Skip to main content

Part of the book series: AAPS Introductions in the Pharmaceutical Sciences ((AAPSINSTR,volume 11))

  • 332 Accesses

Abstract

This chapter begins by introducing the concept and basic working principle of binder jetting (BJT) 3D printing. This is followed by discussing the material requirements for the ink and powder feedstocks in BJT for pharmaceutical manufacturing. Several process parameters and main considerations for jetting the ink, spreading the powder, and controlling the properties of the 3D printed dosage forms are highlighted and explained. Material formulations and properties of the 3D printed solid dosage forms reported in the literature are tabulated. At the end of this section, several key technical challenges that remain to be addressed are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah EC, Geldart D. The use of bulk density measurements as flowability indicators. Powder Technol. 1999;102(2):151–65.

    Article  CAS  Google Scholar 

  • Adhikari B, Howes T, Bhandari B, Truong V. Stickiness in foods: a review of mechanisms and test methods. Int J Food Prop. 2001;4(1):1–33.

    Article  CAS  Google Scholar 

  • Antic A, Zhang J, Amini N, Morton D, Hapgood K. Screening pharmaceutical excipient powders for use in commercial 3D binder jetting printers. Adv Powder Technol. 2021;32(7):2469–83.

    Article  CAS  Google Scholar 

  • Brishty FP, Urner R, Grau G. Machine learning based data driven inkjet printed electronics: jetting prediction for novel inks. Flex Print Electron. 2022;7(1):015009.

    Article  Google Scholar 

  • Chang S-Y, Li SW, Kowsari K, Shetty A, Sorrells L, Sen K, Nagapudi K, Chaudhuri B, Ma AW. Binder-jet 3D printing of indomethacin-laden pharmaceutical dosage forms. J Pharm Sci. 2020;109(10):3054–63.

    Article  CAS  PubMed  Google Scholar 

  • Chang S-Y, Jin J, Yan J, Dong X, Chaudhuri B, Nagapudi K, Ma AW. Development of a pilot-scale HuskyJet binder jet 3D printer for additive manufacturing of pharmaceutical tablets. Int J Pharm. 2021;605:120791.

    Article  CAS  PubMed  Google Scholar 

  • Derby B. Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu Rev Mater Res. 2010;40:395–414.

    Article  CAS  Google Scholar 

  • Dijksman JF. Design of piezo inkjet print heads: from acoustics to applications. Weinheim: Wiley; 2019.

    Google Scholar 

  • Furbank RJ, Morris JF. An experimental study of particle effects on drop formation. Phys Fluids. 2004;16(5):1777–90.

    Google Scholar 

  • Ganesan V, Rosentrater K, Muthukumarappan K. Flowability and handling characteristics of bulk solids and powders–a review with implications for DDGS. Biosyst Eng. 2008;101(4):425–35.

    Article  Google Scholar 

  • Gibson I, Rosen DW, Stucker B, Khorasani M, Rosen D, Stucker B, Khorasani M. Additive manufacturing technologies. Cham: Springer; 2021.

    Google Scholar 

  • Goole J, Amighi K. 3D printing in pharmaceutics: a new tool for designing customized drug delivery systems. Int J Pharm. 2016;499(1–2):376–94.

    Article  PubMed  Google Scholar 

  • Guo Y, Patanwala HS, Bognet B, Ma AW. Inkjet and inkjet-based 3D printing: connecting fluid properties and printing performance. Rapid Prototyp J. 2017;23(3):562–76.

    Google Scholar 

  • Hazlett R, Schmidmeier C, O’Mahony J. Approaches for improving the flowability of high-protein dairy powders post spray drying–a review. Powder Technol. 2021;388:26–40.

    Article  CAS  Google Scholar 

  • Hoath SD, Castrejón-Pita JR, Hsiao W-K, Jung S, Martin GD, Hutchings IM, Tuladhar TR, Vadillo DC, Butler SA, Mackley MR. Jetting of complex fluids. J Imaging Sci Technol. 2013;57(4):40403-40401-40403-40410.

    Article  Google Scholar 

  • Hoath SD, Vadillo DC, Harlen OG, McIlroy C, Morrison NF, Hsiao W-K, Tuladhar TR, Jung S, Martin GD, Hutchings IM. Inkjet printing of weakly elastic polymer solutions. J Non-Newtonian Fluid Mech. 2014;205:1–10.

