillaye-Goldenberg B, Goureau O, Heydolph S, et al. Iontophoresis of dexamethasone in the treatment of endotoxin-induced-uveitis in rats. Exp Eye Res. 1997;65:533–45.

    CAS  PubMed  Google Scholar 

  101. Lam TT, Edward DP, Zhu XA, Tso MOM. Transscleral iontophoresis of dexamethasone. Arch Ophthalmol. 1989;107:1368–71.

    CAS  PubMed  Google Scholar 

  102. Eljarrat-Binstock E, Raiskup F, Frucht-Pery J, Domb AJ. Transcorneal and transscleral iontophoresis of dexamethasone phosphate using drug loaded hydrogel. J Control Release. 2005;106:386–90.

    CAS  PubMed  Google Scholar 

  103. Eljarrat-Binstock E, Orucov F, Frucht-Pery J, Pe’er J, Domb AJ. Methylprednisolone delivery to the back of the eye using hydrogel iontophoresis. J Ocul Pharm Ther. 2008;24:344–50.

    CAS  Google Scholar 

  104. Hayden BC, Jockovich ME, Murray TG, Voigt M, Milne P, Kralinger M, et al. Pharmacokinetics of systemic versus focal Carboplatin chemotherapy in the rabbit eye: possible implication in the treatment of retinoblastoma. Invest Ophthalmol Vis Sci. 2004;45:3644–9.

    PubMed  Google Scholar 

  105. Kondo M, Araie M. Iontophoresis of 5-fluorouracil into the conjunctiva and sclera. Invest Ophthalmol Vis Sci. 1989;30:583–5.

    CAS  PubMed  Google Scholar 

  106. Eljarrat-Binstock E, Domb AJ, Orucov F, Frucht-Pery J, Pe’er J. Methotrexate delivery to the eye using transscleral hydrogel iontophoresis. Curr Eye Res. 2007;32:639–46.

    CAS  PubMed  Google Scholar 

  107. Eljarrat-Binstock E, Domb AJ, Orucov F, Frucht-Pery J, Pe’er J. In vitro and in vivo evaluation of carboplatin delivery to the eye using hydrogel-iontophoresis. Curr Eye Res. 2008;33:269–75.

    CAS  PubMed  Google Scholar 

  108. Asahara T, Shinomiya K, Naito T, Shiota H. Induction of gene into the rabbit eye by iontophoresis: Preliminary report. Jpn J Ophthalmol. 2001;45:31–9.

    CAS  PubMed  Google Scholar 

  109. Berdugo M, Valamanesh F, Andrieu C, Klein C, Benezra D, Courtois Y, et al. Delivery of antisense oligonucleotide to the cornea by iontophoresis. Antisense Nucleic Acid Drug Dev. 2003;13:107–14.

    CAS  PubMed  Google Scholar 

  110. Andrieu-Soler C, Doat M, Halhal M, Keller N, Jonet L, Benezra D, et al. Enhanced oligonucleotide delivery to mouse retinal cells using iontophoresis. Mol Vis. 2006;12:1098–107.

    CAS  PubMed  Google Scholar 

  111. Voigt M, De Kozak Y, Halhal M, Courtois Y, Behar-Cohen F. Down-regulation of NOSII gene expression by iontophoresis of anti-sense oligonucleotide in endotoxin-induced uveitis. Biochem Biophys Res Commun. 2002;295:336–41.

    CAS  PubMed  Google Scholar 

  112. Alvarez-Figueroa MJ, Blanco-Mendez J. Transdermal delivery of methotrexate: iontophoretic delivery from hydrogels and passive delivery from microemulsions. Int J Pharm. 2001;215:57–65.

    CAS  PubMed  Google Scholar 

  113. Kishida A, Ikada Y. Hydrogels for biomedical and pharmaceutical applications. In: Dumitriu S, editor. Polymeric biomaterials. Inc, New York: Marcel Dekker; 2002. p. 133–45.

