Skip to main content
Log in

One Platform Comparison of Polymeric and Lipidic Nanoparticles for the Delivery of Amphotericin B

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Amphotericin B (AmB) is a membrane-acting antibiotic used for the treatment of fungal and protozoal infections. AmB exists in various molecular forms, i.e., monomeric, super-aggregated, and oligomeric forms, where oligomeric forms are highly toxic because of their relative affinity toward cholesterol present over human cell membrane. Hence, the objective of our research work was to study the aggregation state of AmB in two different nanoformulations, i.e., solid lipid nanoparticles (SLNs) and zein-based nanoparticles (PNPs), with the aim of enhancing the fraction of less toxic form of AmB, and a comparative study was performed. The zein and glyceryl monostearate can intercalate the polyenic domain of AmB and thereby hinder the hydrophobic attractions between the AmB molecules, which allows their existence in monomeric forms. The particle size of AmB-SLNs and AmB-PNPs were 378.90 ± 9.50 nm and 184.90 ± 6.00 nm, while zeta potential was −34.97 ± 0.51 mV and +28.93 ± 2.29 mV, respectively. In vitro release studies showed more controlled release of AmB from PNPs (52.48 ± 1.07%) as compared to SLNs (86.33 ± 0.93%). The predominant aggregation state of AmB in both formulations was determined by UV–visible and circular dichroism spectrophotometry, where a higher degree of monomerization of AmB was reported in AmB-SLNs as compared to AmB-PNPs. Toxicity of the nanoformulations was evaluated through hemolysis test, where the results suggested that AmB-SLNs and AmB-PNPs were less hemolytic as compared to pure AmB. The nanoformulations demonstrated the predominant monomeric form of AmB, which may offer higher selectivity index toward microbial membrane.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The authors confirm that all the data supporting the findings of this study are presented within the article. Also, raw data that support the findings of this research may provided upon reasonable request.

Abbreviations

% CDR:

Cumulative drug release

AmB:

Amphotericin B

CD:

Circular dichroism spectroscopy

DL:

Drug loading

DLS:

Dynamic light scattering

DSC:

Differential scanning calorimetry

EE:

Entrapment efficiency

FTIR:

Fourier-transform infrared spectroscopy

GMS:

Glyceryl monostearate

PBS:

Phosphate buffer saline

PDI:

Polydispersity index

PNPs:

Polymeric nanoparticles

RDI:

Redispersibility index

RH:

Relative humidity

SD:

Standard deviation

SEM:

Scanning electron microscopy

SLNs:

Solid lipid nanoparticles

SL:

Soy lecithin

TDW:

Triple-distilled water

References

  1. Jain K, Jain NK. Novel therapeutic strategies for treatment of visceral leishmaniasis. Drug Discov Today. 2013;18:1272–81.

    Article  CAS  PubMed  Google Scholar 

  2. Serrano DR, Lalatsa A. Oral amphotericin B: the journey from bench to market. J Drug Deliv Sci Technol. 2017;42:75–83.

    Article  CAS  Google Scholar 

  3. Jain K, Verma AK, Mishra PR, Jain NK. Surface-engineered dendrimeric nanoconjugates for macrophage-targeted delivery of amphotericin B: formulation development and in vitro and in vivo evaluation. Antimicrob Agents Chemother. 2015;59(5):2479–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jain V, Jain K. Molecular targets and pathways for the treatment of visceral leishmaniasis. Drug Discov Today. 2018;23(1):161–70.

    Article  CAS  PubMed  Google Scholar 

  5. Das S, Devarajan PV. Enhancing safety and efficacy by altering the toxic aggregated state of amphotericin B in lipidic nanoformulations. Mol Pharm. 2020;17(6):2186–95.

    Article  CAS  PubMed  Google Scholar 

  6. Zia Q, Azhar A, Amjad Kamal M, Aliev G, Owais M, Md Ashraf G. Super aggregated form of Amphotericin B: a novel way to increase its therapeutic index. Curr Pharm Des. 2016;22(7):792–803.

    Article  CAS  PubMed  Google Scholar 

  7. Tevyashova AN, Olsufyeva EN, Solovieva SE, Printsevskaya SS, Reznikova MI, Trenin AS, et al. Structure-antifungal activity relationships of polyene antibiotics of the amphotericin B group. Antimicrob Agents Chemother. 2013;57(8):3815–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Cuddihy G, Wasan EK, Di Y, Wasan KM. The development of oral amphotericin B to treat systemic fungal and parasitic infections: has the myth been finally realized? Pharmaceutics. 2019;11(3):99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wijnant GJ, Van Bocxlaer K, Yardley V, Harris A, Alavijeh M, Silva-Pedrosa R, et al. Comparative efficacy, toxicity and biodistribution of the liposomal amphotericin B formulations Fungisome® and Am Bisome® in murine cutaneous leishmaniasis. Int J Parasitol Drugs Drug Resist. 2018;8(2):223–8.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Jain K, Verma AK, Mishra PR, Jain NK. Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomed Nanotechnol Biol Med. 2015;11(3):705–13.

