Skip to main content

Binder Jet Printing in Pharmaceutical Manufacturing

  • Chapter
  • First Online:
3D Printing of Pharmaceuticals

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 31))

Abstract

Binder jet printing is arguably the most successful three-dimensional printing (3DP) technology in the pharmaceutical industry to date. In 2015, the binder jet process was adapted as an alternative mass manufacturing technique to enable the production of SpritamĀ® (the first 3D printed tablet) approved by the Food and Drug Administration (FDA). Binder jet printing is expected to continue making a widespread impact to formulation manufacture over the next decade. In particular, binder jet printing offers benefits of producing oral dosage forms with unique release characteristics ranging from fast-dissolving through to controlled-release platforms. This chapter aims to discuss the history and methodology of binder jet printing, pharmaceutical and medical applications, considerations for formulations development and advantages and disadvantages of such processes in the pharmaceutical space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sachs EM, Haggerty J, Cima MJ, Williams PA. InventorsThree-dimensional Printing Techniques. US5204055.1993.

    Google ScholarĀ 

  2. Aprecia Pharmaceuticals. 3D printing - ZipDose technology. 2015. Available from: https://aprecia.com/zipdose-platform/3d-printing.php.

  3. Day SP, Shufflebottom L. Evidential value from inkjet printers. Probl Forensic Sci. 2001;XLVI:356ā€“74.

    Google ScholarĀ 

  4. Buanz AB, Saunders MH, Basit AW, Gaisford S. Preparation of personalized-dose salbutamol sulphate oral films with thermal ink-jet printing. Pharm Res. 2011;28(10):2386ā€“92.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Vuddanda PR, Alomari M, Dodoo CC, Trenfield SJ, Velga S, Basit AW, Gaisford S. Personalisation of warfarin therapy using thermal ink-jet printing. Eur J Pharm Sci. 2018;117:80ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Noguera R, Lejeune M, Chartier T. 3D fine scale ceramic components formed by ink-jet prototyping process. J Eur Ceram Soc. 2005;25(12):2055ā€“9.

    ArticleĀ  CASĀ  Google ScholarĀ 

  7. Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39ā€“50.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  8. Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceuticsĀ ā€“ a review of research and manufacturing. Int J Pharm. 2015;494(2):554ā€“67.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  9. Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of oneā€™s own medicine. Int J Pharm. 2015;494(2):568ā€“77.

    Google ScholarĀ 

  10. Sachs E, Cima M, Cornie J. Three-dimensional printing: rapid tooling and prototypes directly from a CAD model. CIRP Ann. 1990;39(1):201ā€“4.

    ArticleĀ  Google ScholarĀ 

  11. Lu K, Reynolds WT. 3DP process for fine mesh structure printing. Powder Technol. 2008;187(1):11ā€“8.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Cox SC, Thornby JA, Gibbons GJ, Williams MA, Mallick KK. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications. Mater Sci Eng C. 2015;47(Supplement C):237ā€“47.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater. 2010;6(12):4495ā€“505.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Leukers B, GĆ¼lkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005;16(12):1121ā€“4.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  15. Serra T, Planell JA, Navarro M. High-resolution PLA-based composite scaffolds via 3-D printing technology. Acta Biomater. 2013;9(3):5521ā€“30.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Hsiao W-K, Lorber B, Reitsamer H, Khinast J. 3D printing of oral drugs: a new reality or hype? Expert Opin Drug Deliv. 2017;15(1):1ā€“4.

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  17. Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: A new branch of digital healthcare. Int J Pharm. 2018;548(1):586ā€“96.

    Google ScholarĀ 

  18. Wu BM, Borland SW, Giordano RA, Cima LG, Sachs EM, Cima MJ. Solid free-form fabrication of drug delivery devices. J Control Release. 1996;40(1):77ā€“87.

    ArticleĀ  CASĀ  Google ScholarĀ 

  19. Yu D-G, Branford-White C, Yang Y-C, Zhu L-M, Welbeck EW, Yang X-L. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009;35(12):1530ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Wang CC, Tejwani Motwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL, et al. Development of near zero-order release dosage forms using three-dimensional printing (3-DP) technology. Drug Dev Ind Pharm. 2006;32(3):367ā€“76.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Katstra WE, Palazzolo RD, Rowe CW, Giritlioglu B, Teung P, Cima MJ. Oral dosage forms fabricated by three dimensional printingā„¢. J Control Release. 2000;66(1):1ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  22. Yu DG, Branford-White C, Ma ZH, Zhu LM, Li XY, Yang XL. Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm. 2009;370(1ā€“2):160ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  23. Lee K-J, Kang A, Delfino JJ, West TG, Chetty D, Monkhouse DC, et al. Evaluation of critical formulation factors in the development of a rapidly dispersing captopril oral dosage form. Drug Dev Ind Pharm. 2003;29(9):967ā€“79.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96(9):2446ā€“56.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Jung J-Y, Yoo SD, Lee S-H, Kim K-H, Yoon D-S, Lee K-H. Enhanced solubility and dissolution rate of itraconazole by a solid dispersion technique. Int J Pharm. 1999;187(2):209ā€“18.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  26. Pawar PK, Gautam C. Design, optimization and evaluation of mesalamine matrix tablet for colon drug delivery system. J Pharm Investig. 2016;46(1):67ā€“78.