    Google Scholar 

  114. Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur J Pharm Biopharm. 2000;50:27–46.

    CAS  PubMed  Google Scholar 

  115. Banga AK, Chien YW. Hydrogel-based iontotherapeutic delivery devices for transdermal delivery of peptide/protein drugs. Pharm Res. 1993;10:697–702.

    CAS  PubMed  Google Scholar 

  116. Fang JY, Hsu LR, Huang YB, Tsai YH. Evaluation of transdermal iontophoresis of enoxacin from polymer formulations: in vitro skin permeation and in vivo microdialysis using Wistar rat as an animal model. Int J Pharm. 1999;180:137–49.

    CAS  PubMed  Google Scholar 

  117. Fang JY, Sung KC, Wang JJ, Chu CC, Chen KT. The effects of iontophoresis and electroporation on transdermal delivery of buprenorphine from solutions and hydrogels. J Pharm Pharmacol. 2002;54:1329–37.

    CAS  PubMed  Google Scholar 

  118. Eljarrat-Binstock E, Bentolila A, Kumar N, Harel H, Domb A. Preparation, characterization and sterilization of hydrogel sponges for iontophoretic drug- delivery use. Polym Adv Tech. 2007;18:720–30.

    CAS  Google Scholar 

  119. Fischer GA, Parkinson TM, Szlek MA. OcuPhor - The future of ocular drug delivery. Drug Delivery Tech. 2002;2:50–2.

    Google Scholar 

  120. Parkinson TM, Ferguson E, Febbraro S, Bakhtyari A, King M, Mundasad M. Tolerance of ocular iontophoresis in healthy volunteers. J Ocul Pharmacol Ther. 2003;19:145–51.

    CAS  PubMed  Google Scholar 

  121. Parkinson TM, Miller DJ, Lloyd LB, Hamilton S, Brown S, Koss A, et al. The effects of in vivo iontophoresis on rabbit eye structure and retinal function. Invest Ophthalmol Vis Sci. 2000;41:S772.

    Google Scholar 

  122. Vollmer DL, Szlek MA, Kolb K, Lloyd LB, Parkinson TM. In vivo transscleral iontophoresis of amikacin to rabbit eyes. J Ocul Pharmacol Ther. 2002;18:549–58.

    CAS  PubMed  Google Scholar 

  123. Hastings MS, Li SK, Miller DJ, Bernstein PS, Mufson D. Visulex: advancing iontophoresis for effective noninvasive back-to-the-eye therapeutics. Drug Delivery Tech. 2004;4:53–7.

    CAS  Google Scholar 

  124. Eljarrat-Binstock E, Orucov F, Aldouby Y, Frucht-Pery J, Domb AJ. Charged nanoparticles delivery to the eye using hydrogel iontophoresis. J Control Release. 2008;126:156–61.

    CAS  PubMed  Google Scholar 

  125. Frucht-Pery J, Mechoulam H, Siganos CS, Ever-Hadani P, Shapiro M, Domb A. Iontophoresis-gentamicin delivery into the rabbit cornea, using a hydrogel delivery probe. Exp Eye Res. 2004;78:745–9.

    CAS  PubMed  Google Scholar 

  126. J. W. Higuchi, W. I. Higuchi, S. K. Li, S. A. Molokhia, D. J. Miller, R. P. Kochambilli, K. Papangkorn, D. C. Mix, and A. L. Tuitupou. Noninvasive delivery of a transscleral sustained release depot of triamcinolone acetonide using the Visulex device to treat posterior uveitis, Invest Ophthalmol Vis Sci. 48:E-Abstract 5822 (2007).

    Google Scholar 

  127. W. Higuchi, A. L. Tuitupou, R. P. Kochambilli, D. C. Mix, G. Yan, J. W. Higuchi, and S. K. Li. Delivery of sustained release formulation of triamcinolone acetonide to the rabbit eye using the Visulex ocular iontophoresis device, Invest Ophthalmol Vis Sci. 47:E-Abstract 5108 (2006).

