Skip to main content
Log in

SIRT 1 Activator Loaded Inhaled Antiangiogenic Liposomal Formulation Development for Pulmonary Hypertension

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Pulmonary hypertension (PH) is characterized by the rise in mean pulmonary arterial pressure (≥ 20 mmHg at rest) due to the narrowing of the pulmonary arterial networks. Current treatments provide symptomatic treatment and the underlying progress of PH continues leading to higher mortality rates due to non-reversal of the disease. This warrants the need for drug therapies targeting angiogenesis and vascular remodeling mechanisms. Resveratrol, SIRT 1 activator, alters various signaling pathways, inhibits apoptosis, and negatively regulates angiogenesis either by increasing the production of anti-angiogenic factors or inhibiting pro-angiogenic factors. Our work describes the liposomal formulation development, physicochemical characterization, and in vitro aerosolization performance of resveratrol liposomal dry powder formulation. The resveratrol liposomal dry powder formulation reduces the right ventricular systolic pressure measured during right jugular vein catheterization and significantly reverses the PH disease pathological changes as demonstrated by histological observations of pulmonary arterial lumen and ventricular hypertrophy. The developed resveratrol liposomal dry powder formulation alleviates the pulmonary arterial remodeling through its antiangiogenic mechanism and indicates a promising therapeutic strategy for PH treatment.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Simonneau G, Montani D, Celermajer DS, Denton CP, Gatzoulis MA, Krowka M, et al. Haemodynamic definitions and updated clinical classification of pulmonary hypertension [Internet]. Vol. 53, The European respiratory journal. NLM (Medline); 2019 [cited 2020 Dec 12]. Available from: https://doi.org/10.1183/13993003.01913-2018

  2. Chin KM, Rubin LJ. Pulmonary arterial hypertension. Journal of the American College of Cardiology. 2008;51:1527–38.

    Article  Google Scholar 

  3. Duarte JD, Hanson RL, Machado RF. Pharmacologic treatments for pulmonary hypertension: exploring pharmacogenomics. Future Cardiology. 2013;9:335–49.

    Article  CAS  Google Scholar 

  4. Vaidya B, Gupta V. Novel therapeutic approaches for pulmonary arterial hypertension: unique molecular targets to site-specific drug delivery [Internet]. Vol. 211, Journal of Controlled Release. 2015 [cited 2020 Dec 12]. p. 118–33. Available from: https://www.sciencedirect.com/science/article/pii/S0168365915005969?casa_token=wtSbgVKM-3oAAAAA:opGmdgTSYPk9I_94ze1Li9Zzyvpcyxibp-gIE97QhMi08_FjKLJBo0WevdfQ9R6tSUpWVAjz5f8B

  5. Mayeux JD, Pan IZ, Dechand J, Jacobs JA, Jones TL, McKellar SH, et al. Management of pulmonary arterial hypertension [Internet]. Vol. 15, Current Cardiovascular Risk Reports. 2021 [cited 2020 Dec 12]. Available from: https://www.onlinejacc.org/content/65/18/1976.abstract

  6. Sakao S, Tatsumi K, Voelkel NF. Reversible or irreversible remodeling in pulmonary arterial hypertension [Internet]. Vol. 43, American Journal of Respiratory Cell and Molecular Biology. American Thoracic Society; 2010 [cited 2020 Dec 12]. p. 629–34. Available from: http://www.atsjournals.org/doi/abs/https://doi.org/10.1165/rcmb.2009-0389TR

  7. Yang MY, Chan JGY, Chan HK. Pulmonary drug delivery by powder aerosols. Vol. 193, Journal of Controlled Release. Elsevier; 2014, 228–40.

  8. Malcolmson RJ, Embleton JK. Dry powder formulations for pulmonary delivery [Internet]. Vol. 1, Pharmaceutical Science and Technology Today. 1998 [cited 2020 Dec 12]. p. 394–8. Available from: https://www.sciencedirect.com/science/article/pii/S1461534798000996

  9. Ungvari Z, Labinskyy N, Mukhopadhyay P, Pinto JT, Bagi Z, Ballabh P, et al. Resveratrol attenuates mitochondrial oxidative stress in coronary arterial endothelial cells. American Journal of Physiology - Heart and Circulatory Physiology. 2009;297(5).

