Skip to main content

Advertisement

Log in

A Bacteriophage-Loaded Microparticle Laden Topical Gel for the Treatment of Multidrug-Resistant Biofilm-Mediated Burn Wound Infection

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Klebsiella pneumoniae is regarded as one of the most profound bacteria isolated from the debilitating injuries caused by burn wounds. In addition, the multidrug resistance (MDR) and biofilm formation make treating burn patients with clinically available antibiotics difficult. Bacteriophage therapy has been proven an effective alternative against biofilm-mediated wound infections caused by MDR bacterial strains. In the current study, the bacteriophage (BPKPФ1) against MDR Klebsiella pneumoniae was isolated and loaded into the chitosan microparticles (CHMPs), which was later incorporated into the Sepineo P 600 to convert into a gel (BPKPФ1-CHMP-gel). BPKPФ1 was characterized for lytic profile, morphological class, and burst size, which revealed that the BPKPФ1 belongs to the family Siphoviridae. Moreover, BPKPФ1 exhibited a narrow host range with 128 PFU/host cell of burst size. The BPKPФ1-loaded CHMPs showed an average particle size of  1.96 ± 0.51 μm, zeta potential 32.16 ± 0.41 mV, and entrapment efficiency in the range of 82.44 ± 1.31%. Further, the in vitro antibacterial and antibiofilm effectiveness of BPKPФ1-CHMPs-gel were examined. The in vivo potential of the BPKPФ1-CHMPs-gel was assessed using a rat model with MDR Klebsiella pneumoniae infected burn wound, which exhibited improved wound contraction (89.22 ± 0.48%) in 28 days with reduced inflammation, in comparison with different controls. Data in hand suggest the potential of bacteriophage therapy to be developed as personalized therapy in case of difficult-to-treat bacterial infections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

MDR:

Multidrug resistance

AMR:

Antimicrobial resistance

BP:

Bacteriophage

K. pneumoniae :

Klebsiella pneumoniae

BPKPФ1:

Bacteriophage against K. pneumoniae

CHMPs:

Chitosan microparticles

BPKPФ1-CHMPs:

Bacteriophage chitosan microparticles

DLAO:

Double-layer agar overlay

TEM:

Transmission electron microscopy

SEM:

Scanning electron microscopy

SSD:

Silver sulfadiazine

USG/PA:

Ultrasound/photoacoustic

References

  1. Center for disease control and prevention. Antibiotic resistance threats in the United States, 2019: US Department of Health and Human Services, Centres for Disease Control; 2019.

  2. NIH. Forgery International Center. The paradox of antimicrobial resistance in India. Global Health Matters May/June 2022. 2022;21(3).

  3. Taneja N, Sharma M. Antimicrobial resistance in the environment: the Indian scenario. The Ind J Med Res. 2019;149(2):119–28.

    Article  Google Scholar 

  4. Greenhalgh DG. Management of burns. N Engl J Med. 2019;380(24):2349–59.

    Article  PubMed  Google Scholar 

  5. Markiewicz-Gospodarek A, Kozioł M, Tobiasz M, Baj J, Radzikowska-Büchner E, Przekora A. Burn wound healing: clinical complications, medical care, treatment, and dressing types: the current state of knowledge for clinical practice. Int J Environ Res. 2022;19(3):1338.

    CAS  Google Scholar 

  6. Masson-Meyers DS, Andrade TAM, Caetano GF, Guimaraes FR, Leite MN, Leite SN, et al. Experimental models and methods for cutaneous wound healing assessment. Int J Experiment Pathol. 2020;101(1-2):21–37.

    Article  Google Scholar 

  7. Shariati A, Moradabadi A, Ghaznavi-Rad E, Dadmanesh M, Komijani M, Nojoomi F. Investigation into antibacterial and wound healing properties of platelets lysate against Acinetobacter baumannii and Klebsiella pneumoniae burn wound infections. Annals Clin Microbiol Antimicrob. 2021;20(1):40.

    Article  CAS  Google Scholar 

  8. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: a major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev. 2017;41(3):252–75.

