Skip to main content

Advertisement

Log in

Exploiting Recent Trends in the Treatment of Androgenic Alopecia through Topical Nanocarriers of Minoxidil

  • Review Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Androgenic alopecia, a polygenetic disorder, is characterized by well-defined hair loss that progresses gradually. The disease affects both males and females and exerts a drastic impact on a person’s psychological well-being. Minoxidil (MIN) is the commonly prescribed FDA-approved agent for the treatment of disease. It is conventionally administered as a topical solution but is allied with several adverse reactions, such as erythema and dermatitis, resulting in decreased patient compliance. To overcome these side effects, researchers developed various nanocarriers of MIN. Encapsulation of MIN in various nanocarriers enhances the entry of the drug into hair follicles and results in the formation of reservoirs for controlled delivery of the drug. It also increases the therapeutic outcomes in comparison to conventional formulations. The present review discusses the composition and physicochemical properties of different nanocarrier systems of MIN. Although successful encapsulation of MIN has been observed in these nanocarriers, there is still scarce data regarding their loading in a final dosage form. This allows researchers to conduct more in vivo studies and focus on their clinical applications.

Highlights

• Androgenic alopecia is a polygenetic disorder with gradual loss of hair that progresses with age.

• Minoxidil An FDA-approved drug for the treatment of androgenic alopecia.

• Is allied with several adverse reactions, having decreased therapeutic efficacy.

• Several nanocarriers including polymeric lipid-based and inorganic nanoparticles have been developed to improve their therapeutic efficacy.

• Utilization of these nanocarriers results in increased retention of MIN within the hair follicles and utilizes low concentrations of solvents.

• Modifications of different physicochemical properties of these carriers I.e. Particle size Zeta potential and entrapment efficiency are important to attain the above objectives.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Suchonwanit P, Srisuwanwattana P, Chalermroj N, Khunkhet S. A randomized, double-blind controlled study of the efficacy and safety of topical solution of 0.25% finasteride admixed with 3% minoxidil vs. 3% minoxidil solution in the treatment of male androgenetic alopecia. J European Academy Dermatolo Venereol. 2018;32(12):2257–63.

    Article  CAS  Google Scholar 

  2. Kelly Y, Blanco A, Tosti A. Androgenetic alopecia: an update of treatment options. Drugs. 2016;76(14):1349–64.

    Article  CAS  PubMed  Google Scholar 

  3. Gupta M, Mysore V. Classifications of patterned hair loss: a review. J Cutan Aesthet Surg. 2016;9(1):3–12.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hamilton JB. Patterned loss of hair in man: types and incidence. Ann N Y Acad Sci. 1951;53(3):708–28.

    Article  CAS  PubMed  Google Scholar 

  5. Olsen EA, Messenger AG, Shapiro J, Bergfeld WF, Hordinsky MK, Roberts JL, et al. Evaluation and treatment of male and female pattern hair loss. J Am Acad Dermatol. 2005;52(2):301–11.

    Article  PubMed  Google Scholar 

  6. Su LH, Chen LS, Lin SC, Chen HH. Association of androgenetic alopecia with mortality from diabetes mellitus and heart disease. JAMA Dermatol. 2013;149(5):601–6.

    Article  PubMed  Google Scholar 

  7. Stough D, Stenn K, Haber R, Parsley WM, Vogel JE, Whiting DA, et al. Psychological effect, pathophysiology, and management of androgenetic alopecia in men. Mayo Clin Proc. 2005;80(10):1316–22.

    Article  PubMed  Google Scholar 

  8. Gupta S, Goyal I, Mahendra A. Quality of life assessment in patients with androgenetic alopecia. International journal of trichology. 2019;11(4):147.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ellis JA, Sinclair R, Harrap SB. Androgenetic alopecia: pathogenesis and potential for therapy. Expert Rev Mol Med. 2002;4(22):1–11.

    Article  PubMed  Google Scholar 

  10. Whiting DA. Male pattern hair loss: current understanding. Int J Dermatol. 1998;37(8):561–6.

    Article  CAS  PubMed  Google Scholar 

  11. Whiting DA. Possible mechanisms of miniaturization during androgenetic alopecia or pattern hair loss. J Am Acad Dermatol. 2001;45(3 Suppl):S81–6.

