Skip to main content
Log in

Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers

  • Research Paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

The aim of the present investigation was to deliver Gemcitabine Hydrochloride (GmcH), an anticancer bioactive, specifically to lung tumor cells using mannosylated 4.0G poly(propyleneimine) dendrimers (M-PPI). 4.0G poly(propyleneimine) (PPI) dendrimers was synthesized using ethylenediamine as core and conjugated with mannose by ring opening reactions, followed by Schiff’s reaction in the presence of sodium acetate buffer (pH 4.0). Synthesized PPI dendrimers and mannose-conjugated dendrimers were characterized using IR, NMR spectroscopy, and scanning electron microscopy. GmcH was loaded into PPI and M-PPI dendrimers using equilibrium dialysis method to develop the formulations, GmcH-PPI and GmcH-M-PPI, respectively. The developed formulations were evaluated for drug loading, in vitro release kinetics, in vitro stability, hemolytic toxicity, cytotoxicity, pharmacokinetic, and biodistribution studies. The dendrimeric formulation of GmcH showed pH-sensitive release with faster release at acidic pH, i.e., pH 4.0 in comparison with physiological pH 7.4. M-PPI conjugate showed significant reduction in hemolytic toxicity as compared to plain 4.0G PPI dendrimers towards human erythrocytes. In the cytotoxicity studies with A-549 lung adenocarcinoma cell line, the GmcH-M-PPI formulation showed the lowest IC50 value. Further, the pharmacokinetic and tissue distribution studies of free drug GmcH, GmcH-PPI, and GmcH-M-PPI in albino rats of Sprague–Dawley strain suggested the mean residence time of GmcH-M-PPI conjugate to be significantly higher (24.85 h) than free GmcH and GmcH-PPI. Deposition of drug (396.1 ± 4.7 after 2 h) in lung was found to be significantly higher with GmcH-M-PPI formulation in comparison with Gmch and GmcH-PPI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

GmcH:

Gemcitabine Hydrochloride

M-PPI:

Mannosylated poly(propyleneimine) dendrimer

GmcH-PPI:

Gemcitabine-loaded plain poly(propyleneimine) dendrimer

GmcH-M-PPI:

Gemcitabine-loaded mannosylated poly(propyleneimine) dendrimer

4.0G PPI:

4th generation poly(propyleneimine) dendrimers

TEM:

Transmission electron microscopy

1H NMR:

Proton nuclear magnetic resonances

FTIR:

Fourier transform infrared spectroscopy

UV:

Ultra violet spectroscopy

A-549:

Lung adenocarcinoma epithelial cell lines

MTT:

Methyl thiazole tetrazolium assay

IC50 :

Concentration of drug for 50 % inhibition of cell growth

MRT:

Mean residence time

PTA:

Phosphotungustic acid

PBS:

Phosphate-buffered saline

RBCs:

Red blood cells

ACN:

Acrylonitrile

MWCO 12–14 kDa:

Molecular weight cut off 12–14 kDa

EDA:

Ethylenediamine

References

  • Agarwal A, Asthana A, Gupta U, Jain NK (2008) Tumour and dendrimers: a review on drug delivery aspects. J Pharm Pharmacol 60:671–688

    Article  Google Scholar 

  • Agashe HB, Dutta T, Garg M, Jain NK (2006) Investigations on the toxicological profile of functionalized fifth-generation poly (propylene imine) dendrimer. J Pharm Pharmacol 58:1491–1498

    Article  Google Scholar 

  • Agrawal P, Gupta U, Jain NK (2007) Glycoconjugated peptide dendrimers-based nanoparticulate system for the delivery of chloroquine phosphate. Biomaterials 28:3349–3359

    Article  Google Scholar 

  • Allen TM (2002) Ligand-targeted therapeutics in anticancer therapy. Nature 2:750–763

    Google Scholar 

  • Bagre AP, Jain K, Jain NK (2013) Alginate coated chitosan core shell nanoparticles for oral delivery of enoxaparin: in vitro and in vivo assessment. Int J Pharm 456:31–40

    Article  Google Scholar 

  • Bajwa N, Mehra NK, Jain K, Jain NK (2015a) Pharmaceutical and biomedical applications of quantum dots. Artif Cells Nanomed Biotechnol. doi:10.3109/21691401.2015.1052468

    Google Scholar 

  • Bajwa N, Mehra NK, Jain K, Jain NK (2015b) Targeted anticancer drug delivery through anthracycline antibiotic bearing functionalized quantum dots. Artif Cells Nanomed Biotechnol. doi:10.3109/21691401.2015.1102740

    Google Scholar 

  • Burton JD (2005) The MTT assay to evaluate chemosensitivity. Method Mol Med 110:69–78

    Google Scholar 

  • Chua Q, Vincentb M, Loganb D, Mackayc JA, Evansd WK (2005) Taxanes as first-line therapy for advanced non-small cell lung cancer: a systematic review and practice guideline. Lung Cancer 50:355–374

    Article  Google Scholar 

  • De Brabander-van Den Berg EM, Meijer EW (1993) Poly (propylene imine) dendrimers: large-scale synthesis by hetereogeneously catalyzed hydrogenations. Angew Chem Int Edit 32:1308–13011

