Skip to main content

Advertisement

Log in

Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: Approach to Obtain Improved Physicochemical Characteristics of Hydrolysable Melphalan and Anticancer Activity in Combination with Simvastatin Against Multiple Myeloma

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The objective of this research was to develop vitamin E oil (VEO)-loaded liposomes for intravenous delivery and to study the VEO effect on melphalan (MLN) loading, release, and stability. Further, the research aim was to determine the in vitro anticancer activity and in vivo systemic toxicity of MLN and simvastatin (SVN) combinations, for repurposing SVN in multiple myeloma. The liposomes were prepared by thin-film hydration technique. The optimized liposomes were surface modified with Pluronic F108, lyophilized, and evaluated for mean particle size, MLN content and release behavior, and in vitro hemolysis, cytotoxicity, and macrophage uptake characteristics. Further, in vivo acute toxicity of plain MLN + SVN combination was determined in comparison to their liposomal combination. The VEO alone and in combination with D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) has significantly increased the MLN and SVN loading. The reconstituted liposomes showed the mean particle size below 200 nm (cryo-transmission electron microscope analysis also revealed the liposome formation). In presence of VEO, the liposomes have shown substantially controlled drug release, lower hemolysis, sustained cytotoxicity, lower phagocytosis, and moderately improved chemical stability. Besides, the effect of liposomal combination on mice bodyweight is found substantially lower than the plain drug combination. In conclusion, the VEO could be used along with phospholipids and cholesterol to develop liposomal drugs with improved physicochemical characteristics. Further, the interesting cytotoxicity study results indicated that SVN could be repurposed in combination with anticancer drug MLN against multiple myeloma; liposomal drugs could be preferred to obtain improved efficacy with decreased systemic toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gajek A, Poczta A, Łukawska M, Adamczewska VC, Tobiasz J, Marczak A. Chemical modification of melphalan as a key to improving treatment of haematological malignancies. Sci Rep. 2020;10(1):4479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mateos MV, San Miguel JF. Management of multiple myeloma in the newly diagnosed patient. Hematology Am Soc Hematol Educ Program. 2017;2017(1):498–507.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Chen Y, Jia Y, Song W, Zhang L. Therapeutic potential of nitrogen mustard based hybrid molecules. Front Pharmacol. 2018;9:1453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kuczma M, Ding ZC, Zhou G. Immunostimulatory effects of melphalan and usefulness in adoptive cell therapy with antitumor CD4+ T cells. Crit Rev Immunol. 2016;36(2):179–91.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gourzones C, Bellanger C, Lamure S, Gadacha QK, De Paco EG, Vincent L, Cartron G, Klein B, Moreaux J. Antioxidant defenses confer resistance to high dose melphalan in multiple myeloma cells. Cancers (Basel). 2019;11(4):439.

    Article  CAS  Google Scholar 

  6. Hu X, Wang Y, Xue J, Han T, Jiao R, Li Z, Liu W, Xu F, Hua H, Li D. Design and synthesis of novel nitrogen mustard-evodiamine hybrids with selective antiproliferative activity. Bioorg Med Chem Lett. 2017;27(22):4989–93.

    Article  CAS  PubMed  Google Scholar 

  7. More GS, Thomas AB, Chitlange SS, Nanda RK, Gajbhiye RL. Nitrogen mustards as alkylating agents: a review on chemistry, mechanism of action and current USFDA status of drugs. Anticancer Agents Med Chem. 2019;19(9):1080–102.

    Article  CAS  PubMed  Google Scholar 

  8. Lecourt GV, Carvajal JC, Villalobos FA, Egaña FS, Martín IMS, Duggon JB, Fuentealba D. Encapsulation of chemotherapeutic drug melphalan in Cucurbit[7]uril: effects on its alkylating activity, hydrolysis, and cytotoxicity. ACS Omega. 2018;3(7):8337–43.

    Article  Google Scholar 

  9. Boschmans J, De Bruijn E, Van Schil P, Lemiere F. Analysis of novel melphalan hydrolysis products formed under isolated lung perfusion conditions using liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 27(7):835–841.

  10. Huang L, Cheah V, Chan D, Marzan F, Dvorak CC, Aweeka FT, Boyle JL. Determination of melphalan in human plasma by UPLC-UV method. Cancer Chemother Pharmacol. 2019;83(5):905–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rudhrabatla VSAP, Sudhakar B, Reddy KVSN. In vitro and in vivo assessment of designed melphalan loaded stealth solid lipid nanoparticles for parenteral delivery. BioNanoSci. 2020;10:168–90.