    Article  CAS  PubMed  Google Scholar 

  12. Ioannides D, Lazaridou E. Female pattern hair loss. Alopecias-practical evaluation and management. 2015;47:45–54.

    Article  Google Scholar 

  13. Lee SW, Juhasz M, Mobasher P, Ekelem C, Mesinkovska NA. A systematic review of topical finasteride in the treatment of androgenetic alopecia in men and women. Journal of drugs in dermatology : JDD. 2018;17(4):457–63.

    PubMed  Google Scholar 

  14. Rossi A, Cantisani C, Melis L, Iorio A, Scali E, Calvieri S. Minoxidil use in dermatology, side effects and recent patents. Recent Pat Inflamm Allergy Drug Discov. 2012;6(2):130–6.

    Article  CAS  PubMed  Google Scholar 

  15. Zhou Z, Song S, Gao Z, Wu J, Ma J, Cui Y. The efficacy and safety of dutasteride compared with finasteride in treating men with androgenetic alopecia: a systematic review and meta-analysis. Clin Interv Aging. 2019;14:399–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goren A, Naccarato T. Minoxidil in the treatment of androgenetic alopecia. Dermatol Ther. 2018;31(5): e12686.

    Article  PubMed  Google Scholar 

  17. Cardoso SA, Barradas TN. Developing formulations for drug follicular targeting: Nanoemulsions loaded with minoxidil and clove oil. Journal of Drug Delivery Science and Technology. 2020;59: 101908.

    Article  CAS  Google Scholar 

  18. Han S, Jang H-S, Shim JH, Kang M, Lee Y, Park JS, et al. Development of minoxidil-loaded double emulsion PLGA nanoparticles for the treatment of hair loss. J Industrial Eng Chem. 2022;113:161–169.

  19. Avram MR, Cole JP, Chase C, Gandelman M, Haber R, Knudsen R, et al. The potential role of minoxidil in the hair transplantation setting. Dermatol Surg. 2002;28(10):894–900.

    PubMed  Google Scholar 

  20. Meisheri KD, Cipkus LA, Taylor CJ. Mechanism of action of minoxidil sulfate-induced vasodilation: a role for increased K+ permeability. J Pharmacol Exp Ther. 1988;245(3):751–60.

    CAS  PubMed  Google Scholar 

  21. Shorter K, Farjo NP, Picksley SM, Randall VA. Human hair follicles contain two forms of ATP-sensitive potassium channels, only one of which is sensitive to minoxidil. FASEB J. 2008;22(6):1725–36.

    Article  CAS  PubMed  Google Scholar 

  22. Gottlieb TB, Katz FH, Chidsey CA III. Combined therapy with vasodilator drugs and beta-adrenergic blockade in hypertension: a comparative study of minoxidil and hydralazine. Circulation. 1972;45(3):571–82.

    Article  CAS  PubMed  Google Scholar 

  23. Messenger AG, Rundegren J. Minoxidil: mechanisms of action on hair growth. Br J Dermatol. 2004;150(2):186–94.

    Article  CAS  PubMed  Google Scholar 

  24. Lachgar S, Charveron M, Gall Y, Bonafe J. Minoxidil upregulates the expression of vascular endothelial growth factor in human hair dermal papilla cells. Br J Dermatol. 1998;138(3):407–11.

    Article  CAS  PubMed  Google Scholar 

  25. Tricarico D, Maqoud F, Curci A, Camerino G, Zizzo N, Denora N, et al. Characterization of minoxidil/hydroxypropyl-β-cyclodextrin inclusion complex in aqueous alginate gel useful for alopecia management: Efficacy evaluation in male rat. Eur J Pharm Biopharm. 2018;122:146–57.

    Article  CAS  PubMed  Google Scholar 

  26. Godin B, Touitou E. Transdermal skin delivery: predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–61.

    Article  CAS  PubMed  Google Scholar 

  27. Goren A, Castano JA, McCoy J, Bermudez F, Lotti T. Novel enzymatic assay predicts minoxidil response in the treatment of androgenetic alopecia. Dermatol Ther. 2014;27(3):171–3.