    Google Scholar 

  128. K. Papangkorn, W. I. Higuchi, S. K. Li, R. P. Kochambilli, A. L. Tuitupou, D. C. Mix, and J. W. Higuchi. Delivery of an Immunosuppressive Agent into the Rabbit Eye Using the Visulex® Ocular Iontophoresis Device, Invest Ophthalmol Vis Sci. 48:E-Abstract 5818 (2007).

  129. Eljarrat-Binstock E, Raiskup F, Frucht-Pery J, Domb AJ. Hydrogel probe for iontophoresis drug delivery to the eye. J Biomater Sci Polym Ed. 2004;15:397–413.

    CAS  PubMed  Google Scholar 

  130. Grossman R, Chu DF, Lee DA. Regional ocular gentamicin levels after transcorneal and transscleral iontophoresis. Invest Ophthalmol Vis Sci. 1990;31:909–16.

    CAS  PubMed  Google Scholar 

  131. Choi TB, Lee DA. Transscleral and Transcorneal Iontophoresis of Vancomycin in Rabbit Eyes. J Ocul Pharmacol. 1988;4:153–64.

    CAS  PubMed  Google Scholar 

  132. Rootman DS, Jantzen JA, Gonzalez JR, Fischer MJ, Beuerman R, Hill JM. Pharmacokinetics and safety of transcorneal iontophoresis of tobramycin in the rabbit. Invest Ophthalmol Vis Sci. 1988;29:1397–401.

    CAS  PubMed  Google Scholar 

  133. Hobden JA, Ocallaghan RJ, Hill JM, Reidy JJ, Rootman DS, Thompson HW. Tobramycin Iontophoresis into Corneas Infected with Drug-Resistant Pseudomonas-Aeruginosa. Curr Eye Res. 1989;8:1163–9.

    CAS  PubMed  Google Scholar 

  134. Hobden JA, Reidy JJ, Ocallaghan RJ, Insler MS, Hill JM. Ciprofloxacin Iontophoresis for Aminoglycoside-Resistant Pseudomonal Keratitis. Invest Ophthalmol Vis Sci. 1990;31:1940–4.

    CAS  PubMed  Google Scholar 

  135. Barza M, Peckman C, Baum J. Transscleral Iontophoresis as an Adjunctive Treatment for Experimental Endophthalmitis. Arch Ophthalmol. 1987;105:1418–20.

    CAS  PubMed  Google Scholar 

  136. Chapon P, Voigt M, Gautier S, Behar-Cohen F, O'grady G, Parel JM. Intraocular tissues pharmacokinetics of ganciclovir transscleral Coulomb controlled iontophoresis in rabbits. Invest Ophthalmol Vis Sci. 1999;40:S189–9.

    Google Scholar 

  137. Kralinger MT, Voigt M, Kieselbach GF, Hamasaki D, Hayden BC, Parel JM. Ocular delivery of acetylsalicylic acid by repetitive Coulomb-controlled iontophoresis. Ophthalmic Res. 2003;35:102–10.

    CAS  PubMed  Google Scholar 

  138. Sarraf D, Equi RA, Holland GN, Yoshizumi MO, Lee DA. Transscleral Iontophoresis of Foscarnet. Am J Ophthalmol. 1993;115:748–54.

    CAS  PubMed  Google Scholar 

  139. Voigt M, Kralinger M, Kieselbach G, Chapon P, Anagnoste S, Hayden B, et al. Ocular aspirin distribution: A comparison of intravenous, topical, and coulomb-controlled iontophoresis administration. Invest Ophthalmol Vis Sci. 2002;43:3299–306.