  10. Isailović BD, Kostić IT, Zvonar A, Dordević VB, Gašperlin M, Nedović VA, et al. Resveratrol loaded liposomes produced by different techniques. Innovative food science and emerging technologies [Internet]. 2013 [cited 2020 Dec 12];19:181–9. Available from: https://www.sciencedirect.com/science/article/pii/S1466856413000465

  11. Date PV, Samad A, Devarajan PV. Freeze thaw: a simple approach for prediction of optimal cryoprotectant for freeze drying. AAPS PharmSciTech. 2010;11(1):304–13.

    Article  CAS  Google Scholar 

  12. Panwar P, Pandey B, Lakhera PC, Singh KP. Preparation, characterization, and in vitro release study of albendazole-encapsulated nanosize liposomes. International Journal of Nanomedicine [Internet]. 2010 [cited 2020 Dec 12];5(1):101–8. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2841488/

  13. Dhoble S, Patravale V. Development of anti-angiogenic erlotinib liposomal formulation for pulmonary hypertension: a QbD approach. Drug Delivery and Translational Research [Internet]. 2019 Oct 1 [cited 2020 Dec 12];9(5):980–96. Available from: https://doi.org/10.1007/s13346-019-00641-2

  14. Schiavone H, Palakodaty S, Clark A, York P, Tzannis ST. Evaluation of SCF-engineered particle-based lactose blends in passive dry powder inhalers. International Journal of Pharmaceutics [Internet]. 2004 [cited 2020 Dec 12];281(1–2):55–66. Available from: https://www.sciencedirect.com/science/article/pii/S037851730400328X?casa_token=8IFCiqlkiPsAAAAA:g2DLbVYHv-g7bqrCnL0EV-Ceikim6f1OVB_zkPFeGqfW7xmOhnMtZ6r2dByekDHQHI6nbt72Sbqj

  15. USP 35. Physical tests and determinations 〈601〉 Aerosols, nasal sprays, metered-dose inhalers, and dry powder inhalers. In 2012.

  16. Miller NC, Marple VA, Schultz RK, Poon WS. Assessment of the twin impinger for size measurement of metered-dose inhaler sprays. Pharmaceutical Research: An Official Journal of the American Association of Pharmaceutical Scientists. 1992;9(9):1123–7.

    Article  CAS  Google Scholar 

  17. Dhumal RS, Biradar SV, Paradkar AR, York P. Particle engineering using sonocrystallization: salbutamol sulphate for pulmonary delivery. International Journal of Pharmaceutics [Internet]. 2009 [cited 2020 Dec 12];368(1–2):129–37. Available from: https://www.sciencedirect.com/science/article/pii/S0378517308007023?casa_token=YtlpPeYWVj4AAAAA:NKGipsDyDkWCFWD-ziHmgEleUOAQZIzcycc65o9KhmTX0gM6WKfIUDf8L5sLPersMewaePH6rGIO

  18. Mitchell J, Newman S, Chan HK. In vitro and in vitro aspects of cascade impactor tests and inhaler performance: a review. AAPS PharmSciTech 2007, 8.

  19. Abbas A, Srour M, Tang P, Chiou H, Chan HK, Romagnoli JA. Sonocrystallisation of sodium chloride particles for inhalation. Chemical Engineering Science [Internet]. 2007 [cited 2020 Dec 12];62(9):2445–53. Available from: https://www.sciencedirect.com/science/article/pii/S0009250907000899?casa_token=UaKyaWlvdaMAAAAA:yuA-hj5AhYF6P6XNcx2Hd5j7khd3pwP10NM4r25kIczjv3_Ia72xoqXHDIoZGH8ViBAKnQLDVXAw

  20. Eyries M, Siegfried G, Ciumas M, Montagne K, Agrapart M, Lebrin F, et al. Hypoxia-induced apelin expression regulates endothelial cell proliferation and regenerative angiogenesis. Circ Res. 2008;103(4):432–40.

    Article  CAS  Google Scholar 

  21. Kumar Verma R, Kaur J, Kumar K, Yadav AB, Misra A. Intracellular time course, pharmacokinetics, and biodistribution of isoniazid and rifabutin following pulmonary delivery of inhalable microparticles to mice. Downloaded from. ANTIMICROBIAL AGENTS AND CHEMOTHERAPY [Internet]. 2008 [cited 2020 Dec 12];52(9):3195–201. Available from: http://aac.asm.org/.