    Article  PubMed  Google Scholar 

  28. Mali N, Darandale S, Vavia P. Niosomes as a vesicular carrier for topical administration of minoxidil: formulation and in vitro assessment. Drug Deliv Transl Res. 2013;3(6):587–92.

    Article  CAS  PubMed  Google Scholar 

  29. Matos BN, Reis TA, Gratieri T, Gelfuso GM. Chitosan nanoparticles for targeting and sustaining minoxidil sulphate delivery to hair follicles. Int J Biol Macromol. 2015;75:225–9.

    Article  CAS  PubMed  Google Scholar 

  30. Ghonemy S, Alarawi A, Bessar H. Efficacy and safety of a new 10% topical minoxidil versus 5% topical minoxidil and placebo in the treatment of male androgenetic alopecia: a trichoscopic evaluation. J Dermatol Treat. 2021;32(2):236–41.

    Article  CAS  Google Scholar 

  31. Gogtay JA, Panda M. Minoxidil topical foam: a new kid on the block. International journal of trichology. 2009;1(2):142.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Purnak T, Senel E, Sahin C. Liquid formulation of minoxidil versus its foam formulation. Indian J Dermatol. 2011;56(4):462.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Chen TC, Yu S-C, Hsu C-M, Tsai F-J, Tsai Y. Minoxidil–2-hydroxypropyl-β-cyclodextrin inclusion complexes: characterization and in vivo evaluation of an aqueous solution for hair growth in rats. J Incl Phenom Macrocycl Chem. 2017;88(1):27–34.

    Article  CAS  Google Scholar 

  34. Lopedota A, Cutrignelli A, Denora N, Laquintana V, Lopalco A, Selva S, et al. New ethanol and propylene glycol free gel formulations containing a minoxidil-methyl-β-cyclodextrin complex as promising tools for alopecia treatment. Drug Dev Ind Pharm. 2015;41(5):728–36.

    Article  CAS  PubMed  Google Scholar 

  35. Olsen EA, Weiner MS. Topical minoxidil in male pattern baldness: effects of discontinuation of treatment. J Am Acad Dermatol. 1987;17(1):97–101.

    Article  CAS  PubMed  Google Scholar 

  36. Savin RC. Use of topical minoxidil in the treatment of male pattern baldness. J Am Acad Dermatol. 1987;16(3):696–704.

    Article  CAS  PubMed  Google Scholar 

  37. Gupta S, Bansal R, Gupta S, Jindal N, Jindal A. Nanocarriers and nanoparticles for skin care and dermatological treatments. Indian Dermatol Online J. 2013;4(4):267.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Ahmed N, Siddiqui B, Khan GM, Elaissari A. Enhanced Antimicrobial Activity of Silver Sulfadiazine Cosmetotherapeutic Nanolotion for Burn Infections. Cosmetics. 2022;9(5):93.

    Article  Google Scholar 

  39. Goyal R, Macri LK, Kaplan HM, Kohn J. Nanoparticles and nanofibers for topical drug delivery. J Control Release. 2016;240:77–92.

    Article  CAS  PubMed  Google Scholar 

  40. Elmowafy M, Samy A, Raslan MA, Salama A, Said RA, Abdelaziz AE, et al. Enhancement of bioavailability and pharmacodynamic effects of thymoquinone via nanostructured lipid carrier (NLC) formulation. AAPS PharmSciTech. 2016;17(3):663–72.

    Article  CAS  PubMed  Google Scholar 

  41. Wang W, Chen L, Huang X, Shao A. Preparation and Characterization of Minoxidil loaded nanostructured lipid carriers. AAPS PharmSciTech. 2017;18(2):509–16.

    Article  CAS  PubMed  Google Scholar 

  42. Abdel-Raouf H, Aly UF, Medhat W, Ahmed SS, Abdel-Aziz RT. A novel topical combination of minoxidil and spironolactone for androgenetic alopecia: Clinical, histopathological, and physicochemical study. Dermatol Ther. 2021;34(1): e14678.

