Skip to main content

Advertisement

Log in

Additive Manufacturing of Solid Products for Oral Drug Delivery Using Binder Jetting Three-Dimensional Printing

  • Review Article
  • Novel Advances in 3-D Printing Technology in Drug Delivery
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Binder jetting (BJ) three-dimensional (3D) printing is becoming an established additive manufacturing technology for manufacturing of solid products for oral drug delivery. Similar to traditional solutions based on compaction of powder mixture, successful processing of BJ products requires control of bulk powder properties. In contrast to traditional compaction-based process, BJ 3D printing allows for flexible modifications on microstructure, material composition and dose in the printed pharmaceutical products. Currently, systematic strategies for selecting excipients and optimizing the printing process have not been fully established. To address this challenge, a summary of the published work and selected patent literature around BJ 3D printing to fabricate pharmaceutical solid products for oral administration purposes is presented. First, an overview of characteristics of printed products as a part of the product design and a description of the commonly used excipients and active pharmaceutical ingredients is given. The critical powder and ink properties, as well as physical geometries and inner structures of a final product, are discussed in term of the mechanisms that determine the formation of a printed solid product and finally the quality of this product. This review is also summarizing the technical features of printers, printheads, and the critical considerations for post-processing procedures. BJ 3D printing is one of the most promising additive manufacturing technologies for mass customization of pharmaceutical products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

AM:

Additive manufacturing

API:

Active pharmaceutical ingredient

BCS:

Biopharmaceutics Classification System

BJ:

Binder jetting

FDA:

US Food and Drug Administration

FDM:

Fused deposition modeling

HPC:

Hydroxypropyl cellulose

LM:

Lactose monohydrate

MJ:

Material jetting

Oh :

Ohnesorge number

PVP :

Polyvinyl pyrrolidone

Re :

Reynolds number

We :

Weber number

References

  1. Dilberoglu UM, Gharehpapagh B, Yaman U, Dolen M. The role of additive manufacturing in the era of Industry 4.0. Proc Manuf. 2017;11:545–54. https://doi.org/10.1016/j.promfg.2017.07.148.

    Article  Google Scholar 

  2. Jamroz W, Szafraniec J, Kurek M, Jachowicz R. 3D printing in pharmaceutical and medical applications-recent achievements and challenges. Pharm Res. 2018;35(9):176. https://doi.org/10.1007/s11095-018-2454-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996;40(1-2):77–87. https://doi.org/10.1016/0168-3659(95)00173-5.

    Article  CAS  Google Scholar 

  4. Norman J, Madurawe RD, Moore CMV, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50. https://doi.org/10.1016/j.addr.2016.03.001.

    Article  CAS  PubMed  Google Scholar 

  5. Fitzgerald S. FDA approves first 3D-printed epilepsy drug experts assess the benefits and caveats. Neurol Today. 2015;15(18):26–7. https://doi.org/10.1097/01.NT.0000472137.66046.b5.

    Article  Google Scholar 

  6. Boudriau S, Hanzel C, Massicotte J, Sayegh L, Wang J, Lefebvre M. Randomized comparative bioavailability of a novel three-dimensional printed fast-melt formulation of levetiracetam following the administration of a single 1000-mg dose to healthy human volunteers under fasting and fed conditions. Drugs R D. 2016;16(2):229–38. https://doi.org/10.1007/s40268-016-0132-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang S-Y, Li SW, Kowsari K, Shetty A, Sorrells L, Sen K, et al. Binder-jet 3D printing of indomethacin-laden pharmaceutical dosage forms. J Pharm Sci. 2020;109(10):3054–63. https://doi.org/10.1016/j.xphs.2020.06.027.