    Article  CAS  Google Scholar 

  • Huang W, Zheng Q, Sun W, Xu H, Yang X. Levofloxacin implants with predefined microstructure fabricated by three-dimensional printing technique. Int J Pharm. 2007;339(1–2):33–8.

    Article  CAS  PubMed  Google Scholar 

  • Hutchings IM, Martin GD. Inkjet technology for digital fabrication. Chichester: Wiley Online Library; 2013.

    Google Scholar 

  • Infanger S, Haemmerli A, Iliev S, Baier A, Stoyanov E, Quodbach J. Powder bed 3D-printing of highly loaded drug delivery devices with hydroxypropyl cellulose as solid binder. Int J Pharm. 2019;555:198–206.

    Article  CAS  PubMed  Google Scholar 

  • Katstra W, Palazzolo R, Rowe C, Giritlioglu B, Teung P, Cima M. Oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  • Kozakiewicz-Latała M, Nartowski KP, Dominik A, Malec K, Gołkowska AM, Złocińska A, Rusińska M, Szymczyk-Ziółkowska P, Ziółkowski G, Górniak A. Binder jetting 3D printing of challenging medicines: from low dose tablets to hydrophobic molecules. Eur J Pharm Biopharm. 2022;170:144–59.

    Article  PubMed  Google Scholar 

  • Kreft K, Lavrič Z, Stanić T, Perhavec P, Dreu R. Influence of the binder jetting process parameters and binder liquid composition on the relevant attributes of 3D-printed tablets. Pharmaceutics. 2022;14(8):1568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kwon K-S. Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve. J Micromech Microeng. 2010;20(11):115005.

    Article  Google Scholar 

  • Lin H-J, Wu H-C, Shan T-R, Hwang W-S. The effects of operating parameters on micro-droplet formation in a piezoelectric inkjet printhead using a double pulse voltage pattern. Mater Trans. 2006;47(2):375–82.

    Article  CAS  Google Scholar 

  • Lu A, Zhang J, Jiang J, Zhang Y, Giri BR, Kulkarni VR, Aghda NH, Wang J, Maniruzzaman M. Novel 3D printed modular tablets containing multiple anti-viral drugs: a case of high precision drop-on-demand drug deposition. Pharm Res. 2022;39(11):2905–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma AW, Chinesta F, Tuladhar T, Mackley MR. Filament stretching of carbon nanotube suspensions. Rheol Acta. 2008;47(4):447–57.

    Article  CAS  Google Scholar 

  • Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    Article  CAS  PubMed  Google Scholar 

  • Osorio JG, Sowrirajan K, Muzzio FJ. Effect of resonant acoustic mixing on pharmaceutical powder blends and tablets. Adv Powder Technol. 2016;27(4):1141–8.

    Article  Google Scholar 

  • Prasad LK, Smyth H. 3D printing technologies for drug delivery: a review. Drug Dev Ind Pharm. 2016;42(7):1019–31.

    Article  CAS  PubMed  Google Scholar 

  • Ridge M, Surkevicius H, Milne AA. Reactivity of calcium sulphate hemihydrate. Nature. 1961;191(4789):704–5.

    Article  CAS  Google Scholar 

  • Rowe C, Katstra W, Palazzolo R, Giritlioglu B, Teung P, Cima M. Multimechanism oral dosage forms fabricated by three dimensional printing™. J Control Release. 2000;66(1):11–7.

    Article  CAS  PubMed  Google Scholar 

  • Ruberu K, Senadeera M, Rana S, Gupta S, Chung J, Yue Z, Venkatesh S, Wallace G. Coupling machine learning with 3D bioprinting to fast track optimisation of extrusion printing. Appl Mater Today. 2021;22:100914.

    Article  Google Scholar 

  • Schulze D. Powders and bulk solids: behavior, characterization, storage and flow Schulze, Dietmar. Berlin/Heidelberg: Springer; 2014.

    Google Scholar 

  • Sen K, Manchanda A, Mehta T, Ma AW, Chaudhuri B. Formulation design for inkjet-based 3D printed tablets. Int J Pharm. 2020;584:119430.

    Article  CAS  PubMed  Google Scholar 

  • Sen K, Mehta T, Sansare S, Sharifi L, Ma AW, Chaudhuri B. Pharmaceutical applications of powder-based binder jet 3D printing process–a review. Adv Drug Deliv Rev. 2021a;177:113943.