    Article  CAS  PubMed  Google Scholar 

  43. Reddy MS, Mutalik S, Rao GV. Preparation and evaluation of minoxidil gels for topical application in alopecia. Indian J Pharm Sci. 2006;68(4):432–436.

  44. Nagai N, Iwai Y, Sakamoto A, Otake H, Oaku Y, Abe A, et al. Drug delivery system based on minoxidil nanoparticles promotes hair growth in C57BL/6 mice. Int J Nanomed. 2019;14:7921.

    Article  CAS  Google Scholar 

  45. Irshad S, Siddiqui B, ur. Rehman A, Farooq RK, Ahmed NJIJoPX. Recent trends and development in targeted delivery of therapeutics through enzyme responsive intelligent nanoplatform. Int J Polymeric Mater Polymeric Biomater. 2022;71(6):403–13.

    Article  CAS  Google Scholar 

  46. Monteiro-Riviere N, Inman A, Zhang L. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol. 2009;234(2):222–35.

    Article  CAS  PubMed  Google Scholar 

  47. Price VH. Double-blind, placebo-controlled evaluation of topical minoxidil in extensive alopecia areata. J Am Acad Dermatol. 1987;16(3):730–6.

    Article  CAS  PubMed  Google Scholar 

  48. Zielińska A, Carreiró F, Oliveira AM, Neves A, Pires B, Venkatesh DN, et al. Polymeric nanoparticles: production, characterization, toxicology and ecotoxicology. Molecules. 2020;25(16):3731.

  49. Crucho CIC, Barros MT. Polymeric nanoparticles: a study on the preparation variables and characterization methods. Mater Sci Eng C Mater Biol Appl. 2017;80:771–84.

    Article  CAS  PubMed  Google Scholar 

  50. El-Say KM, El-Sawy HS. Polymeric nanoparticles: promising platform for drug delivery. Int J Pharm. 2017;528(1–2):675–91.

    Article  CAS  PubMed  Google Scholar 

  51. Shetty PK, Venuvanka V, Jagani HV, Chethan GH, Ligade VS, Musmade PB, et al. Development and evaluation of sunscreen creams containing morin-encapsulated nanoparticles for enhanced UV radiation protection and antioxidant activity. Int J Nanomed. 2015;10:6477.

    CAS  Google Scholar 

  52. Ribeiro MC, Correa VLR, Silva FKLd, Casas AA, Chagas AdLd, Oliveira LPd, et al. Wound healing treatment using insulin within polymeric nanoparticles in the diabetes animal model. European J Pharm Sci. 2020;150:105330.

    Article  CAS  Google Scholar 

  53. Zhao Y, Brown MB, Jones SA. The effects of particle properties on nanoparticle drug retention and release in dynamic minoxidil foams. Int J Pharm. 2010;383(1–2):277–84.

    Article  CAS  PubMed  Google Scholar 

  54. Jeong WY, Kim S, Lee SY, Lee H, Han DW, Yang SY, et al. Transdermal delivery of Minoxidil using HA-PLGA nanoparticles for the treatment in alopecia. Biomaterials Research. 2019;23(1):1–10.

    Article  CAS  Google Scholar 

  55. Siddiqui B, Rehman Au, Ahmed N. Development and in vitro characterization of diacerein loaded chitosan–chondroitin sulfate nanoemulgel for osteoarthritis. Mater Proceed. 2021;4(1):47.

    Google Scholar 

  56. Hanck-Silva G, Minatti E. Polystyrene-b-poly (acrylic acid) nanovesicles coated by modified chitosans for encapsulation of minoxidil. Braz J Pharm Sci. 2022;58:e19106:3–17.

  57. Takeuchi I, Hida Y, Makino K. Minoxidil-encapsulated poly(L-lactide-co-glycolide) nanoparticles with hair follicle delivery properties prepared using W/O/W solvent evaporation and sonication. Biomed Mater Eng. 2018;29(2):217–28.

    CAS  PubMed  Google Scholar 

  58. Pervaiz F, Saleem M, Ashames A, Rehmani S, Qaiser R, Noreen S, et al. Development and ex-vivo skin permeation studies of finasteride–poly (lactic acid-co-glycolic acid) and minoxidil–chitosan nanoparticulate systems. J Bioact Compat Polym. 2020;35(2):77–91.