    Article  CAS  PubMed  Google Scholar 

  8. Wang Z, Han X, Chen R, Li J, Gao J, Zhang H, et al. Innovative color jet 3D printing of levetiracetam personalized paediatric preparations. Asian J Pharm Sci. 2021;16(3):374–86. https://doi.org/10.1016/j.ajps.2021.02.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sachs E, Haggerty J, Cima M, Williams P. Three-dimensional printing techniques. US5204055A. 1989. https://patentimages.storage.googleapis.com/9e/92/4c/16485de942a672/US5204055.pdf

  10. Sachs E, Cima M, Williams P, Brancazio D, Cornie J. Three dimensional printing: rapid tooling and prototypes directly from a CAD model. J Eng Ind. 1992;114(4):481–8. https://doi.org/10.1115/1.2900701.

    Article  Google Scholar 

  11. Rowe CW, Wang C-C, Monkhouse DC. TheriForm technology. In: Rathbone MJ, Hadgraft J, Roberts MS, editors. Modified-release drug delivery technology. 2nd ed. Boca Raton: CRC Press; 2013. p. 77–87.

    Google Scholar 

  12. Kozakiewicz M, Nartowski KP, Dominik A, Malec K, Golkowska AM, Zlocinska A, et al. Binder jetting 3D printing of challenging medicines: From low dose tablets to hydrophobic molecules. Eur J Pharm Biopharm. 2021. https://doi.org/10.1016/j.ejpb.2021.11.001.

  13. Antic A, Zhang J, Amini N, Morton D, Hapgood K. Screening pharmaceutical excipient powders for use in commercial 3D binder jetting printers. Adv Powder Technol. 2021;32(7):2469–83. https://doi.org/10.1016/j.apt.2021.05.014.

    Article  CAS  Google Scholar 

  14. Chang SY, Jin J, Yan J, Dong X, Chaudhuri B, Nagapudi K, et al. Development of a pilot-scale HuskyJet binder jet 3D printer for additive manufacturing of pharmaceutical tablets. Int J Pharm. 2021;605:120791. https://doi.org/10.1016/j.ijpharm.2021.120791.

    Article  CAS  PubMed  Google Scholar 

  15. Wang Z, Li J, Hong X, Han X, Liu B, Li X, et al. Taste masking study based on an electronic tongue: the formulation design of 3D printed levetiracetam instant-dissolving tablets. Pharm Res. 2021;38(5):831–42. https://doi.org/10.1007/s11095-021-03041-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. van den Heuvel KA, de Wit MT, Dickhoff BH. Evaluation of lactose based 3D powder bed printed pharmaceutical drug product tablets. Powder Technol. 2021;390:97–102. https://doi.org/10.1016/j.powtec.2021.05.050.

    Article  CAS  Google Scholar 

  17. Sen K, Mukherjee R, Sansare S, Halder A, Kashi H, Ma AWK, et al. Impact of powder-binder interactions on 3D printability of pharmaceutical tablets using drop test methodology. Eur J Pharm Sci. 2021;160. https://doi.org/10.1016/j.ejps.2021.105755.

  18. Sen K, Manchanda A, Mehta T, Ma AWK, Chaudhuri B. Formulation design for inkjet-based 3D printed tablets. Int J Pharm. 2020;584:119430. https://doi.org/10.1016/j.ijpharm.2020.119430.

    Article  CAS  PubMed  Google Scholar 

  19. Wilts EM, Ma D, Bai Y, Williams CB, Long TE. Comparison of Linear and 4-arm star poly(vinyl pyrrolidone) for aqueous binder jetting additive manufacturing of personalized dosage tablets. ACS Appl Mater Inter. 2019;11(27):23938–47. https://doi.org/10.1021/acsami.9b08116.

    Article  CAS  Google Scholar 

  20. Tian P, Yang F, Yu LP, Lin MM, Lin W, Lin QF, et al. Applications of excipients in the field of 3D printed pharmaceuticals. Drug Dev Ind Pharm. 2019;45(6):905–13. https://doi.org/10.1080/03639045.2019.1576723.