    Article  CAS  Google Scholar 

  11. Kajtár M, Vikmon M, Morlin E, Szejtli J. Aggregation of amphotericin B in the presence of γ-cyclodextin. Biopolymers. 1989;28(9):1585–96.

    Article  PubMed  Google Scholar 

  12. Yu Y, Chen P, Gao M, Lan W, Sun S, Ma Z, et al. Amphotericin B tamed by salicylic acid. ACS Omega. 2022;7(17):14690–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barwicz J, Christian S, Gruda I. Effects of the aggregation state of amphotericin B on its toxicity to mice. Antimicrob Agents Chemother. 1992;36(10):2310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Parvez S, Yadagiri G, Gedda MR, Singh A, Singh OP, Verma A, et al. Modified solid lipid nanoparticles encapsulated with Amphotericin B and Paromomycin: an effective oral combination against experimental murine visceral leishmaniasis. Sci Rep. 2020;10(1):12243.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Elzoghby A, Freag M, Mamdouh H, Elkhodairy K. Zein-based nanocarriers as potential natural alternatives for drug and gene delivery: focus on cancer therapy. Curr Pharm Des. 2018;23(35):5261–71.

    Article  Google Scholar 

  16. Hong DY, Lee JS, Lee HG. Chitosan/poly-γ-glutamic acid nanoparticles improve the solubility of lutein. Int J Biol Macromol. 2016;85:9–15.

    Article  CAS  PubMed  Google Scholar 

  17. Chen S, Li Q, Li H, Yang L, Yi JZ, Xie M, et al. Long-circulating zein-polysulfobetaine conjugate-based nanocarriers for enhancing the stability and pharmacokinetics of curcumin. Mater Sci Eng C. 2020;109: 110636.

    Article  CAS  Google Scholar 

  18. Suthar T, Patel P, Singh P, Datusalia AK, Yadav AK, Jain K. Hesperidin microemulsion: formulation optimization, characterization, and in vitro evaluation. J Drug Deliv Sci Technol. 2023;80: 104166.

    Article  CAS  Google Scholar 

  19. Maw PD, Pienpinijtham P, Pruksakorn P, Jansook P. Cyclodextrin-based Pickering nanoemulsions containing amphotericin B: Part II Formulation, antifungal activity, and chemical stability. J Drug Deliv Sci Technol. 2022;69:103174.

    Article  CAS  Google Scholar 

  20. Soni N, Jain K, Gupta U, Jain NK. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers. J Nanopart Res. 2015;17:458. https://doi.org/10.1007/s11051-015-3265-1.

    Article  CAS  Google Scholar 

  21. Guhagarkar SA, Malshe VC, Devarajan PV. Nanoparticles of polyethylene sebacate: a new biodegradable polymer. AAPS PharmSciTech. 2009;10:935–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Pardhi VP, Suthar T, Sharma A, Jain K. Bedaquiline fumarate microemulsion: formulation optimization, rheological characterization and in vitro studies. Nanomedicine (Lond). 2022;17(21):1529–46. https://doi.org/10.2217/nnm-2022-0132.

    Article  CAS  PubMed  Google Scholar 

  23. Menezes J, Athmaselvi KA. Report on edible films and coatings. In: Food Packaging and Preservation. Cambridge: Academic Press; 2018. p. 177–212.

  24. Wang H, Zhu W, Huang Y, Li Z, Jiang Y, Xie Q. Facile encapsulation of hydroxycamptothecin nanocrystals into zein-based nanocomplexes for active targeting in drug delivery and cell imaging. Acta Biomater. 2017;61:88–100.

    Article  CAS  PubMed  Google Scholar 

  25. Kumar S, Saini V, Maurya IK, Sindhu J, Kumari M, Kataria R, et al. Design, synthesis, DFT, docking studies and ADME prediction of some new coumarinyl linked pyrazolylthiazoles: potential standalone or adjuvant antimicrobial agents. PLoS One. 2018;13(4): e0196016.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Soto R, Patel P, Albadarin AB, Diniz MO, Hudson SP. Solubility, aggregation and stability of Amphotericin B drug in pure organic solvents: thermodynamic analysis and solid form characterization. J Mol Liq. 2022;366: 120276.