    PubMed  Google Scholar 

  140. Souied EH, Reid SNM, Piri NI, Lerner LE, Nusinowitz S, Farber DB. Non-invasive gene transfer by iontophoresis for therapy of an inherited retinal degeneration. Experimental Eye Research. 2008;87:168–75.

    CAS  PubMed  Google Scholar 

  141. Erlanger G. Iontophoresis, a scientific and practical tool in ophthalmology. Ophthalmologica. 1954;128:232–46.

    Article  CAS  PubMed  Google Scholar 

  142. Hughes L, Maurice DM. A fresh look at iontophoresis. Arch Ophthalmol. 1984;102:1825–9.

    CAS  PubMed  Google Scholar 

  143. Barza M, Peckman C, Baum J. Transscleral Iontophoresis of Gentamicin in Monkeys. Invest Ophthalmol Vis Sci. 1987;28:1033–6.

    CAS  PubMed  Google Scholar 

  144. Lam TT, Fu J, Tso MOM. A Histopathologic Study of Retinal Lesions Inflicted by Transscleral Iontophoresis. Graefes Arch Clin Exp Ophthalmol. 1991;229:389–94.

    CAS  PubMed  Google Scholar 

  145. Yoshizumi MO, Lee DA, Sarraf DA, Equi RA, Verdon W. Ocular Toxicity of Iontophoretic Foscarnet in Rabbits. J Ocul Pharmacol Ther. 1995;11:183–9.

    CAS  PubMed  Google Scholar 

  146. Chauvaud D, Behar-Cohen FF, Parel JM, Renard G. Transscleral Iontophoresis of cortcicosteoids: Phase II clinical trial. Invest Ophthalmol Vis Sci. 2000;41:S79–9.

    Google Scholar 

  147. Halhal M, Renard G, Bejjani RA, Behar-Cohen F. Corneal graft rejection and corticoid iontophoresis: 3 case reports. J Fr Ophtalmol. 2003;26:391–5.

    CAS  PubMed  Google Scholar 

  148. Behar-Cohen FF, Halhal M, Benezra D, Chauvaud D, Renard G. Reversal of corneal graft rejection by iontophoresis of methylprednisolone. Invest Ophthalmol Vis Sci. 2002;43:U504–4.

    Google Scholar 

  149. Halhal M, Renard G, Courtois Y, Benezra D, Behar-Cohen F. Iontophoresis: from the lab to the bed side. Exp Eye Res. 2004;78:751–7.

    CAS  PubMed  Google Scholar 

  150. Burstein NL, Leopold IH, Bernacchi DB. Trans-scleral iontophoresis of gentamicin. J Ocul Pharmacol. 1985;1:363–8.

    CAS  PubMed  Google Scholar 

  151. Yoshizumi MO, Roca JA, Lee DA, Lee G, Gomez I. Ocular lontophoretic supplementation of intravenous foscarnet therapy. Am J Ophthalmol. 1996;122:86–90.

    CAS  PubMed  Google Scholar 

  152. A. L. Tuitupou, W. I. Higuchi, S. K. Li, D. J. Miller, R. P. Kochambilli, J. W. Higuchi, K. Papangkorn, and D. C. Mix. Enhanced transscleral delivery of dexamethasone phosphate with a vasoconstrictor in the treatment of uveitis in a rabbit model, Invest Ophthalmol Vis Sci. 48:E-Abstract 5821 (2007).

    Google Scholar 

  153. Horwath-Winter J, Schmut O, Haller-Schober EM, Gruber A, Rieger G. Iodide iontophoresis as a treatment for dry eye syndrome. Br J Ophthalmol. 2005;89:40–4.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abraham J. Domb.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eljarrat-Binstock, E., Pe’er, J. & Domb, A.J. New Techniques for Drug Delivery to the Posterior Eye Segment. Pharm Res 27, 530–543 (2010). https://doi.org/10.1007/s11095-009-0042-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-009-0042-9

KEY WORDS

Navigation