    Article  Google Scholar 

  • de la Fuente M, Jones MC, Santander-Ortega MJ, Mirenska A, Marimuthu P, Uchegbu I, Schätzlein A (2015) A nano-enabled cancer-specific ITCH RNAi chemotherapy booster for pancreatic cancer. Nanomedicine 11:369–377

    Article  Google Scholar 

  • Dutta T, Jain NK (2007) Targeting potential and anti-HIV activity of lamivudine loaded mannosylated poly (propyleneimine) dendrimer. Biochim Biophys Acta 1770:681–686

    Article  Google Scholar 

  • Garg M, Jain NK (2006) Reduced hematopoietic toxicity, enhanced cellular uptake and altered pharmacokinetics of azidothymidine loaded galactosylated liposomes. J Drug Target 14:1–11

    Article  Google Scholar 

  • Gillies ER, Frechet JMJ (2005) Dendrimers and dendritic polymers in drug delivery. Drug Discov Today 10:35–43

    Article  Google Scholar 

  • Gupta AK, Berry CC, Gupta M, Curtis ASG (2003) Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. Nanobioscience 2:255–261

    Article  Google Scholar 

  • Gupta U, Dwivedi SK, Bid HK, Konwar R, Jain NK (2010) Ligand-anchored dendrimers based nanoconstructs for effective targeting to cancer cells. Int J Pharm 393:185–196

    Article  Google Scholar 

  • Hosseinzadeh H, Atyabi F, Dinarvand R, Ostad SN (2012) Chitosan-Pluronic nanoparticles as oral delivery of anticancer gemcitabine: preparation and in vitro study. Int J Nanomed 7:1851–1863

    Article  Google Scholar 

  • Hsu TI, Chen YJ, Hung CY, Wang YC, Lin SJ, Su WC, Lai MD, Kim SY, Wang Q, Qian K, Goto M, Zhao Y, Kashiwada Y, Lee KH, Chang WC, Hung JJ (2015) A novel derivative of betulinic acid, SYK023, suppresses lung cancer growth and malignancy. Oncotarget 6:13671–13687

    Article  Google Scholar 

  • Imen A, Amal K, Ines Z, Sameh EF, Fethi EM, Habib G (2006) Bullous dermatosis associated with gemcitabine therapy for non-small-cell lung carcinoma. Respir Med 100:1463–1465

    Article  Google Scholar 

  • Imyanitov EN, Kuligina ES, Belogubova EV, Togo AV, Hanson KP (2005) Mechanisms of lung cancer. Drug Discov Today Dis Mech 2:213–223

    Article  Google Scholar 

  • Jain K, Jain NK (2013) Novel therapeutic strategies for treatment of visceral leishmaniasis. Drug Discov Today 18(23–24):1272–1281

    Article  Google Scholar 

  • Jain K, Jain NK (2014) Surface engineered dendrimers as antiangiogenic agent and carrier for anticancer drug: dual attack on cancer. J Nanomed Nanotechnol 14:5075–5087

    Google Scholar 

  • Jain K, Jain NK (2015) Vaccines for visceral leishmaniasis: a review. J Immunol Methods 422:1–12

    Article  Google Scholar 

  • Jain A, Agarwal A, Majumder S, Lariya N, Kharya A, Agrawal H, Majumdar S, Agrawal GP (2010a) Mannosylated solid lipid nanoparticles as vectors for site-specific delivery of an anti-cancer drug. J Control Release 148:359–367

    Article  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2010b) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    Article  Google Scholar 

  • Jain K, Kesharwani P, Gupta U, Jain NK (2012) A review of glycosylated carriers for drug delivery. Biomaterials 33:4166–4186

    Article  Google Scholar 

  • Jain A, Jain K, Kesharwani P, Jain NK (2013a) Low density lipoproteins mediated nanoplatforms for cancer targeting. J Nanopart Res 15:1–38

    Article  Google Scholar 

  • Jain A, Jain K, Mehra NK, Jain NK (2013b) Lipoproteins tethered dendrimeric nanoconstructs for effective targeting to cancer cells. J Nanopart Res 15:1–18

    Article  Google Scholar 

  • Jain K, Gupta U, Jain NK (2014a) Dendronized nanoconjugates of lysine and folate for treatment of cancer. Euro J Pharm Biopharm 87:500–509

    Article  Google Scholar 

  • Jain K, Mehra NK, Jain NK (2014b) Potentials and emerging trends in nanopharmacology. Curr Opin Pharmacol 15C:97–106

    Article  Google Scholar 

  • Jain K, Mehra NK, Jain NK (2015a) Nanotechnology in drug delivery: safety and toxicity issues. Curr Pharm Des 21(29):4252–4261

    Article  Google Scholar 

  • Jain K, Verma AK, Mishra PR, Jain NK (2015b) Characterization and evaluation of amphotericin B loaded MDP conjugated poly(propylene imine) dendrimers. Nanomedicine 11(3):705–713