    Article  CAS  PubMed  Google Scholar 

  21. Shi K, Tan DK, Nokhodchi A, Maniruzzaman M. Drop-on-powder 3D printing of tablets with an anti-cancer drug, 5-fluorouracil. Pharmaceutics. 2019;11(4):150. https://doi.org/10.3390/pharmaceutics11040150.

    Article  CAS  PubMed Central  Google Scholar 

  22. Infanger S, Haemmerli A, Iliev S, Baier A, Stoyanov E, Quodbach J. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. Int J Pharm. 2019;555:198–206. https://doi.org/10.1016/j.ijpharm.2018.11.048.

    Article  CAS  PubMed  Google Scholar 

  23. Tian P, Yang F, Xu Y, Lin MM, Yu LP, Lin W, et al. Oral disintegrating patient-tailored tablets of warfarin sodium produced by 3D printing. Drug Dev Ind Pharm. 2018;44(12):1918–23. https://doi.org/10.1080/03639045.2018.1503291.

    Article  CAS  PubMed  Google Scholar 

  24. Yu DG, Shen XX, Branford-White C, Zhu LM, White K, Yang XL. Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol. 2009;61(3):323–9. https://doi.org/10.1211/jpp.61.03.0006.

    Article  CAS  PubMed  Google Scholar 

  25. Yu DG, Branford-White C, Yang YC, Zhu LM, Welbeck EW, Yang XL. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35(12):1530–6. https://doi.org/10.3109/03639040903059359.

    Article  CAS  PubMed  Google Scholar 

  26. Yu DG, Branford-White C, Ma ZH, Zhu LM, Li XY, Yang XL. Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm. 2009;370(1-2):160–6. https://doi.org/10.1016/j.ijpharm.2008.12.008.

    Article  CAS  PubMed  Google Scholar 

  27. Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96(9):2446–56. https://doi.org/10.1002/jps.20864.

    Article  CAS  PubMed  Google Scholar 

  28. Wang CC, Tejwani Motwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL, et al. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology. Drug Dev Ind Pharm. 2006;32(3):367–76. https://doi.org/10.1080/03639040500519300.

    Article  CAS  PubMed  Google Scholar 

  29. Lee KJ, Kang A, Delfino JJ, West TG, Chetty D, Monkhouse DC, et al. Evaluation of critical formulation factors in the development of a rapidly dispersing captopril oral dosage form. Drug Dev Ind Pharm. 2003;29(9):967–79. https://doi.org/10.1081/DDC-120025454.

    Article  CAS  PubMed  Google Scholar 

  30. Rowe C, Katstra W, Palazzolo R, Giritlioglu B, Teung P, Cima M. Multimechanism oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):11–7. https://doi.org/10.1016/s0168-3659(99)00224-2.

    Article  CAS  PubMed  Google Scholar 

  31. Katstra W, Palazzolo R, Rowe C, Giritlioglu B, Teung P, Cima M. Oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):1–9. https://doi.org/10.1016/s0168-3659(99)00225-4.

    Article  CAS  PubMed  Google Scholar 

  32. Jacob J, Beach L, West TG, Monkhouse DC, Surprenant HL. Rapidly dispersible dosage form of topiramate. US9492380B2. 2015. https://patentimages.storage.googleapis.com/e5/41/91/b8a424f306d780/US9492380.pdf

  33. Jacob J, Caputo K, Guillot M, Sultzbaugh KJ, West TG. Rapidly dispersible dosage form of oxcarbazepine. US9314429B2. 2015. https://patentimages.storage.googleapis.com/53/eb/3b/ce838503ad2b27/US9314429.pdf

  34. Jacob J, Coyle N, West TG, Monkhouse DC, Surprenant HL, Jain NB. Rapid disperse dosage form containing levetiracetam. US9339489B2. 2014. https://patentimages.storage.googleapis.com/c0/37/97/90136dab112bb2/US9339489.pdf

  35. Vithani K, Goyanes A, Jannin V, Basit AW, Gaisford S, Boyd BJ. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems. Pharm Res. 2019;36(1):4. https://doi.org/10.1007/s11095-018-2531-1.