  22. Watts JA, Zagorski J, Gellar MA, Stevinson BG, Kline JA. Cardiac inflammation contributes to right ventricular dysfunction following experimental pulmonary embolism in rats. Journal of Molecular and Cellular Cardiology [Internet]. 2006 [cited 2020 Dec 12];41(2):296–307. Available from: https://www.sciencedirect.com/science/article/pii/S0022282806005761

  23. Schermuly RT, Kreisselmeier KP, Ghofrani HA, Yilmaz H, Butrous G, Ermert L, et al. Chronic sildenafil treatment inhibits monocrotaline-induced pulmonary hypertension in rats. American Journal of Respiratory and Critical Care Medicine [Internet]. 2004 Jan 1 [cited 2020 Dec 12];169(1):39–45. Available from: www.atsjournals.org

  24. Zimmer HG, Zierhut W, Seesko RC, Varekamp AE. Right heart catheterization in rats with pulmonary hypertension and right ventricular hypertrophy [Internet]. Vol. 183, Basic Res. 1988 [cited 2020 Dec 12]. Available from: https://idp.springer.com/authorize/casa?redirect_uri=https://link.springer.com/content/pdf/https://doi.org/10.1007/BF01907104.pdf&casa_token=gBT9HyI1HBEAAAAA:XGWF6XwsUHLG8Z1o9HiuFXeSjlfmA-VDIvXy_nez3p9GolIQTPEIcFSsD_z5W-rLuGg10Sdmhl1XgYiD8sY

  25. Dhoble S, Ghodake V, Peshattiwar V, Patravale V. Site-specific delivery of inhalable antiangiogenic liposomal dry powder inhaler technology ameliorates experimental pulmonary hypertension. Journal of Drug Delivery Science and Technology. 2021;62: 102396.

    Article  CAS  Google Scholar 

  26. Nishimura T, Faul JL, Berry GJ, Vaszar LT, Qiu D, Pearl RG, et al. Simvastatin attenuates smooth muscle neointimal proliferation and pulmonary hypertension in rats. atsjournals.org [Internet]. 2002 Nov 15 [cited 2020 Dec 12];166(10):1403–8. Available from: www.atsjournals.org

  27. Yoshihara F, Nishikimi T, Horio T, Yutani C, Takishita S, Matsuo H, et al. Chronic infusion of adrenomedullin reduces pulmonary hypertension and lessens right ventricular hypertrophy in rats administered monocrotaline. European Journal of Pharmacology [Internet]. 1998 [cited 2020 Dec 12];355(1):33–9. Available from: https://www.sciencedirect.com/science/article/pii/S0014299998004750

  28. Chougule M, Padhi B, Misra A. Development of spray dried liposomal dry powder inhaler of dapsone. AAPS PharmSciTech. 2008;9(1):47–53.

    Article  CAS  Google Scholar 

  29. Hickey AJ, Mansour HM, Telko MJ, Xu Z, Smyth HDC, Mulder T, et al. Physical characterization of component particles included in dry powder inhalers I. Strategy review and static characteristics. Journal of Pharmaceutical Sciences. 2007;96(5):1282–301.

    Article  CAS  Google Scholar 

  30. Kaialy W, Ticehurst M, Nokhodchi A. Dry powder inhalers: mechanistic evaluation of lactose formulations containing salbutamol sulphate. Int J Pharm. 2012;423(2):184–94.

    Article  CAS  Google Scholar 

  31. Srichana T, Martin GP, Marriott C. A human oral-throat cast integrated with a twin-stage impinger for evaluation of dry powder inhalers. Journal of Pharmacy and Pharmacology. 2000;52(7):771–8.