    Article  CAS  PubMed  Google Scholar 

  10. Anand T, Virmani N, Kumar S, Mohanty AK, Pavulraj S, Bera BC, et al. Phage therapy for treatment of virulent Klebsiella pneumoniae infection in a mouse model. J Global Antimicrob Resist. 2020;21:34–41.

    Article  Google Scholar 

  11. Chang RYK, Morales S, Okamoto Y, Chan H-K. Topical application of bacteriophages for treatment of wound infections. Transl Res. 2020;220:153–66.

    Article  CAS  PubMed  Google Scholar 

  12. Vandenheuvel D, Meeus J, Lavigne R, Van den Mooter G. Instability of bacteriophages in spray-dried trehalose powders is caused by crystallization of the matrix. Int J Pharm. 2014;472(1-2):202–5.

    Article  CAS  PubMed  Google Scholar 

  13. Inst. CaLSI. Methods for determining bactericidal activity of antimicrobial agents; approved guideline M26-A. Clin Lab Stand. 1999;19:7.

    Google Scholar 

  14. Kim J, Jo A, Chukeatirote E, Ahn J. Assessment of antibiotic resistance in Klebsiella pneumoniae exposed to sequential in vitro antibiotic treatments. Annals Clin Microbiol Antimicrob. 2016;15(1):60.

    Article  Google Scholar 

  15. Singh A, Singh AN, Rathor N, Chaudhry R, Singh SK, Nath G. Evaluation of bacteriophage cocktail on septicemia caused by colistin-resistant Klebsiella pneumoniae in mice model. Front Pharmacol. 2022;13:778676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hyman P. Phages for phage therapy: isolation, characterization, and host range breadth. Pharmaceuticals (Basel). 2019;12(1):35. https://doi.org/10.3390/ph12010035.

  17. Luong T, Salabarria AC, Edwards RA, Roach DR. Standardized bacteriophage purification for personalized phage therapy. Nat Protocols. 2020;15(9):2867–90.

    Article  CAS  PubMed  Google Scholar 

  18. Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol (Clifton, NJ). 2009;501:69–76.

    Article  CAS  Google Scholar 

  19. El-Atrees DM, El-Kased RF, Abbas AM, Yassien MA. Characterization and anti-biofilm activity of bacteriophages against urinary tract Enterococcus faecalis isolates. Sci Rep. 2022;12(1):13048.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jurczak-Kurek A, Gąsior T, Nejman-Faleńczyk B, Bloch S, Dydecka A, Topka G, et al. Biodiversity of bacteriophages: morphological and biological properties of a large group of phages isolated from urban sewage. Sci Rep. 2016;6(1):34338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Khan Mirzaei M, Nilsson AS. Isolation of phages for phage therapy: a comparison of spot tests and efficiency of plating analyses for determination of host range and efficacy. Plos One. 2015;10(3):e0118557.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dewanggana MN, Evangeline C, Ketty MD, Waturangi DE, Yogiara MS. Isolation, characterization, molecular analysis and application of bacteriophage DW-EC to control Enterotoxigenic Escherichia coli on various foods. Sci Rep. 2022;12(1):495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Akhwale JK, Rohde M, Rohde C, Bunk B, Spröer C, Boga HI, et al. Isolation, characterization and analysis of bacteriophages from the haloalkaline lake Elmenteita, Kenya. Plos One. 2019;14(4):e0215734.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Allué-Guardia A, Jofre J, Muniesa M. Stability and infectivity of cytolethal distending toxin type V gene-carrying bacteriophages in a water mesocosm and under different inactivation conditions. Appl Environ Microbiol. 2012;78(16):5818–23.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ellis EL, Delbruck M. The growth of bacteriophage. J The J Gen Physiol. 1939;22(3):365–84.

    Article  CAS  PubMed  Google Scholar 

  26. Chang Y, Shin H, Lee JH, Park CJ, Paik SY, Ryu S. Isolation and genome characterization of the virulent Staphylococcus aureus bacteriophage SA97. Viruses. 2015;7(10):5225–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pan Y, Ren X, Wang S, Li X, Luo X, Yin Z. Annexin V-conjugated mixed micelles as a potential drug delivery system for targeted thrombolysis. Biomacromolecules. 2017;18(3):865–76.