    Article  CAS  Google Scholar 

  36. Antic A, Gibson I, Hapgood K. Exploring the 3D printing binder jetting process for pharmaceutical applications. Chemeca 2018. Queenstown, New Zealand: Institution of Chemical Engineers; 2018. p. 256.

  37. Parteli E, Schmidt J, Blumel C, Wirth KE, Peukert W, Poschel T. Attractive particle interaction forces and packing density of fine glass powders. Sci Rep. 2014;4:6227. https://doi.org/10.1038/srep06227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Averardi A, Cola C, Zeltmann SE, Gupta N. Effect of particle size distribution on the packing of powder beds: a critical discussion relevant to additive manufacturing. Mater Today Commun. 2020;24:100964. https://doi.org/10.1016/j.mtcomm.2020.100964.

    Article  CAS  Google Scholar 

  39. Miyanaji H, Zhang S, Yang L. A new physics-based model for equilibrium saturation determination in binder jetting additive manufacturing process. Int J Mach Tool Manu. 2018;124:1–11. https://doi.org/10.1016/j.ijmachtools.2017.09.001.

    Article  Google Scholar 

  40. Bai Y, Wagner G, Williams CB. Effect of bimodal powder mixture on powder packing density and sintered density in binder jetting of metals. 2015 International Solid Freeform Fabrication Symposium: The University of Texas at Austin; 2015. p. 758–71.

  41. Bai Y, Wagner G, Williams CB. Effect of particle size distribution on powder packing and sintering in binder jetting additive manufacturing of metals. J Manuf Sci E-T Asme. 2017;139(8). https://doi.org/10.1115/1.4036640.

  42. Lu K, Hiser M, Wu W. Effect of particle size on three dimensional printed mesh structures. Powder Technol. 2009;192(2):178–83. https://doi.org/10.1016/j.powtec.2008.12.011.

    Article  CAS  Google Scholar 

  43. Zhang J, Allardyce BJ, Rajkhowa R, Wang XG, Liu X. 3D printing of silk powder by binder jetting technique. Addit Manuf. 2021;38. https://doi.org/10.1016/j.addma.2020.101820.

  44. Modaressi H, Garnier G. Mechanism of wetting and absorption or water droplets on sized paper: effects of chemical and physical heterogeneity. Langmuir. 2002;18(3):642–9. https://doi.org/10.1021/la0104931.

    Article  CAS  Google Scholar 

  45. Sen K, Mehta T, Sansare S, Sharifi L, Ma AWK, Chaudhuri B. Pharmaceutical applications of powder-based binder jet 3D printing process – a review. Adv Drug Deliv Rev. 2021;113943. https://doi.org/10.1016/j.addr.2021.113943.

  46. Bika D, Tardos GI, Panmai S, Farber L, Michaels J. Strength and morphology of solid bridges in dry granules of pharmaceutical powders. Powder Technol. 2005;150(2):104–16. https://doi.org/10.1016/j.powtec.2004.11.024.

    Article  CAS  Google Scholar 

  47. Kougoulos E, Marziano I, Miller P. Lactose particle engineering: influence of ultrasound and anti-solvent on crystal habit and particle size. J Cryst Growth. 2010;312(23):3509–20. https://doi.org/10.1016/j.jcrysgro.2010.09.022.

    Article  CAS  Google Scholar 

  48. Ohrem HL, Schornick E, Kalivoda A, Ognibene R. Why is mannitol becoming more and more popular as a pharmaceutical excipient in solid dosage forms? Pharm Dev Technol. 2014;19(3):257–62. https://doi.org/10.3109/10837450.2013.775154.

    Article  CAS  PubMed  Google Scholar 

  49. Sugimoto M, Matsubara K, Koida Y, Kobayashi M. The preparation of rapidly disintegrating tablets in the mouth. Pharm Dev Technol. 2001;6(4):487–93. https://doi.org/10.1081/pdt-120000287.