    Article  CAS  PubMed  Google Scholar 

  • Sen K, Mukherjee R, Sansare S, Halder A, Kashi H, Ma AW, Chaudhuri B. Impact of powder-binder interactions on 3D printability of pharmaceutical tablets using drop test methodology. Eur J Pharm Sci. 2021b;160:105755.

    Article  CAS  PubMed  Google Scholar 

  • Shi K, Tan DK, Nokhodchi A, Maniruzzaman M. Drop-on-powder 3D printing of tablets with an anti-cancer drug, 5-fluorouracil. Pharmaceutics. 2019;11(4):150.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan M, Dharani D, Dong X, Maiorana C, Chaudhuri B, Nagapudi K, Chang S-Y, Ma AWK. Pilot-scale binder jet 3D printing of sustained release solid dosage forms. Int J Pharm. 2023;631:122540.

    Google Scholar 

  • Vadillo D, Tuladhar T, Mulji A, Mackley M. The rheological characterization of linear viscoelasticity for ink jet fluids using piezo axial vibrator and torsion resonator rheometers. J Rheol. 2010;54(4):781–95.

    Article  CAS  Google Scholar 

  • Wang C-C, Tejwani MR, Roach WJ, Kay JL, Yoo J, Surprenant HL, Monkhouse DC, Pryor TJ. Development of near zero-order release dosage forms using three-dimensional printing (3-DP™) technology. Drug Dev Ind Pharm. 2006;32(3):367–76.

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Carr WW, Bucknall DG, Morris JF. Drop-on-demand drop formation of colloidal suspensions. Int J Multiphase Flow. 2012;38(1):17–26.

    Article  Google Scholar 

  • Wang T, Kwok T-H, Zhou C, Vader S. In-situ droplet inspection and closed-loop control system using machine learning for liquid metal jet printing. J Manuf Syst. 2018;47:83–92.

    Article  CAS  Google Scholar 

  • Wang Z, Han X, Chen R, Li J, Gao J, Zhang H, Liu N, Gao X, Zheng A. Innovative color jet 3D printing of levetiracetam personalized paediatric preparations. Asian J Pharm Sci. 2021;16(3):374–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Müllertz A, Rantanen J. Structured approach for designing drug-loaded solid products by binder jetting 3D printing. Eur J Pharm Sci. 2022;178:106280.

    Article  CAS  PubMed  Google Scholar 

  • Wilts EM, Ma D, Bai Y, Williams CB, Long TE. Comparison of linear and 4-arm star poly (vinyl pyrrolidone) for aqueous binder jetting additive manufacturing of personalized dosage tablets. ACS Appl Mater Interfaces. 2019;11(27):23938–47.

    Article  CAS  PubMed  Google Scholar 

  • Yu DG, Yang XL, Huang WD, Liu J, Wang YG, Xu H. Tablets with material gradients fabricated by three-dimensional printing. J Pharm Sci. 2007;96(9):2446–56.

    Article  CAS  PubMed  Google Scholar 

  • Yu D-G, Branford-White C, Ma Z-H, Zhu L-M, Li X-Y, Yang X-L. Novel drug delivery devices for providing linear release profiles fabricated by 3DP. Int J Pharm. 2009a;370(1–2):160–6.

    Article  CAS  PubMed  Google Scholar 

  • Yu D-G, Branford-White C, Yang Y-C, Zhu L-M, Welbeck EW, Yang X-L. A novel fast disintegrating tablet fabricated by three-dimensional printing. Drug Dev Ind Pharm. 2009b;35(12):1530–6.

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Moon SK, Ngo TH. Hybrid machine learning method to determine the optimal operating process window in aerosol jet 3D printing. ACS Appl Mater Interfaces. 2019;11(19):17994–8003.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anson W. K. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, A.W.K., Kutrolli, M., Tan, M. (2023). Binder Jetting 3D Printing in Pharmaceutical Manufacturing. In: Lamprou, D. (eds) 3D & 4D Printing Methods for Pharmaceutical Manufacturing and Personalised Drug Delivery. AAPS Introductions in the Pharmaceutical Sciences, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-34119-9_10

Download citation

Publish with us

Policies and ethics