    Article  Google Scholar 

  12. Meyer R, Sonnen AFP, Nau WM. Phase-dependent lateral diffusion of α-tocopherol in DPPC liposomes monitored by fluorescence quenching. Langmuir. 2010;26(18):14723–9.

    Article  CAS  PubMed  Google Scholar 

  13. Suntres ZE. Liposomal antioxidants for protection against oxidant-induced damage. J Toxicol. 2011;2011:152474.

  14. Urano S, Kitahara M, Kato Y, Hasegawa Y, Matsuo M. Membrane stabilizing effect of vitamin E: existence of a hydrogen bond between α-tocopherol and phospholipids in bilayer liposomes. J Nutr Sci Vitaminol. 1990;36(6):513–9.

    Article  CAS  PubMed  Google Scholar 

  15. Verdon CP, Blumberg JB. Influence of dietary vitamin E on the intermembrane transfer of α-tocopherol as mediated by an α-tocopherol binding protein. Proc Soc Exp Biol Med. 1988;189(1):52–60.

    Article  CAS  PubMed  Google Scholar 

  16. Cereda CMS, Tófoli GR, Junior RBDB, de Jesus MB, Fraceto LF, Groppo FC, de Araujo DR, de Paula E. Stability and local toxicity evaluation of a liposomal prilocaine formulation. J Liposome Res. 2008;18(4):329–39.

    Article  CAS  PubMed  Google Scholar 

  17. Lee WC, Tsai TH. Preparation and characterization of liposomal coenzyme Q10 for in vivo topical application. Int J Pharm. 2010;395(1–2):78–83.

    CAS  PubMed  Google Scholar 

  18. Onishi H, Machida Y, Machida Y. Antitumor properties of irinotecan-containing nanoparticles prepared using poly(DL-lactic acid) and poly(ethylene glycol)-block-poly(propylene glycol)-block-poly(ethylene glycol). Biol Pharm Bull. 2003;26(1):116–9.

    Article  CAS  PubMed  Google Scholar 

  19. Kunii R, Onishi H, Machida Y. Preparation and antitumor characteristics of PLA/(PEG-PPG-PEG) nanoparticles loaded with camptothecin. Eur J Pharm Biopharm. 2007;67(1):9–17.

    Article  CAS  PubMed  Google Scholar 

  20. Kunii R, Onishi H, Ueki KI, Koyama KI, Muchida Y. Particle characteristics and biodistribution of camptothecin-loaded PLA/(PEGPPG-PEG) nanoparticles. Drug Delv. 2008;15(1):3–10.

    Article  CAS  Google Scholar 

  21. Duarte JA, de Barros ALB, Leite EA. The potential use of simvastatin for cancer treatment: a review. Biomed Pharmacother. 2021;141:111858.

    Article  CAS  PubMed  Google Scholar 

  22. Bello ED, Zwergel C, Mai A, Valente S. The innovative potential of statins in cancer: new targets for new therapies. Front Chem. 2020;8:516.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barbalata CI, Tefas LR, Achim M, Tomuta I, Porfire AS. Statins in risk-reduction and treatment of cancer. World J Clin Oncol. 2020;11(8):573–88.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Bandgar SA, Jadhav NR, Manjappa AS. A remarkable in vitro cytotoxic, cell cycle arresting and proapoptotic characteristics of low-dose mixed micellar simvastatin combined with alendronate sodium. Drug Deliv Transl Res. 2020;10(4):1122–35.

    Article  CAS  PubMed  Google Scholar 

  25. Manjappa AS, Goel PN, Vekataraju MP, Kesarla RS, Kinjal M, Mukesh U, Nikam Y, Gude RP, Murthy RSR. Is an alternative drug delivery system needed for docetaxel? The role of controlling epimerization in formulations and beyond. Pharm Res. 2013;30(10):2675–93.

    Article  CAS  PubMed  Google Scholar 

  26. Mahmoudi R, Hassandokht F, Ardakani MT, Karimi B, Roustazadeh A, Tarvirdipour S, Barmak MJ, Nikseresht M, Baneshi M, Mousavizadeh A, Shirazi MS, Alipour M, Bardania H. Intercalation of curcumin into liposomal chemotherapeutic agent augments apoptosis in breast cancer cells. J Biomater Appl. 2021;35(8):1005–18.