    ArticleĀ  CASĀ  Google ScholarĀ 

  27. Rowe CW, Katstra WE, Palazzolo RD, Giritlioglu B, Teung P, Cima MJ. Multimechanism oral dosage forms fabricated by three dimensional printingā„¢. J Control Release. 2000;66(1):11ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Danckwerts MP, Watt JGVD, Moodley I. Zero-order release of theophylline from a Core-in-cup tablet in sequenced simulated gastric and intestinal fluid. Drug Dev Ind Pharm. 1998;24(2):163ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Sundy E, Danckwerts MP. A novel compression-coated doughnut-shaped tablet design for zero-order sustained release. Eur J Pharm Sci. 2004;22(5):477ā€“85.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Mishra DS, Yalkowsky SH. A flat circular hole device for zero-order release of drugs: characterization of the moving dissolution boundary. Pharm Res. 1990;7(11):1195ā€“7.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Narasimhan B, Langer R. Zero-order release of micro- and macromolecules from polymeric devices: the role of the burst effect. J Control Release. 1997;47(1):13ā€“20.

    ArticleĀ  CASĀ  Google ScholarĀ 

  32. Bayomi MA. Geometric approach for zero-order release of drugs dispersed in an inert matrix. Pharm Res. 1994;11(6):914ā€“6.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  33. Cleave JP. Some geometrical considerations concerning the design of tablets. J Pharm Pharmacol. 1965;17(11):698ā€“702.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Yu DG, Shen XX, Branford-White C, Zhu LM, White K, Yang XL. Novel oral fast-disintegrating drug delivery devices with predefined inner structure fabricated by three-dimensional printing. J Pharm Pharmacol. 2009;61(3):323ā€“9.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. FDA. Keppra XR (Levetiracetam) extended-release tablets. 2009. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2008/022285s000_TOC.cfm.

  36. Boudriau S, Hanzel C, Massicotte J, Sayegh L, Wang J, Lefebvre M. Randomized comparative bioavailability of a novel three-dimensional printed fast-melt formulation of Levetiracetam following the Administration of a single 1000-mg dose to healthy human volunteers under fasting and fed conditions. Drugs R&D. 2016;16(2):229ā€“38.

    ArticleĀ  CASĀ  Google ScholarĀ 

  37. Yu DG, Zhu L-M, Branford-White CJ, Yang XL. Three-dimensional printing in pharmaceutics: promises and problems. J Pharm Sci. 2008;97(9):3666ā€“90.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Kalaskar D. 3D printing in medicine. 1st ed. Duxford: Woodhead Publishing; 2017.

    Google ScholarĀ 

  39. Monkhouse D, Kumar S, Rowe C, Yoo J. Rapid prototyping and manufacturing process. 2003. Available from: http://www.google.com/patents/US20030173695.

  40. Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440ā€“51.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018; https://doi.org/10.1016/j.drudis.2018.05.025.

  42. Butscher A, Bohner M, Hofmann S, Gauckler L, MĆ¼ller R. Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater. 2011;7(3):907ā€“20.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Vaezi M, Yang S. 2Ā ā€“ Freeform fabrication of nanobiomaterials using 3D printing. Rapid prototyping of biomaterials: Woodhead Publishing; 2014. p. 16ā€“74.

    Google ScholarĀ 

  44. Raijada D, Genina N, Fors D, Wisaeus E, Peltonen J, Rantanen J, et al. A step toward development of printable dosage forms for poorly soluble drugs. J Pharm Sci. 2013;102(10):3694ā€“704.

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  45. Krantz M, Zhang H, Zhu J. Characterization of powder flow: static and dynamic testing. Powder Technol. 2009;194(3):239ā€“45.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah J. Trenfield .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2018 American Association of Pharmaceutical Scientists

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Trenfield, S.J., Madla, C.M., Basit, A.W., Gaisford, S. (2018). Binder Jet Printing in Pharmaceutical Manufacturing. In: Basit, A., Gaisford, S. (eds) 3D Printing of Pharmaceuticals. AAPS Advances in the Pharmaceutical Sciences Series, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-90755-0_3

Download citation

Publish with us

Policies and ethics