    Article  CAS  Google Scholar 

  59. Bahamonde-Norambuena D, Molina-Pereira A, Cantin M, Muñoz M, Zepeda K, Vilos C. Polymeric nanoparticles in dermocosmetic. Int. J. Morphol. 2015;33(4):1563–1568.

  60. Siddiqui B, Rehman AU, Haq IU, Ahmad NM, Ahmed N. Development, optimisation, and evaluation of nanoencapsulated diacerein emulgel for potential use in osteoarthritis. J Microencapsul. 2020;37(8):595–608.

    Article  CAS  PubMed  Google Scholar 

  61. Zhang Z, Tsai PC, Ramezanli T, Michniak-Kohn BB. Polymeric nanoparticles-based topical delivery systems for the treatment of dermatological diseases. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2013;5(3):205–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Musumeci T, Ventura CA, Giannone I, Ruozi B, Montenegro L, Pignatello R, et al. PLA/PLGA nanoparticles for sustained release of docetaxel. Int J Pharm. 2006;325(1):172–9.

    Article  CAS  PubMed  Google Scholar 

  63. Aibani N, Rai R, Patel P, Cuddihy G, Wasan EK. Chitosan nanoparticles at the biological interface: implications for drug delivery. Pharmaceutics. 2021;13(10):1686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Uprit S, Kumar Sahu R, Roy A, Pare A. Preparation and characterization of minoxidil loaded nanostructured lipid carrier gel for effective treatment of alopecia. Saudi Pharmaceutical Journal. 2013;21(4):379–85.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Ahmad J. Lipid nanoparticles based cosmetics with potential application in alleviating skin disorders. Cosmetics. 2021;8(3):84.

    Article  CAS  Google Scholar 

  66. Garcês A, Amaral MH, Sousa Lobo JM, Silva AC. Formulations based on solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) for cutaneous use: a review. Eur J Pharm Sci. 2018;112:159–67.

    Article  PubMed  Google Scholar 

  67. Das S, Ng WK, Tan RB. Are nanostructured lipid carriers (NLCs) better than solid lipid nanoparticles (SLNs): development, characterizations and comparative evaluations of clotrimazole-loaded SLNs and NLCs? Eur J Pharm Sci. 2012;47(1):139–51.

    Article  CAS  PubMed  Google Scholar 

  68. Doktorovová S, Kovačević AB, Garcia ML, Souto EB. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: current evidence from in vitro and in vivo evaluation. Eur J Pharm Biopharm. 2016;108:235–52.

    Article  PubMed  Google Scholar 

  69. Aljuffali IA, Sung CT, Shen F-M, Huang C-T, Fang J-Y. Squarticles as a lipid nanocarrier for delivering diphencyprone and minoxidil to hair follicles and human dermal papilla cells. AAPS J. 2014;16(1):140–50.

    Article  CAS  PubMed  Google Scholar 

  70. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Mol Membr Biol. 2010;27(7):247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Daré RG, Costa A, Nakamura CV, Truiti MCT, Ximenes VF, Lautenschlager SOS, et al. Evaluation of lipid nanoparticles for topical delivery of protocatechuic acid and ethyl protocatechuate as a new photoprotection strategy. Int J Pharm. 2020;582: 119336.

    Article  PubMed  Google Scholar 

  72. Souto E, Almeida A, Müller R. Lipid nanoparticles (SLN®, NLC®) for cutaneous drug delivery: structure, protection and skin effects. J Biomed Nanotechnol. 2007;3(4):317–31.

    Article  CAS  Google Scholar 

  73. Jain S, Mistry MA, Swarnakar NK. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv Transl Res. 2011;1(5):395–406.

    Article  CAS  PubMed  Google Scholar 

  74. Padois K, Cantiéni C, Bertholle V, Bardel C, Pirot F, Falson F. Solid lipid nanoparticles suspension versus commercial solutions for dermal delivery of minoxidil. Int J Pharm. 2011;416(1):300–4.

    CAS  PubMed  Google Scholar 

  75. Müller RH, Petersen RD, Hommoss A, Pardeike J. Nanostructured lipid carriers (NLC) in cosmetic dermal products. Adv Drug Deliv Rev. 2007;59(6):522–30.