    Article  CAS  PubMed  Google Scholar 

  27. Kumbhar PS, Diwate SK, Mali UG, Shinde TU, Disouza JI, Manjappa AS. Development and validation of RP-HPLC method for simultaneous estimation of docetaxel and ritonavir in PLGA nanoparticles. Ann Pharm Fr. 2020;78(5):398–407.

    Article  CAS  PubMed  Google Scholar 

  28. Guimarães D, Noro J, Silva C, Cavaco-Paulo A, Nogueira E. Protective effect of saccharides on freeze-dried liposomes encapsulating drugs. Front Bioeng Biotechnol. 2019;7:424.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bellare JR, Davis HT, Scriven LE, Talmon Y. Controlled environment vitrification system: an improved sample preparation technique. J Electron Microsc Tech. 1988;10(1):87–111.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar KK, Nadh RV. A validated RP-HPLC method for the estimation of melphalan in tablet dosage forms. Rasayan J Chem. 2011;4(4):863–7.

    CAS  Google Scholar 

  31. Unnam S, Panduragaiah VM, Sidramappa MA, Muddana Eswara BR. Gemcitabine-loaded folic acid tagged liposomes: improved pharmacokinetic and biodistribution profile. Curr Drug Deliv. 2019;16(2):111–122 2.

  32. Kumbhar PS, Sakate AM, Patil OB, Manjappa AS, Disouza JI. Podophyllotoxin-polyacrylic acid conjugate micelles: improved anticancer efficacy against multidrug-resistant breast cancer. J Egypt Natl Canc Inst. 2020;32(1):42.

    Article  PubMed  Google Scholar 

  33. Weber C, Voigt M, Simon J, Danner AK, Frey H, Mailänder V, Helm M, Morsbach S, Landfester K. Functionalization of liposomes with hydrophilic polymers results in macrophage uptake independent of the protein corona. Biomacromol. 2019;20(8):2989–99.

    Article  CAS  Google Scholar 

  34. Zarrabi A, Abadi MAA, Khorasani S, Mohammadabadi MR, Jamshidi A, Torkaman S, Taghavi E, Mozafari MR, Rasti B. Nanoliposomes and tocosomes as multifunctional nanocarriers for the encapsulation of nutraceutical and dietary molecules. Molecules. 2020;25(3):638.

    Article  CAS  PubMed Central  Google Scholar 

  35. Flores GT, Horta AG, Cantu YIV, Rodriguez C, Garcia AR. Preparation and characterization of liposomal everolimus by thin-film hydration technique. Adv Polym Technol. 2020;2020:1–9.

    Article  Google Scholar 

  36. Marsanasco M, Márquez AL, Wagner JR, Alonso SDV, Chiaramoni NS. Liposomes as vehicles for vitamins E and C: an alternative to fortify orange juice and offer vitamin C protection after heat treatment. Food Res Int. 2011;44(9):3039–46.

    Article  CAS  Google Scholar 

  37. Padamwar MN, Pokharkar VB. Development of vitamin loaded topical liposomal formulation using factorial design approach: drug deposition and stability. Int J Pharm. 2006;320(1–2):37–44.

    Article  CAS  PubMed  Google Scholar 

  38. Laouini A, Charcosset C, Fessi H, Holdich RG, Vladisavljevic GT. Preparation of liposomes: a novel application of microengineered membranes - investigation of the process parameters and application to the encapsulation of vitamin E. RSC Adv. 2013;3(15):4985–94.

    Article  CAS  Google Scholar 

  39. Guan Y, Wang LY, Wang B, Ding MH, Bao YL, Tan SW. Recent advances of d-α-tocopherol polyethylene glycol 1000 succinate based stimuli-responsive nanomedicine for cancer treatment. Curr Med Sci. 2020;40(2):218–31.

    Article  CAS  PubMed  Google Scholar 

  40. Luiz MT, Di Filippo LD, Alves RC, Araújo VHS. Duarte JL, Marchetti JM, Chorilli M. The use of TPGS in drug delivery systems to overcome biological barriers. Eur Polym J. 2021;142:110129.

  41. Caracciolo G. Clinically approved liposomal nanomedicines: lessons learned from the biomolecular corona. Nanoscale. 2018;10(9):4167–72.