    Article  CAS  PubMed  Google Scholar 

  28. Sareen R, Kapil M, Gupta GN. Incubation and its effect on Leishman stain. J Lab Phys. 2018;10(3):357–61.

    CAS  Google Scholar 

  29. Dehari D, Mehata AK, Priya V, Parbat D, Kumar D, Srivastava AK, et al. Luliconazole nail lacquer for the treatment of onychomycosis: formulation, characterization and in vitro and ex vivo evaluation. AAPS Pharm Sci Tech. 2022;23(6):175.

    Article  CAS  Google Scholar 

  30. Rahimzadeh G, Saeedi M, Moosazadeh M, Hashemi SMH, Babaei A, Rezai MS, et al. Encapsulation of bacteriophage cocktail into chitosan for the treatment of bacterial diarrhea. Sci Rep. 2021;11(1):15603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ilomuanya MO, Enwuru NV, Adenokun E, Fatunmbi A, Adeluola A, Igwilo CI. Chitosan-based microparticle encapsulated Acinetobacter baumannii phage cocktail in hydrogel matrix for the management of multidrug resistant chronic wound infection. Turk J Pharm Sci. 2022;19(2):187–95.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Baghel S, Nair VS, Pirani A, Sravani AB, Bhemisetty B, Ananthamurthy K, et al. Luliconazole-loaded nanostructured lipid carriers for topical treatment of superficial Tinea infections. Dermatol Ther. 2020;33(6):e13959.

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Kong X, Shi S, Zheng X, Guo G, Wei Y, et al. Preparation of alginate coated chitosan microparticles for vaccine delivery. BMC Biotechnol. 2008;8(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Anjum MM, Patel KK, Dehari D, Pandey N, Tilak R, Agrawal AK, et al. Anacardic acid encapsulated solid lipid nanoparticles for Staphylococcus aureus biofilm therapy: chitosan and DNase coating improves antimicrobial activity. Drug Deliv Translat Res. 2021;11(1):305–17.

    Article  CAS  Google Scholar 

  35. Proniuk S, Blanchard J. Anhydrous Carbopol® polymer gels for the topical delivery of oxygen/water sensitive compounds. Pharm Dev Technol. 2002;7(2):249–55.

    Article  CAS  PubMed  Google Scholar 

  36. Dantas MGB, Reis SAGB, Damasceno CMD, Rolim LA, Rolim-Neto PJ, Carvalho FO, et al. Development and evaluation of stability of a gel formulation containing the monoterpene borneol. The Sci World J. 2016;2016:7394685.

    Article  Google Scholar 

  37. Patel KK, Surekha DB, Tripathi M, Anjum MM, Muthu MS, Tilak R, et al. Antibiofilm potential of silver sulfadiazine-loaded nanoparticle formulations: a study on the effect of DNase-I on microbial biofilm and wound healing activity. Mol Pharm. 2019;16(9):3916–25.

    Article  CAS  PubMed  Google Scholar 

  38. Rodríguez-Melcón C, Alonso-Calleja C, García-Fernández C, Carballo J, Capita R. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) for twelve antimicrobials (biocides and antibiotics) in eight strains of Listeria monocytogenes. Biol. 2021;11(1)

  39. Plota M, Sazakli E, Giormezis N, Gkartziou F, Kolonitsiou F, Leotsinidis M, et al. In vitro anti-biofilm activity of bacteriophage K (ATCC 19685-B1) and daptomycin against staphylococci. Microorganisms. 2021;9(9)

  40. Liu Y, She P, Xu L, Chen L, Li Y, Liu S, et al. Antimicrobial, antibiofilm, and anti-persister activities of penfluridol against Staphylococcus aureus. Front Microbiol. 2021;12:727692.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim T, Zhang Q, Li J, Zhang L, Jokerst JV. A gold/silver hybrid nanoparticle for treatment and photoacoustic imaging of bacterial infection. ACS Nano. 2018;12(6):5615–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Suda T, Hanawa T, Tanaka M, Tanji Y, Miyanaga K, Hasegawa-Ishii S, et al. Modification of the immune response by bacteriophages alters methicillin-resistant Staphylococcus aureus infection. Sci Rep. 2022;12(1):15656.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li CW, Wang Q, Li J, Hu M, Shi SJ, Li ZW, et al. Silver nanoparticles/chitosan oligosaccharide/poly(vinyl alcohol) nanofiber promotes wound healing by activating TGFβ1/Smad signaling pathway. Int J Nanomed. 2016;11:373–86.