    Article  PubMed  Google Scholar 

  76. Müller RH, Shegokar R, Keck CM. 20 years of lipid nanoparticles (SLN and NLC): present state of development and industrial applications. Curr Drug Discov Technol. 2011;8(3):207–27.

    Article  PubMed  Google Scholar 

  77. Oliveira PM, Alencar-Silva T, Pires FQ, Cunha-Filho M, Gratieri T, Carvalho JL, et al. Nanostructured lipid carriers loaded with an association of minoxidil and latanoprost for targeted topical therapy of alopecia. Eur J Pharm Biopharm. 2022;172:78–88.

    Article  CAS  PubMed  Google Scholar 

  78. Fang J-Y, Shen F-M, Huang C-T. Squarticles as a nanocarrier for targeting minoxidil to hair follicles and dermal papilla cells. J Dermatol Sci. 2016;84(1): e59.

    Article  Google Scholar 

  79. Kumar P, Singh SK, Handa V, Kathuria H. Oleic acid nanovesicles of Minoxidil for enhanced follicular delivery. Medicines. 2018;5(3):103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Gomes MJ, Martins S, Ferreira D, Segundo MA, Reis S. Lipid nanoparticles for topical and transdermal application for alopecia treatment: development, physicochemical characterization, and in vitro release and penetration studies. Int J Nanomed. 2014;9:1231–42.

    CAS  Google Scholar 

  81. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, et al. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mathiyazhakan M, Wiraja C, Xu C. A concise review of gold nanoparticles-based photo-responsive liposomes for controlled drug delivery. Nano-micro letters. 2018;10(1):1–10.

    Article  Google Scholar 

  83. Joseph J, B.N VH, D RD. Experimental optimization of Lornoxicam liposomes for sustained topical delivery. European J Pharm Sci. 2018;112:38–51.

    Article  CAS  Google Scholar 

  84. Tsai MJ, Huang YB, Fang JW, Fu YS, Wu PC. Preparation and Characterization of Naringenin-Loaded Elastic Liposomes for Topical Application. PLoS ONE. 2015;10(7): e0131026.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Jain B, Singh B, Katare OP, Vyas SP. Development and characterization of minoxidil-loaded liposomal system for delivery to pilosebaceous units. J Liposome Res. 2010;20(2):105–14.

    Article  CAS  PubMed  Google Scholar 

  86. Kochar P, Nayak K, Thakkar S, Polaka S, Khunt D, Misra M. Exploring the potential of minoxidil tretinoin liposomal based hydrogel for topical delivery in the treatment of androgenic alopecia. Cutan Ocul Toxicol. 2020;39(1):43–53.

    Article  CAS  PubMed  Google Scholar 

  87. Hasanovic A, Hollick C, Fischinger K, Valenta C. Improvement in physicochemical parameters of DPPC liposomes and increase in skin permeation of aciclovir and minoxidil by the addition of cationic polymers. Eur J Pharm Biopharm. 2010;75(2):148–53.

    Article  CAS  PubMed  Google Scholar 

  88. Abdel-Mottaleb MM, Try C, Pellequer Y, Lamprecht A. Nanomedicine strategies for targeting skin inflammation. Nanomedicine (Lond). 2014;9(11):1727–43.

    Article  CAS  PubMed  Google Scholar 

  89. Mura S, Manconi M, Sinico C, Valenti D, Fadda AM. Penetration enhancer-containing vesicles (PEVs) as carriers for cutaneous delivery of minoxidil. Int J Pharm. 2009;380(1–2):72–9.

    Article  CAS  PubMed  Google Scholar 

  90. Mura S, Pirot F, Manconi M, Falson F, Fadda AM. Liposomes and niosomes as potential carriers for dermal delivery of minoxidil. J Drug Target. 2007;15(2):101–8.