    Article  CAS  PubMed  Google Scholar 

  50. Sugimoto M, Narisawa S, Matsubara K, Yoshino H, Nakano M, Handa T. Development of manufacturing method for rapidly disintegrating oral tablets using the crystalline transition of amorphous sucrose. Int J Pharm. 2006;320(1-2):71–8. https://doi.org/10.1016/j.ijpharm.2006.04.004.

    Article  CAS  PubMed  Google Scholar 

  51. Sugimoto M, Maejima T, Narisawa S, Matsubara K, Yoshino H. Factors affecting the characteristics of rapidly disintegrating tablets in the mouth prepared by the crystalline transition of amorphous sucrose. Int J Pharm. 2005;296(1-2):64–72. https://doi.org/10.1016/j.ijpharm.2005.02.031.

    Article  CAS  PubMed  Google Scholar 

  52. Guy A, Dahl TC, Rogers TL. Handbook of pharmaceutical excipients. 6th ed. London, Grayslake, Washington: Pharmaceutical Press, American Pharmacists Association; 2009.

    Google Scholar 

  53. Wu W, Zheng Q, Guo X, Sun J, Liu Y. A programmed release multi-drug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater. 2009;4(6):065005. https://doi.org/10.1088/1748-6041/4/6/065005.

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Z, Buchanan F, Mitchell C, Dunne N. Printability of calcium phosphate: calcium sulfate powders for the application of tissue engineered bone scaffolds using the 3D printing technique. Mater Sci Eng C. 2014;38:1–10. https://doi.org/10.1016/j.msec.2014.01.027.

    Article  CAS  Google Scholar 

  55. Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1-2):376–94. https://doi.org/10.1016/j.ijpharm.2015.12.071.

    Article  CAS  PubMed  Google Scholar 

  56. Dürig T, Karan K. Binders in pharmaceutical granulation. In: Parikh DM, editor. Handbook of Pharmaceutical Granulation Technology. 4th ed. Boca Raton: CRC Press; 2021. p. 103–30.

    Chapter  Google Scholar 

  57. Albertini B, Cavallari C, Passerini N, González-Rodrıguez M, Rodriguez L. Evaluation of β-lactose, PVP K12 and PVP K90 as excipients to prepare piroxicam granules using two wet granulation techniques. Eur J Pharm Biopharm. 2003;56(3):479–87. https://doi.org/10.1016/s0939-6411(03)00114-0.

    Article  CAS  PubMed  Google Scholar 

  58. Planinšek O, Pišek R, Trojak A, Srčič S. The utilization of surface free-energy parameters for the selection of a suitable binder in fluidized bed granulation. Int J Pharmaceut. 2000;207(1-2):77–88. https://doi.org/10.1016/s0378-5173(00)00535-4.

    Article  Google Scholar 

  59. Becker D, Rigassi T, Bauer-Brandl A. Effectiveness of binders in wet granulation: a comparison using model formulations of different tabletability. Drug Dev Ind Pharm. 1997;23(8):791–808. https://doi.org/10.3109/03639049709150550.

    Article  CAS  PubMed  Google Scholar 

  60. Ziaee M, Crane NB. Binder jetting: A review of process, materials, and methods. Addit Manuf. 2019;28:781–801. https://doi.org/10.1016/j.addma.2019.05.031.

    Article  CAS  Google Scholar 

  61. Fromm JE. Numerical calculation of the fluid dynamics of drop-on-demand jets. IBM J Res Dev. 1984;28(3):322–33. https://doi.org/10.1147/rd.283.0322.

    Article  Google Scholar 

  62. Jang D, Kim D, Moon J. Influence of fluid physical properties on ink-jet printability. Langmuir. 2009;25(5):2629–35. https://doi.org/10.1021/la900059m.

