Skip to main content

Advertisement

Log in

Enhanced dermal delivery of acyclovir using solid lipid nanoparticles

  • Research Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The present investigation was enthused by the possibility to develop solid lipid nanoparticles (SLNs) of hydrophilic drug acyclovir (ACV) and evaluate their potential as the carrier for dermal delivery. ACV-loaded SLNs (ACV-SLNs) were prepared by the optimized double emulsion process using Compritol 888 ATO as solid lipid. The prepared SLNs were smooth and spherical in shape with average diameter, polydispersity index, and entrapment efficiency of 262 ± 13 nm, 0.280 ± 0.01, and 40.08 ± 4.39% at 10% (w/w) theoretical drug loading with respect to Compritol 888 ATO content. Differential scanning calorimetry and powder X-ray diffraction pattern revealed that ACV was present in the amorphous state inside the SLNs. In vitro skin permeation studies on human cadaver and Sprague–Dawley rat skin revealed 17.65 and 15.17 times higher accumulation of ACV-SLNs in the dermal tissues in comparison to commercially available ACV cream after 24 h. Mechanism of topical permeation and dermal distribution was studied qualitatively using confocal laser scanning microscopy. While free dye (calcein) failed to penetrate skin barrier, the same encapsulated in SLNs penetrated deeply into the dermal tissue suggesting that pilosebaceous route was followed by SLNs for skin penetration. Histological examination and transdermal epidermal water loss measurement suggested that no major morphological changes occurred on rat skin surface due to the application of SLNs. Overall, it was concluded that ACV-loaded SLNs might be beneficial in improving dermal delivery of antiviral agent(s) for the treatment of topical herpes simplex infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Fleming DT, McQuillan GM, Johnson RE, Nahmias AJ, Aral SO, Lee FK, et al. Herpes simplex virus type 2 in the United States, 1976 to 1994. N Engl J MED. 1997;337(16):1105.

    Article  PubMed  CAS  Google Scholar 

  2. Centers for Disease Control and Prevention (2010). Available at: http://www.cdc.gov/std/Herpes/STDFact-Herpes.htm. Accessed 10 June 2010.

  3. Kleymann G. Helicase primase: targeting the Achilles heel of herpes simplex viruses. Antiviral Chem Chemother. 2004;15(3):135–40.

    CAS  Google Scholar 

  4. Boon R. Antiviral treatment: from concept to reality. Antiviral Chem Chemother. 1997;8:5–10.

    CAS  Google Scholar 

  5. Darby G. A history of antiherpes research. Antiviral Chem Chemother. 1994;5:3–9.

    CAS  Google Scholar 

  6. Parry GE, Dunn P, Shah VP, Pershing LK. Acyclovir bioavailability in human skin. J Invest Dermatol. 1992;98(6):856–63.

    Article  PubMed  CAS  Google Scholar 

  7. Freeman DJ, Sheth NV, Spruance SL. Failure of topical acyclovir in ointment to penetrate human skin. Antimicrob Agents Chemother. 1986;29(5):730–2.

    PubMed  CAS  Google Scholar 

  8. Duncan JI, Wakeel RA, Winfield AJ, Ormerod AD, Thomson AW. Immunomodulation of psoriasis with a topical cyclosporin A formulation. Acta Derm Venereol. 1993;73(2):84–7.

    PubMed  CAS  Google Scholar 

  9. Wang S, Kara M, Krishnan TR. Transdermal delivery of cyclosporin-A using electroporation. J Control Release. 1998;50:61–70.

    Article  PubMed  CAS  Google Scholar 

  10. Boinpally RR, Zhou SL, Devraj G, Anne PK, Poondru S, Jasti BR. Iontophoresis of lecithin vesicles of cyclosporin A. Int J Pharm. 2004;274(1–2):185–90.

    Article  PubMed  CAS  Google Scholar 

  11. Liu H, Li S, Pan W, Wang Y, Han F, Yao H. Investigation into the potential of low-frequency ultrasound facilitated topical delivery of cyclosporin A. Int J Pharm. 2006;326(1–2):32–8.

    Article  PubMed  CAS  Google Scholar 

  12. Gajardo J, Villaseca J. Psoriasis and cyclosporine: an attempt at topical treatment. Rev Med Chil. 1994;122(12):1404–7.

    PubMed  CAS  Google Scholar 

  13. Shim J, Seok Kang H, Park WS, Han SH, Kim J, Chang IS. Transdermal delivery of mixnoxidil with block copolymer nanoparticles. J Control Release. 2004;97(3):477–84.

    PubMed  CAS  Google Scholar 

  14. Wissing SA, Muller RH. Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm. 2003;254(1):65–8.

    Article  PubMed  CAS  Google Scholar 

  15. Dingler A, Krohs S, Lukowski G, Gohla S, Muller RH. SLN (solid lipid nanoparticles) as new solid carrier of active ingredients in cosmetics. Eur J Pharm Sci. 1996;4(1):S148–121.