    Article  Google Scholar 

  • Jain K, Verma AK, Mishra PR, Jain NK (2015c) Surface engineered dendrimeric nanoconjugates for macrophage targeted delivery of amphotericin B: formulation development, in vitro and in vivo evaluation. Antimicrob Agents Chemother 59(5):2479–2487

    Article  Google Scholar 

  • Keith B, Xu Y, Grem JL (2003) Measurement of the anti-cancer agent gemcitabine in human plasma by high-performance liquid chromatography. J Chromatogr B 785:65–72

    Article  Google Scholar 

  • Kesharwani P, Tekade RK, Gajbhiye V, Jain K, Jain NK (2011) Cancer targeting potential of some ligand-anchored poly(propylene imine dendrimers: a comparison. Nanomedicine 7:295–304

    Article  Google Scholar 

  • Kesharwani P, Jain K, Jain NK (2014) Dendrimer as nanocarrier for drug delivery. Prog Polym Sci 39:268–307

    Article  Google Scholar 

  • Kleespies A, Jauch KW, Bruns CJ (2006) Tyrosine kinase inhibitors and gemcitabine: new treatment options in pancreatic cancer. Drug Resist Update 9:1–18

    Article  Google Scholar 

  • Koper GJM, Vangenderen MHP, Ellisen RC, Meijer EW (1997) Protonation mechanism of poly(propylene imine) dendrimers and some associated oligo amines. J Am Chem Soc 119:6512–6521

    Article  Google Scholar 

  • Liang HF, Chen CT, Chen SC, Kulkarni AR, Chiu YL, Chen MC (2006) Paclitaxel loaded poly(g-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Biomaterials 27:2051–2059

    Article  Google Scholar 

  • Limper AH, Pottratz ST, Martin WJ (1991) Modulation of Pneumocystis carinii adherence to cultured lung cells by a mannose-dependent mechanism. J Lab Clin Med 118(5):492–499

    Google Scholar 

  • Mehra NK, Jain K, Jain NK (2015) Pharmaceutical and biomedical applications of surface engineered carbon nanotubes. Drug Discov Today 20(6):750–759

    Article  Google Scholar 

  • Pasut G, Canal F, Via DL, Arpicco S, Veronese FM, Schiavon O (2008) Antitumoral activity of PEG–gemcitabine prodrugs targeted by folic acid. J Control Release 127:239–248

    Article  Google Scholar 

  • Pooja D, Kulhari H, Singh MK, Mukherjee S, Rachamalla SS, Sistla R (2014) Dendrimer-TPGS mixed micelles for enhanced solubility and cellular toxicity of taxanes. Colloid Surf B 121:461–468

    Article  Google Scholar 

  • Sharma P, Mehra NK, Jain B, Jain NK (2015) Biomedical application of carbon nanotubes: a critical review. Curr Drug Deliv 12. doi:1567-2018/15

  • Singh R, Mehra NK, Jain V, Jain NK (2013) Gemcitabine-loaded smart carbon nanotubes for effective targeting to cancer cells. J Drug Target 21:581–592

    Article  Google Scholar 

  • Tekade RK, Kumar PV, Jain NK (2009) Dendrimers in oncology: an expanding horizon. Chem Rev 109:49–87

    Article  Google Scholar 

  • Vasir JK, Reddy MK, Labhasetwar VD (2005) Nanosystems in drug targeting: opportunities and challenges. Curr Nanosci 1:47–64

    Article  Google Scholar 

  • Wang X, Ge J, Wang K, Ojan J, Zou Y (2006) Evaluation of MTT assay for measurement of emodine- induced cytotoxicity. Assay Drug Dev Technol 4:203–207

    Article  Google Scholar 

  • Wang S, Huo Z, Liu K, Yu N, Ma Y, Qin Y, Li X, Wang Z (2015) A ligand-conjugated ph-sensitive polymeric micelles for the targeted delivery of gefitinib in lung cancers. RSC Adv 5:73184–73193

    Article  Google Scholar 

  • WHO (2015) http://www.who.int/mediacentre/factsheets/fs297/en/. Accessed 5 May 2015

  • Wrobel D, Appelhans D, Signorelli M, Wiesner B, Fessas D, Scheler U, Voit B, Maly J (2015) Interaction study between maltose-modified PPI dendrimers and lipidic model membranes. Biochim Biophys Acta 1848:1490–1501

    Article  Google Scholar 

Download references

Acknowledgments

The author Namrata Soni is grateful to AICTE for providing financial support in form of JRF. All the authors are thankful to SAIF, Punjab University, Chandigarh, for 1H NMR and FTIR spectroscopy; AIIMS, New Delhi for TEM and TATA Memorial Institute, Mumbai for cell line studies.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Keerti Jain or N. K. Jain.

Ethics declarations

Conflict of interest

Authors report no conflict of interest related to this manuscript.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 361 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soni, N., Jain, K., Gupta, U. et al. Controlled delivery of Gemcitabine Hydrochloride using mannosylated poly(propyleneimine) dendrimers. J Nanopart Res 17, 458 (2015). https://doi.org/10.1007/s11051-015-3265-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-015-3265-1

Keywords

Navigation