    Article  CAS  PubMed  Google Scholar 

  63. Reis N, Derby B. Ink jet deposition of ceramic suspensions: modeling and experiments of droplet formation. MRS Proc. 2000;625:117. https://doi.org/10.1557/PROC-625-117.

    Article  CAS  Google Scholar 

  64. Mostafaei A, Elliott AM, Barnes JE, Li FZ, Tan WD, Cramer CL, et al. Binder jet 3D printing—process parameters, materials, properties, —modeling, and challenges. Prog Mater Sci. 2021;119:100707. https://doi.org/10.1016/j.pmatsci.2020.100707.

    Article  CAS  Google Scholar 

  65. Derby B, Reis N. Inkjet printing of highly loaded particulate suspensions. MRS Bull. 2003;28(11):815–8. https://doi.org/10.1557/mrs2003.230.

    Article  CAS  Google Scholar 

  66. Noguera R, Lejeune M, Chartier T. 3D fine scale ceramic components formed by ink-jet prototyping process. J Eur Ceram Soc. 2005;25(12):2055–9. https://doi.org/10.1016/j.jeurceramsoc.2005.03.223.

    Article  CAS  Google Scholar 

  67. Bussmann M, Chandra S, Mostaghimi J. Modeling the splash of a droplet impacting a solid surface. Phys Fluids. 2000;12(12):3121–32. https://doi.org/10.1063/1.1321258.

    Article  CAS  Google Scholar 

  68. Jackson C. Aspects of aqueous pigment ink formulation: latency, dynamic surface tension, and pigment volume concentration. J Image Soc Japan. 2016;55(6):723–31. https://doi.org/10.11370/isj.55.723.

  69. De Gans BJ, Duineveld PC, Schubert US. Inkjet printing of polymers: state of the art and future developments. Adv Mater. 2004;16(3):203–13. https://doi.org/10.1002/adma.200300385.

    Article  CAS  Google Scholar 

  70. Kestin J, Sokolov M, Wakeham WA. Viscosity of liquid water in the range −8 °C to 150 °C. J Phys Chem Ref Data. 1978;7(3):941–8. https://doi.org/10.1063/1.555581.

    Article  CAS  Google Scholar 

  71. C4810A - HP 11 Black Printhead. 2020. https://h10057.www1.hp.com/ecomcat/hpcatalog/specs/provisioner/99/C4810A.htm. Accessed 14 Feb 2022.

  72. Ricoh MH5420/5440. 2017. https://industry.ricoh.com/en/-/Media/Ricoh/Sites/industry/industrialinkjet/pdf/RICOH_MH5420_5440.pdf. Accessed 14 Feb 2022.

  73. Miyanaji H, Zhang S, Lassell A, Zandinejad AA, Yang L. Optimal process parameters for 3D printing of porcelain structures. Proc Manuf. 2016;5:870–87. https://doi.org/10.1016/j.promfg.2016.08.074.

    Article  Google Scholar 

  74. Bai Y, Wall C, Pham H, Esker A, Williams CB. Characterizing binder–powder interaction in binder jetting additive manufacturing via sessile drop goniometry. J Manuf Sci E-T Asme. 2019;141(1). https://doi.org/10.1115/1.4041624.

  75. Emady HN, Kayrak-Talay D, Litster JD. Modeling the granule formation mechanism from single drop impact on a powder bed. J Colloid Interf Sci. 2013;393:369–76. https://doi.org/10.1016/j.jcis.2012.10.038.

    Article  CAS  Google Scholar 

  76. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. Aaps J. 2011;13(4):519–47. https://doi.org/10.1208/s12248-011-9290-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bharate SS, Bharate SB, Bajaj AN. Interactions and incompatibilities of pharmaceutical excipients with active pharmaceutical ingredients: a comprehensive review. J Excip Food Chem. 2010;1(3):3–26.

    CAS  Google Scholar 

  78. Lipper RA, Higuchi WI. Analysis of theoretical behavior of a proposed zero-order drug delivery system. J Pharm Sci. 1977;66(2):163–4. https://doi.org/10.1002/jps.2600660207.