    Article  Google Scholar 

  16. Wissing SA, Muller RH. The influence of solid lipid nanoparticles on skin hydration and viscoelasticity—in vivo study. Eur J Pharm Biopharm. 2003;56(1):67–72.

    Article  PubMed  CAS  Google Scholar 

  17. Dingler A, Runge S, Muller RH. SLN (solid lipid nanoparticles) as drug carrier for an IV administration of poorly water soluble drugs. Eur J Pharm Sci. 1996;4(1):S132–121.

    Article  Google Scholar 

  18. Shah KA, Date AA, Joshi MD, Patravale VB. Solid lipid nanoparticles (SLN) of tretinoin: potential in topical delivery. Int J Pharm. 2007;345(1–2):163–71.

    Article  PubMed  CAS  Google Scholar 

  19. Yuan H, Jiang SP, Du YZ, Miao J, Zhang XG, Hu FQ. Strategic approaches for improving entrapment of hydrophilic peptide drugs by lipid nanoparticles. Colloids Surf B Biointerfaces. 2009;70(2):248–53.

    Article  PubMed  CAS  Google Scholar 

  20. Huidobro AL, Ruperez FJ, Barbas C. LC methods for acyclovir and related impurities determination. J Pharm Biomed Anal. 2005;37(4):687–94.

    Article  PubMed  CAS  Google Scholar 

  21. Panchagnula R, Patel JR. Transdermal delivery of azidothymidine (AZT) through rat skin ex-vivo. Pharma Sci. 1997;3:83–7.

    CAS  Google Scholar 

  22. Nair VB, Panchagnula R. The effect of pretreatment with terpenes on transdermal iontophoretic delivery of arginine vasopressin. Il Farmaco. 2004;59(7):575–81.

    Article  PubMed  CAS  Google Scholar 

  23. Panchagnula R, Bokalial R, Sharma P, Khandavilli S. Transdermal delivery of naloxone: skin permeation, pharmacokinetic, irritancy and stability studies. Int J Pharm. 2005;293(1–2):213–23.

    Article  PubMed  CAS  Google Scholar 

  24. Herkenne C, Naik A, Kalia YN, Hadgraft J, Guy RH. Dermatopharmacokinetic prediction of topical drug bioavailability in vivo. J Invest Dermatol. 2006;127(4):887–94.

    Article  PubMed  Google Scholar 

  25. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Enhancement of topical delivery from biodegradable nanoparticles. Pharma Res. 2004;21(10):1818–25.

    Article  CAS  Google Scholar 

  26. Escobar-Chavez JJ, Merino-Sanjuán V, López-Cervantes M, Urban-Morlan Z, Piñón-Segundo E, Quintanar-Guerrero D, et al. The tape-stripping technique as a method for drug quantification in skin. J Pharm Pharm Sci. 2008;11(1):104.

    PubMed  CAS  Google Scholar 

  27. Alvarez-Roman R, Naik A, Kalia YN, Guy RH, Fessi H. Skin penetration and distribution of polymeric nanoparticles. J Control Release. 2004;99(1):53–62.

    Article  PubMed  CAS  Google Scholar 

  28. Lashmar UT, Hadgraft J, Thomas N. Topical application of penetration enhancers to the skin of nude mice: a histopathological study. J Pharm Pharmacol. 1989;41(2):118–22.

    Article  PubMed  CAS  Google Scholar 

  29. Jain S, Mittal A, Jain AK. Enhanced topical delivery of cyclosporin-A using PLGA nanoparticles as carrier. Curr Nanosci. 2011;7(4):524–30.

    Article  Google Scholar 

  30. Dingler A, Freie Universität B. Feste Lipid-nanopartikel als kolloidale Wirkstoffträgersysteme zur dermalen Applikation: Freie Universität Berlin; 1998.

  31. Jain S, Chaudhari BH, Swarnakar NK. Preparation and characterization of niosomal gel for iontophoresis mediated transdermal delivery of isosorbide dinitrate. Drug Deliv and Transl Res. 2011;1(4):309–21.

    Article  CAS  Google Scholar 

  32. Friedrich I, Muller-Goymann CC. Characterization of solidified reverse micellar solutions (SRMS) and production development of SRMS-based nanosuspensions. Eur J Pharm Biopharm. 2003;56(1):111–9.

    Article  PubMed  CAS  Google Scholar 

  33. You J, Wan F, de Cui F, Sun Y, Du Y-Z, Hu Fq. Preparation and characteristic of vinorelbine bitartrate-loaded solid lipid nanoparticles. Int J Pharm. 2007;343(1–2):270–6.