    Article  CAS  PubMed  Google Scholar 

  91. Sinico C, Fadda AM. Vesicular carriers for dermal drug delivery. Expert Opin Drug Deliv. 2009;6(8):813–25.

    Article  CAS  PubMed  Google Scholar 

  92. Abdulbaqi IM, Darwis Y, Khan NA, Assi RA, Khan AA. Ethosomal nanocarriers: the impact of constituents and formulation techniques on ethosomal properties, in vivo studies, and clinical trials. Int J Nanomedicine. 2016;11:2279–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Touitou E, Dayan N, Bergelson L, Godin B, Eliaz M. Ethosomes - novel vesicular carriers for enhanced delivery: characterization and skin penetration properties. J Control Release. 2000;65(3):403–18.

    Article  CAS  PubMed  Google Scholar 

  94. Mistry A, Ravikumar P. Development and evaluation of azelaic acid based ethosomes for topical delivery for the treatment of acne. Indian Journal of Pharmaceutical Education and Research. 2016;50:S232–43.

    Article  CAS  Google Scholar 

  95. Pravalika G, Chandhana P, Chiranjitha I, Dhurke R. Minoxidil ethosomes for treatment of alopecia. Reading. 2019;10:10.

    Google Scholar 

  96. Verma P, Pathak K. Therapeutic and cosmeceutical potential of ethosomes: an overview. Journal of advanced pharmaceutical technology & research. 2010;1(3):274–82.

    Article  CAS  Google Scholar 

  97. Jun-Bo T, Zhuang-Qun Y, Xi-Jing H, Ying X, Yong S, Zhe X, et al. Effect of ethosomal minoxidil on dermal delivery and hair cycle of C57BL/6 mice. J Dermatol Sci. 2007;45(2):135–7.

    Article  PubMed  Google Scholar 

  98. Rajan R, Jose S, Mukund VP, Vasudevan DT. Transferosomes — a vesicular transdermal delivery system for enhanced drug permeation. J Adv Pharm Technol Res. 2011;2(3):138–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hua S. Lipid-based nano-delivery systems for skin delivery of drugs and bioactives. Front Pharmacol. 2015;6:219.

  100. Ali MFM, Salem HF, Abdelmohsen HF, Attia SK. Preparation and clinical evaluation of nano-transferosomes for treatment of erectile dysfunction. Drug Des Dev Ther. 2015;9:2431–47.

    CAS  Google Scholar 

  101. Allam AA, Fathalla D, Safwat MA, Soliman GM. Transferosomes versus transethosomes for the dermal delivery for minoxidil: preparation and in vitro/ex vivo appraisal. Journal of Drug Delivery Science and Technology. 2022;76:103790.

  102. Fresta M, Mancuso A, Cristiano MC, Urbanek K, Cilurzo F, Cosco D, et al. Targeting of the pilosebaceous follicle by liquid crystal nanocarriers: in vitro and in vivo effects of the entrapped Minoxidil. Pharmaceutics. 2020;12(11):1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Ramezani V, Honarvar M, Seyedabadi M, Karimollah A, Ranjbar AM, Hashemi M. Formulation and optimization of transfersome containing minoxidil and caffeine. Journal of Drug Delivery Science and Technology. 2018;44:129–35.

    Article  CAS  Google Scholar 

  104. Khan A, Sharma PK, Visht S, Malviya R. Niosomes as colloidal drug delivery system: a review. Journal of Chronotherapy and Drug Delivery. 2011;2(1):15–21.

    Google Scholar 

  105. Bhardwaj P, Tripathi P, Gupta R, Pandey S. Niosomes: a review on niosomal research in the last decade. Journal of Drug Delivery Science and Technology. 2020;56: 101581.

    Article  CAS  Google Scholar 

  106. Uchechi O, Ogbonna JD, Attama AA. Nanoparticles for dermal and transdermal drug delivery. Application of nanotechnology in drug delivery. 2014;4:193–227.

    Google Scholar 

  107. Fetih G. Fluconazole-loaded niosomal gels as a topical ocular drug delivery system for corneal fungal infections. Journal of Drug Delivery Science and Technology. 2016;35:8–15.

    Article  CAS  Google Scholar 

  108. Balakrishnan P, Shanmugam S, Lee WS, Lee WM, Kim JO, Oh DH, et al. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int J Pharm. 2009;377(1–2):1–8.