    Article  CAS  PubMed  Google Scholar 

  79. Yoo J, Bradbury TJ, Bebb TJ, Iskra J, Surprenant HL, West TG. Three-dimensional printing system and equipment assembly. US8888480B2. 2013. https://patentimages.storage.googleapis.com/f7/d0/c4/410780f68b7e27/US8888480.pdf

  80. Wijshoff H. The dynamics of the piezo inkjet printhead operation. Phys Rep. 2010;491(4-5):77–177. https://doi.org/10.1016/j.physrep.2010.03.003.

    Article  CAS  Google Scholar 

  81. European Pharmacopoeia. Water-solid Interactions: determination of sorption-desorption isotherms and of water activity (04/2019:20939). 10 ed. Strasbourg: Council Of Europe; 2019. p. 394.

  82. Q3C Impurities: Guideline for Residual Solvents. Geneva: International Conference on Harmonization of Technical Requirements for the Registration of Pharmaceuticals for Human Use; 1997.

  83. Beach-Herrera LE, Boldt MF, Bradbury TJ, Cabral H, Caputo KE, Gross WR, et al. Method and system for forming a dosage form within a packaging. US20210393533A1. 2019. https://patentimages.storage.googleapis.com/68/78/18/fe5609b8ad365f/US20210393533A1.pdf.

  84. Strondl A, Lyckfeldt O, Brodin H, Ackelid U. Characterization and control of powder properties for additive manufacturing. Jom-Us. 2015;67(3):549–54. https://doi.org/10.1007/s11837-015-1304-0.

    Article  CAS  Google Scholar 

  85. FDA. Technical considerations for additive manufactured medical devices: Guidance for industry and Food and Drug Administration staff. Rockville: FDA; 2017.

  86. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51. https://doi.org/10.1016/j.tips.2018.02.006.

    Article  CAS  PubMed  Google Scholar 

  87. Rahman Z, Charoo NA, Kuttolamadom M, Asadi A, Khan MA. Printing of personalized medication using binder jetting 3D printer. In: Faintuch J, Faintuch S, editors. Precision Medicine for Investigators, Practitioners and Providers. 1st ed. London: Academic Press; 2020. p. 473–81.

    Chapter  Google Scholar 

  88. Meteyer S, Xu X, Perry N, Zhao YF. Energy and material flow analysis of binder-jetting additive manufacturing processes. Proc Cirp. 2014;15:19–25. https://doi.org/10.1016/j.procir.2014.06.030.

    Article  Google Scholar 

  89. Elbadawi M, Castro BM, Gavins FKH, Ong JJ, Gaisford S, Perez G, et al. M3DISEEN: A novel machine learning approach for predicting the 3D printability of medicines. Int J Pharm. 2020;590:119837. https://doi.org/10.1016/j.ijpharm.2020.119837.

    Article  CAS  PubMed  Google Scholar 

  90. Eleftheriadis GK, Genina N, Boetker J, Rantanen J. Modular design principle based on compartmental drug delivery systems. Adv Drug Deliver Rev. 2021;178:113921. https://doi.org/10.1016/j.addr.2021.113921.

    Article  CAS  Google Scholar 

Download references

Funding

The PhD project of Y.W. is fully sponsored by Mille International ApS, Hellerup, Denmark.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conceptualization of this work. The first draft of the manuscript was written by Yingya Wang and revised by Jukka Rantanen and Anette Müllertz. All authors approved the final version for submission.

Corresponding author

Correspondence to Jukka Rantanen.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Müllertz, A. & Rantanen, J. Additive Manufacturing of Solid Products for Oral Drug Delivery Using Binder Jetting Three-Dimensional Printing. AAPS PharmSciTech 23, 196 (2022). https://doi.org/10.1208/s12249-022-02321-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02321-w

KEY WORDS

Navigation