    CAS  Google Scholar 

  44. Puapermpoonsiri U, Spencer J, van der Walle CF. A freeze-dried formulation of bacteriophage encapsulated in biodegradable microspheres. Eur J Pharm Biopharm Official J Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik eV. 2009;72(1):26–33.

    CAS  Google Scholar 

  45. Perween N, Prakash SK, Siddiqui O. Multi drug resistant Klebsiella isolates in burn patients: a comparative study. J Clin Diagn Res JCDR. 2015;9(9):Dc14-6.

    PubMed  Google Scholar 

  46. Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, et al. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. Environ Int. 2019;129:488–96.

    Article  CAS  PubMed  Google Scholar 

  47. Lan P, Jiang Y, Zhou J, Yu Y. A global perspective on the convergence of hypervirulence and carbapenem resistance in Klebsiella pneumoniae. J Glob Antimicrob Resist. 2021;25:26–34.

    Article  CAS  PubMed  Google Scholar 

  48. Farhadi M, Ahanjan M, Goli HR, Haghshenas MR, Gholami M. High frequency of multidrug-resistant (MDR) Klebsiella pneumoniae harboring several β-lactamase and integron genes collected from several hospitals in the north of Iran. Annals Clin Microbiol Antimicrob. 2021;20(1):70.

    Article  CAS  Google Scholar 

  49. de Jonge PA, Nobrega FL, Brouns SJJ, Dutilh BE. Molecular and evolutionary determinants of bacteriophage host range. Trends Microbiol. 2019;27(1):51–63.

    Article  PubMed  Google Scholar 

  50. Kazimierczak J, Wójcik EA, Witaszewska J, Guziński A, Górecka E, Stańczyk M, et al. Complete genome sequences of Aeromonas and Pseudomonas phages as a supportive tool for development of antibacterial treatment in aquaculture. Virol J. 2019;16(1):4.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Jończyk E, Kłak M, Międzybrodzki R, Górski A. The influence of external factors on bacteriophages—review. Folia Microbiol. 2011;56(3):191–200.

    Article  Google Scholar 

  52. Khawaja KA, Abbas Z, Rehman SU. Isolation and characterization of lytic phages TSE1-3 against Enterobacter cloacae. J Open Life Sci. 2016;11(1):287–92.

    CAS  Google Scholar 

  53. Ahmadi H, Radford D, Kropinski AM, Lim LT, Balamurugan S. Thermal-stability and reconstitution ability of listeria phages P100 and A511. Front Microbiol. 2017;5(8):2375. https://doi.org/10.3389/fmicb.2017.02375.

  54. Mohammadian F, Rahmani HK, Bidarian B, Khoramian B. Isolation and evaluation of the efficacy of bacteriophages against multidrug-resistant (MDR), methicillin-resistant (MRSA) and biofilm-producing strains of Staphylococcus aureus recovered from bovine mastitis. BMC Vet Res. 2022;18(1):406.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Patzelt A, Richter H, Knorr F, Schäfer U, Lehr CM, Dähne L, et al. Selective follicular targeting by modification of the particle sizes. J Controlled Release : Official J Control Release Soc. 2011;150(1):45–8.

    Article  CAS  Google Scholar 

  56. Loh B, Gondil VS, Manohar P, Khan FM, Yang H, Leptihn S. Encapsulation and delivery of therapeutic phages. Appl Environ Microbiol. 2021;87(5)

  57. Abdelsattar AS, Abdelrahman F, Dawoud A, Connerton IF, El-Shibiny A. Encapsulation of E. coli phage ZCEC5 in chitosan–alginate beads as a delivery system in phage therapy. AMB Express. 2019;9(1):87.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ma Y, Pacan JC, Wang Q, Xu Y, Huang X, Korenevsky A, et al. Microencapsulation of bacteriophage felix O1 into chitosan-alginate microspheres for oral delivery. Appl Environ Microbiol. 2008;74(15):4799–805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Choińska-Pulit A, Mituła P, Śliwka P, Łaba W, Skaradzińska A. Bacteriophage encapsulation: trends and potential applications. Trends Food Sci Technol. 2015;45(2):212–21.