    Article  CAS  Google Scholar 

  32. Steckel H, Müller BW. In vitro evaluation of dry powder inhalers I: drug deposition of commonly used devices. International Journal of Pharmaceutics [Internet]. 1997 [cited 2020 Dec 12];154(1):19–29. Available from: https://www.sciencedirect.com/science/article/pii/S0378517397001130?casa_token=fxh2fl5Wm-EAAAAA:-gJB3CHw827n0YSe18hpCdbtKYJO76LEZSF-aFC16EpmXJmFUNQ-CnGk8Nd8N3erb3w8GsHYMxZx

  33. Tamura G, Sakae H, Fujino S. In vitro evaluation of dry powder inhaler devices of corticosteroid preparations [Internet]. Vol. 61, Allergology International. 2012 [cited 2020 Dec 12]. Available from: www.jsaweb.jp!

  34. Mohammed H, Roberts DL, Copley M, Hammond M, Nichols SC, Mitchell JP. Effect of sampling volume on dry powder inhaler (DPI)-emitted aerosol aerodynamic particle size distributions (APSDs) measured by the next-generation pharmaceutical impactor (NGI) and the andersen eight-stage cascade impactor (ACI). AAPS PharmSciTech. 2012;13(3):875–82.

    Article  CAS  Google Scholar 

  35. Trapp V, Parmakhtiar B, Papazian V, Willmott L, Fruehauf JP. Anti-angiogenic effects of resveratrol mediated by decreased VEGF and increased TSP1 expression in melanoma-endothelial cell co-culture. Angiogenesis [Internet]. 2010 [cited 2020 Dec 12];13(4):305–15. Available from: https://link.springer.com/content/pdf/https://doi.org/10.1007/s10456-010-9187-8.pdf

  36. Bhat L, Hawkinson J, Cantillon M, Reddy DG, Bhat SR, Laurent CE, et al. RP5063, a novel, multimodal, serotonin receptor modulator, prevents monocrotaline-induced pulmonary arterial hypertension in rats. European Journal of Pharmacology [Internet]. 2017 [cited 2020 Dec 12];810:92–9. Available from: https://www.sciencedirect.com/science/article/pii/S0014299917303813

  37. Zhao L. Chronic hypoxia-induced pulmonary hypertension in rat: the best animal model for studying pulmonary vasoconstriction and vascular medial hypertrophy. Drug Discov Today Dis Model. 2010;7(3–4):83–8.

    Article  CAS  Google Scholar 

  38. Steudel W, Scherrer-Crosbie M, Bloch KD, Weimann J, Huang PL, Jones RC, et al. Sustained pulmonary hypertension and right ventricular hypertrophy after chronic hypoxia in mice with congenital deficiency of nitric oxide synthase 3. J Clin Invest 1998, 101.

  39. Kaur J, Muttil P, Verma RK, Kumar K, Yadav AB, Sharma R, et al. A hand-held apparatus for “nose-only” exposure of mice to inhalable microparticles as a dry powder inhalation targeting lung and airway macrophages. European Journal of Pharmaceutical Sciences [Internet]. 2008 [cited 2020 Dec 12];34(1):56–65. Available from: https://www.sciencedirect.com/science/article/pii/S0928098708000596

Download references

Acknowledgements

The authors are thankful to Total Herbs Solution (Mumbai) for providing Resveratrol, Capsugel India Pvt Ltd for providing HPMC capsules (size 3), Lipoid GmbH (Germany) for providing DPPC, and DFE Pharma Ltd for providing Lactohale® 200 and Lactohale® 300 as gift samples. Authors are also thankful to Prof. Sadhana Sathaye for providing the Biopac instrument facility.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. Conceptualization, resources, methodology, formal analysis, data curation, resources, software, and writing—review and editing: Sagar Dhoble. Conceptualization, project administration, supervision, data curation, investigation, validation, and writing—review and editing: Vandana Patravale. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Vandana Patravale.

Ethics declarations

Ethics Approval

The authors have complied with all the ethical standards set by the institutional and national guidelines for the performance of all the animal experiments. The animal studies were performed as per the approved protocols by the Institutional Animal Ethics Committee (IAEC) of the Institute of Chemical Technology (ICT), Mumbai, India, in line with the standards of the Committee for the Purpose of Control and Supervision of Experimental Animals (CPCSEA), India.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 125 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhoble, S., Patravale, V. SIRT 1 Activator Loaded Inhaled Antiangiogenic Liposomal Formulation Development for Pulmonary Hypertension. AAPS PharmSciTech 23, 158 (2022). https://doi.org/10.1208/s12249-022-02312-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-022-02312-x

KEY WORDS

Navigation