    Article  CAS  Google Scholar 

  27. Ng WS, Lee CS, Cheng SF, Chuah CH, Wong SF. Biocompatible polyurethane scaffolds prepared from glycerol monostearate-derived polyester polyol. J Polym Environ. 2018;26:2881–900.

    Article  CAS  Google Scholar 

  28. Truzzi E, Capocefalo A, Meneghetti F, Maretti E, Mori M, Iannuccelli V, et al. Design and physicochemical characterization of novel hybrid SLN-liposome nanocarriers for the smart co-delivery of two antitubercular drugs. J Drug Deliv Sci Technol. 2022;70: 103206.

    Article  CAS  Google Scholar 

  29. Jansook P, Fülöp Z, Ritthidej GC. Amphotericin B loaded solid lipid nanoparticles (SLNs) and nanostructured lipid carrier (NLCs): physicochemical and solid-solution state characterizations. Drug Dev Ind Pharm. 2019;45(4):560–7.

    Article  CAS  PubMed  Google Scholar 

  30. AL-Quadeib BT, Radwan MA, Siller L, Horrocks B, Wright MC. Stealth Amphotericin B nanoparticles for oral drug delivery: in vitro optimization. Saudi Pharm J. 2015;23(3):290-302.

  31. Ghanbarzadeh B, Oromiehi AR. Studies on glass transition temperature of mono and bilayer protein films plasticized by glycerol and olive oil. J Appl Polym Sci. 2008;109(5):2848–54.

    Article  CAS  Google Scholar 

  32. Lawton JW. Plasticizers for zein: their effect on tensile properties and water absorption of zein films. Cereal Chem. 2004;81(1):1–5.

    Article  CAS  Google Scholar 

  33. Shinde P, Agraval H, Srivastav AK, Yadav UCS, Kumar U. Physico-chemical characterization of carvacrol loaded zein nanoparticles for enhanced anticancer activity and investigation of molecular interactions between them by molecular docking. Int J Pharm. 2020;588: 119795.

    Article  CAS  PubMed  Google Scholar 

  34. Singh A, Yadagiri G, Parvez S, Singh OP, Verma A, Sundar S, et al. Formulation, characterization and in vitro anti-leishmanial evaluation of amphotericin B loaded solid lipid nanoparticles coated with vitamin B12-stearic acid conjugate. Mater Sci Eng C. 2020;117: 111279.

    Article  CAS  Google Scholar 

  35. Liu Y, Mei Z, Mei L, Tang J, Yuan W, Srinivasan S, et al. Analytical method development and comparability study for Am Bisome® and generic Amphotericin B liposomal products. Eur J Pharm Biopharm. 2020;157:241–9.

    Article  CAS  PubMed  Google Scholar 

  36. Fernández-García R, Muñoz-García JC, Wallace M, Fabian L, González-Burgos E, Gómez-Serranillos MP, et al. Self-assembling, supramolecular chemistry and pharmacology of amphotericin B: poly-aggregates, oligomers and monomers. J Control Release. 2022;341:716–32.

    Article  PubMed  Google Scholar 

  37. Wang Y, Ke X, Voo ZX, Yap SSL, Yang C, Gao S, et al. Biodegradable functional polycarbonate micelles for controlled release of amphotericin B. Acta Biomater. 2016;46:211–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Pharmaceuticals (DoP), Ministry of Chemicals and Fertilizers, Government of India for providing facilities to write this research article. A.P. is thankful to Indian council of Medical Research (ICMR), New Delhi for the financial support in the form of JRF under the ICMR Extramural Research Project (Project ID: 2020-4686; Ref. No. 5/13/34/2020/NCD-III).

Funding

The National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Department of Pharmaceuticals, Ministry of Chemical and Fertilizers, Government of India, provided financial assistance (683/MS-PE/2020).

Author information

Authors and Affiliations

Authors

Contributions

K.J. contributed to the conceptualization and supervision and helped to manage resources. Data curation, investigation, and formal analysis were performed by J.N. A.P. contributed to validation, and review and editing.

Corresponding author

Correspondence to Keerti Jain.

Ethics declarations

Competing Interest

The authors clarify that the formulation part of this research work has been filed for Indian patent at Indian Patent Office (IPO), Mumbai, India; Application No.: 202311071032; Date of Application: 18/10/2023.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joyson, N., Pathak, A. & Jain, K. One Platform Comparison of Polymeric and Lipidic Nanoparticles for the Delivery of Amphotericin B. AAPS PharmSciTech 24, 226 (2023). https://doi.org/10.1208/s12249-023-02672-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02672-y

Keywords

Navigation