    Article  Google Scholar 

  60. Kim, S., Jo, A. and Ahn, J. Application of chitosan–alginate microspheres for the sustained release of bacteriophage in simulated gastrointestinal conditions. Int J Food Sci Technol. 2015;50:913–8. https://doi.org/10.1111/ijfs.12736.

  61. Rotman SG, Sumrall E, Ziadlou R, Grijpma DW, Richards RG, Eglin D, et al. Local bacteriophage delivery for treatment and prevention of bacterial infections. Front Microbiol. 2020;11:538060.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zyman A, Górski A, Międzybrodzki R. Phage therapy of wound-associated infections. Folia Microbiol (Praha). 2022;67(2):193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Pinto AM, Cerqueira MA, Bañobre-Lópes M, Pastrana LM, Sillankorva S. Bacteriophages for chronic wound treatment: from traditional to novel delivery systems. Viruses. 2020;12(2):235. https://doi.org/10.3390/v12020235.

  64. Sulakvelidze A, Alavidze Z, Morris JG Jr. Bacteriophage therapy. Antimicrob Agents Chemother. 2001;45(3):649–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Mantri Y, Tsujimoto J, Donovan B, Fernandes CC, Garimella PS, Penny WF, et al. Photoacoustic monitoring of angiogenesis predicts response to therapy in healing wounds. Wound repair and regeneration : official publication of the Wound Healing Society [and] the European Tissue Repair. Soc. 2022;30(2):258–67.

    Google Scholar 

Download references

Acknowledgements

Author D. Dehari would like to thank the Indian Institute of Technology (BHU) Varanasi for providing financial assistance in the form of a research support grant to conduct the study. SEM and Confocal microscopy were performed at IIT (BHU) Varanasi, for which the authors express their appreciation to the Central Instrument Facility Centre. The authors are also grateful to the Virus Research & Development Laboratory in the Department of Microbiology at the Institute of Medical Science at Banaras Hindu University in Varanasi for providing lab space for the study of Bateriophages as part of scheme 5066 and the use of an Optima XPN-100 Ultracentrifuge (supported by the Department of Science and Technology’s PURSE program). Department of Geology (BHU) is also acknowledged for the facility of scanning electron microscope used to examine biological samples. Also acknowledged is SATHI (Banaras Hindu University) for providing the Photoacoustic imaging platform.

Author information

Authors and Affiliations

Authors

Contributions

Deepa Dehari: conceptualization, methodology, formal analysis and data curation, and writing; Aiswarya Chaudhuri, Dulla Naveen Kumar, and Meraj Anjum: formulation, data collection, participated in animal experiments; Rajesh Kumar and Akshay Kumar: bacterial strain collection, bacteriophage isolation, and data curation; Dinesh Kumar: validation, review, and editing, Gopal Nath: provided microbiology lab facility, conceptualization, supervised, writing—review and editing; and Ashish Kumar Agrawal: conceived and supervised the project, reviewing, editing, and approved the final manuscript. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Ashish Kumar Agrawal.

Ethics declarations

Ethical Approval

IAEC approved all animal experiments with approval no-IIT(BHU)/IAEC/2022/007 from the Department of Pharmaceutical Eng. & Tech., Indian Institute of Technology (BHU), Varanasi, U.P., India.

Conflict of Interest

The authors declare no competing interest

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 462 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dehari, D., Chaudhuri, A., Kumar, D.N. et al. A Bacteriophage-Loaded Microparticle Laden Topical Gel for the Treatment of Multidrug-Resistant Biofilm-Mediated Burn Wound Infection. AAPS PharmSciTech 24, 165 (2023). https://doi.org/10.1208/s12249-023-02620-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02620-w

Keywords

Navigation