    Article  PubMed  CAS  Google Scholar 

  34. Heiati H, Phillips NC, Tawashi R. Evidence for phospholipid bilayer formation in solid lipid nanoparticles formulated with phospholipid and triglyceride. Pharma Res. 1996;13(9):1406–10.

    Article  CAS  Google Scholar 

  35. Westesen K, Siekmann B. Investigation of the gel formation of phospholipid-stabilized solid lipid nanoparticles. Int J Pharm. 1997;151(1):35–45.

    Article  CAS  Google Scholar 

  36. Rawat MK, Jain A, Mishra A, Muthu MS, Singh S. Development of repaglinide loaded solid lipid nanocarrier: selection of fabrication method. Curr Drug Deliv. 2010;7(1):44–50.

    Article  PubMed  CAS  Google Scholar 

  37. Dubes A, Parrot-Lopez H, Abdelwahed W, Degobert G, Fessi H, Shahgaldian P, et al. Scanning electron microscopy and atomic force microscopy imaging of solid lipid nanoparticles derived from amphiphilic cyclodextrins. Eur J Pharm Biopharm. 2003;55(3):279–82.

    Article  PubMed  CAS  Google Scholar 

  38. Kamel AO, Awad GA, Geneidi AS, Mortada ND. Preparation and characterization of acyclovir nanoparticles by double emulsion technique. Egypt J Biomed Sci. 2007;23:218–36.

    CAS  Google Scholar 

  39. Morissette SL, Almarsson O, Peterson ML, Remenar JF, Read MJ, Lemmo AV, et al. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv Drug Deliv Rev. 2004;56(3):275–300.

    Article  PubMed  CAS  Google Scholar 

  40. Lv Q, Yu A, Xi Y, Li H, Song Z, Cui J, et al. Development and evaluation of penciclovir-loaded solid lipid nanoparticles for topical delivery. Int J Pharm. 2009;372(1–2):191–8.

    Article  PubMed  CAS  Google Scholar 

  41. Godin B, Touitou E. Transdermal skin delivery: Predictions for humans from in vivo, ex vivo and animal models. Adv Drug Deliv Rev. 2007;59(11):1152–61.

    Article  PubMed  CAS  Google Scholar 

  42. Cevc G. Lipid vesicles and other colloids as drug carriers on the skin. Adv Drug Deliv Rev. 2004;56(5):675–711.

    Article  PubMed  CAS  Google Scholar 

  43. Schafer-Korting M, Mehnert W, Korting H-C. Lipid nanoparticles for improved topical application of drugs for skin diseases. Adv Drug Deliv Rev. 2007;59(6):427–43.

    Article  PubMed  Google Scholar 

  44. Essa EA, Bonner MC, Barry BW. Human skin sandwich for assessing shunt route penetration during passive and iontophoretic drug and liposome delivery. J Pharm Pharmacol. 2002;54(11):1481–90.

    Article  PubMed  CAS  Google Scholar 

  45. Lund W. Principles and practice of pharmaceutics. The Pharmaceutical Codex. 12th ed. London: The Pharmaceutical Press; 1994.

    Google Scholar 

  46. Knorr F, Lademann J, Patzelt A, Sterry W, Blume-Peytavi U, Vogt A. Follicular transport route-research progress and future perspectives. Eur J Pharm Biopharm. 2009;71(2):173–80.

    Article  PubMed  CAS  Google Scholar 

  47. Toll R, Jacobi U, Richter H, Lademann J, Schaefer H, Blume-Peytavi U. Penetration profile of microspheres in follicular targeting of terminal hair follicles. J Invest Dermatol. 2004;123(1):168–76.

    Article  PubMed  CAS  Google Scholar 

  48. Vogt A, Combadiere B, Hadam S, Stieler KM, Lademann J, Schaefer H, et al. 40 nm, but not 750 or 1,500 nm, nanoparticles enter epidermal CD1a+ cells after transcutaneous application on human skin. J Invest Dermatol. 2006;126:1316–22.

    Article  PubMed  CAS  Google Scholar 

  49. Yosipovitch G, Xiong GL, Haus E, Sackett-Lundeen L, Ashkenazi I, Maibach HI. Time-dependent variations of the skin barrier function in humans: transepidermal water loss, stratum corneum hydration, skin surface pH, and skin temperature. J Invest Dermatol. 1998;110(1):20–3.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Authors are thankful to NIPER for financial assistance and providing necessary infrastructure facilities and Department of Science and Technology, Government of India, New Delhi, for financial support. Technical assistance rendered by Mr. Dinesh Singh and Mr. Rahul R. Mahajan is also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanyog Jain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jain, S., Mistry, M.A. & Swarnakar, N.K. Enhanced dermal delivery of acyclovir using solid lipid nanoparticles. Drug Deliv. and Transl. Res. 1, 395–406 (2011). https://doi.org/10.1007/s13346-011-0036-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-011-0036-0

Keywords

Navigation