    Article  CAS  PubMed  Google Scholar 

  42. Jin X, Yang Q, Zhang Y. Synergistic apoptotic effects of apigenin TPGS liposomes and tyroservatide: implications for effective treatment of lung cancer. Int J Nanomedicine. 2017;12:5109–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kurmi BD, Paliwal SR. Development and optimization of TPGS based stealth liposome of doxorubicin using box-behnken design: characterization, hemocompatibility and cytotoxicity evaluation in breast cancer cells. J Liposome Res. 2021;1–46.

  44. Ickenstein LM, Arfvidsson MC, Needham D, Mayer LD, Edwards K. Disc formation in cholesterol-free liposomes during phase transition. Biochim Biophys Acta. 2003;1614(2):135–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lakkadwala S, Singh J. Co-delivery of doxorubicin and erlotinib through liposomal nanoparticles for glioblastoma tumor regression using an in vitro brain tumor model. Colloids Surf B Biointerfaces. 2019;173:27–35.

    Article  CAS  PubMed  Google Scholar 

  46. Chauhan D, Anderson KC. Mechanisms of cell death and survival in multiple myeloma (MM): therapeutic implications. Apoptosis. 2003;8(4):337–43.

    Article  CAS  PubMed  Google Scholar 

  47. Robaka P, Drozdzb I, Szemrajc J, Robakd T. Drug resistance in multiple myeloma. Cancer Treat Rev. 2018;70:199–208.

    Article  Google Scholar 

  48. Jain A, Chasoo G, Singh SK, Saxena AK, Jain SK. Transferrin-appended PEGylated nanoparticles for temozolomide delivery to brain: in vitro characterization. J Microencapsul. 2011;28(1):21–8.

    Article  CAS  PubMed  Google Scholar 

  49. Chaudhari KR, Ukawala M, Manjappa AS, Kumar A, Mundada PK, Mishra AK, Mathur R, Mönkkönen J, Murthy RSR. Opsonization, biodistribution, cellular uptake and apoptosis study of PEGylated PBCA nanoparticle as potential drug delivery carrier. Pharm Res. 2012;29(1):53–68.

    Article  CAS  PubMed  Google Scholar 

  50. Beltrán-Gracia E, López-Camacho A, Higuera-Ciapara I, Velázquez-Fernández JB, Vallejo-Cardona AA. Nanomedicine review: clinical developments in liposomal applications. Cancer Nano. 2019;10:11.

    Article  Google Scholar 

  51. Inglut CT, Sorrin AJ, Kuruppu T, Vig S, Cicalo J, Ahmad H, Huang HC. Immunological and toxicological considerations for the design of liposomes. Nanomaterials (Basel). 2020;10(2):190.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Cipla Pvt. Ltd. Goa and Biotechnic, Mumbai, for gifting melphalan and simvastatin, respectively. We also thank Lipoid GmbH, Germany, for giving hydrogenated soya bean phosphatidylcholine (HSPC) as a gift sample. Our special thanks to Dr. Yogisha S, the Director, Skanda Life Sciences Pvt. Ltd., Bangalore, for providing lab facilities to carry out all cell culture and animal experiments and LCMS/MS facility. The authors also acknowledge the timely assistance of the Chemical Engineering cryo-HRTEM Central Facility of IRCC, IIT Bombay.

Author information

Authors and Affiliations

Authors

Contributions

Unnam Sambamoorthy: Investigation, conceptualization, and original draft preparation. Arehalli S. Manjappa: Conceptualization, supervision, and original draft preparation. Bhanoji Rao Muddana Eswara: Supervision and reviewing and editing of original draft. Arun Kumar Sanapala: Methodology and resources. Naidu Nagadeepthi: Resources and validation.

Corresponding authors

Correspondence to Unnam Sambamoorthy or Bhanoji Rao Muddana Eswara.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1251 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sambamoorthy, U., Manjappa, A.S., Eswara, B.R.M. et al. Vitamin E Oil Incorporated Liposomal Melphalan and Simvastatin: Approach to Obtain Improved Physicochemical Characteristics of Hydrolysable Melphalan and Anticancer Activity in Combination with Simvastatin Against Multiple Myeloma. AAPS PharmSciTech 23, 23 (2022). https://doi.org/10.1208/s12249-021-02177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-02177-6

KEY WORDS

Navigation