    Article  CAS  PubMed  Google Scholar 

  109. Karami Z, Hamidi M. Cubosomes: remarkable drug delivery potential. Drug Discov Today. 2016;21(5):789–801.

    Article  CAS  PubMed  Google Scholar 

  110. Esposito E, Cortesi R, Drechsler M, Paccamiccio L, Mariani P, Contado C, et al. Cubosome dispersions as delivery systems for percutaneous administration of indomethacin. Pharm Res. 2005;22(12):2163–73.

    Article  CAS  PubMed  Google Scholar 

  111. Pan X, Han K, Peng X, Yang Z, Qin L, Zhu C, et al. Nanostructured cubosomes as advanced drug delivery system. Curr Pharm Des. 2013;19(35):6290–7.

    Article  CAS  PubMed  Google Scholar 

  112. Boge L, Hallstensson K, Ringstad L, Johansson J, Andersson T, Davoudi M, et al. Cubosomes for topical delivery of the antimicrobial peptide LL-37. Eur J Pharm Biopharm. 2019;134:60–7.

    Article  CAS  PubMed  Google Scholar 

  113. Kwon TK, Kim JC. In vitro skin permeation of monoolein nanoparticles containing hydroxypropyl beta-cyclodextrin/minoxidil complex. Int J Pharm. 2010;392(1–2):268–73.

    Article  CAS  PubMed  Google Scholar 

  114. Zhang R, Hua M, Liu H, Li S. How to design nanoporous silica nanoparticles in regulating drug delivery: Surface modification and porous control. Mater Sci Eng, B. 2021;263: 114835.

    Article  CAS  Google Scholar 

  115. Siddiqui B, Rehman Au, Ihsan ul H, Al-Dossary AA, Elaissari A, Ahmed N. Exploiting recent trends for the synthesis and surface functionalization of mesoporous silica nanoparticles towards biomedical applications. International Journal of Pharmaceutics:X. 2022;4:100116.

  116. Niu J, Chu Y, Huang Y-F, Chong Y-S, Jiang Z-H, Mao Z-W, et al. Transdermal gene delivery by functional peptide-conjugated cationic gold nanoparticle reverses the progression and metastasis of cutaneous melanoma. ACS Appl Mater Interfaces. 2017;9(11):9388–401.

    Article  CAS  PubMed  Google Scholar 

  117. Marin S, Vlasceanu GM, Tiplea RE, Bucur IR, Lemnaru M, Marin MM, et al. Applications and toxicity of silver nanoparticles: a recent review. Curr Top Med Chem. 2015;15(16):1596–604.

    Article  CAS  PubMed  Google Scholar 

  118. Borowska S, Brzóska MM. Metals in cosmetics: implications for human health. J Appl Toxicol. 2015;35(6):551–72.

    Article  CAS  PubMed  Google Scholar 

  119. Chen Y, Wu Y, Gao J, Zhang Z, Wang L, Chen X, et al. Transdermal vascular endothelial growth factor delivery with surface engineered gold nanoparticles. ACS Appl Mater Interfaces. 2017;9(6):5173–80.

    Article  CAS  PubMed  Google Scholar 

  120. Ahmed N, Fessi H, Elaissari A. Theranostic applications of nanoparticles in cancer. Drug Discovery Today. 2012;17(17–18):928–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Khushbakht Saleem, Bazla Siddiqui, Naveed Ahmed; formal analysis: Khushbakht Saleem, Bazla Siddiqui; writing—original draft preparation: Khushbakht Saleem, Bazla Siddiqui; writing—review and editing: Asim ur Rehman, Malik Mumtaz Taqi, and Naveed Ahmed; supervision: Asim ur Rehman, Malik Mumtaz Taqi, and Naveed Ahmed; project administration: Asim ur Rehman, Malik Mumtaz Taqi, and Naveed Ahmed. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Naveed Ahmed.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saleem, K., Siddiqui, B., .ur.Rehman, A. et al. Exploiting Recent Trends in the Treatment of Androgenic Alopecia through Topical Nanocarriers of Minoxidil. AAPS PharmSciTech 23, 292 (2022). https://doi.org/10.1208/s12249-022-02444-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02444-0

Keywords

Navigation