Skip to main content

Advertisement

Log in

Is an Alternative Drug Delivery System Needed for Docetaxel? The Role of Controlling Epimerization in Formulations and Beyond

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

The presence of 7-epidocetaxel in docetaxel injection and in vivo epimerisation has been reported to be the cause for development of tumor resistance to chemotherapy including docetaxel by inducing tumor cell protein cytochrome P450 1B1. The objective of this study was to determine systemic toxicity of Taxotere® containing 10% 7-epidocetaxel and to develop PEGylated liposomal injection that could resist epimerization in vivo. Another need for PEGylated liposomal delivery of docetaxel is to avoid reported hypersensitivity reactions of marketed products like Taxotere® and Duopafei® containing high concentration of tween-80.

Methods

The PEGylated liposomes loaded with docetaxel were prepared using thin film hydration method. The in vivo toxicity of Taxotere® containing 10% 7-epimer was studied in B16F10 experimental metastasis model.

Results

B16F10 experimental metastasis model using C57BL/6 mice injected with Taxotere® containing 10% 7-epimer showed higher weight loss as compared to Taxotere® containing no epimer at single dose of 40 mg/kg indicating higher systemic toxicity. Incubation of PEGylated liposomes with phosphate buffer saline (pH 7.4) containing 0.1% w/v Tween-80 for 48 h showed better resistance to docetaxel degradation when compared with Taxotere® injection indicating better in vivo stability of liposomal docetaxel. In addition, PEGylated liposomes showed enhanced in vitro cytotoxicity, against A549 and B16F10 cells, than Taxotere®.

Conclusion

We can therefore expect less in vivo conversion of liposomal loaded docetaxel into 7-epimer, more passive targeting to tumor tissues, decreased 7-epimer induced systemic toxicity and tumor resistance to chemotherapy compared to Taxotere®. Further in vivo studies are needed to ascertain these facts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Gueritte-Voegelein F, Guenard D, Lavelle F, Le Goff MT, Mangatal L, Potier P. Relationships between the structure of taxol analogues and their antimitotic activity. J Med Chem. 1991;34(3):992–8.

    Article  PubMed  CAS  Google Scholar 

  2. Sandoz AG. Pharmaceutical Composition of Improved Stability Containing Taxane Derivatives. European Patent 2008, EP 1 946 747 A1.

  3. Vasu Dev R, Moses Babu J, Vyas K, Sai Ram P, Ramachandra P, Sekhar NM, et al. Isolation and characterization of impurities in docetaxel. J Pharm Biomed Anal. 2006;40(3):614–22.

    Article  PubMed  CAS  Google Scholar 

  4. Czejka M, Greil R, Ulsperger E, Schnait H, Kienesberger K, Brumnik T, et al. Evidence for the conversion of docetaxel into 7′-epidocetaxel in patients receiving Taxotere-based conventional chemotherapy. Int J Clin Pharmacol Ther. 2010;48(7):483–4.

    PubMed  CAS  Google Scholar 

  5. Machado A, Fora JD, Maranduba A, Guimaraes E, Machado L, Marcio Santiago JR, Silva M. Pharmaceutical Compositions Containing Docetaxel and a Degradation Inhibitor and a Process for Obtaining the Same. US Patent 2009, US 20090221688 A1.

  6. Bournique B, Lemarie A. Docetaxel (Taxotere®) is not metabolized by recombinant human CYP1B1 in vitro, but acts as an effector of this isozyme. Drug Metab Dispos. 2002;30(11):1149–52.

    Article  PubMed  CAS  Google Scholar 

  7. McFadyen MC, McLeod HL, Jackson FC, Melvin WT, Doehmer J, Murray GI. Cytochrome P450 CYP1B1 protein expression: a novel mechanism of anticancer drug resistance. Biochem Pharmacol. 2001;62(2):207–12.

    Article  PubMed  CAS  Google Scholar 

  8. Du W, Hong L, Yao T, Yang X, He Q, Yang B, et al. Synthesis and evaluation of water-soluble docetaxel prodrugs-docetaxel esters of malic acid. Bioorg Med Chem. 2007;15(18):6323–30.

    Article  PubMed  CAS  Google Scholar 

  9. Wang L, Liu Z, Liu D, Liu C, Juan Z, Zhang N. Docetaxel-loaded-lipid-based-nanosuspensions (DTX-LNS): preparation, pharmacokinetics, tissue distribution and antitumor activity. Int J Pharm. 2011;413(1–2):194–201.

    Article  PubMed  CAS  Google Scholar 

  10. Chu CY, Yang CH, Yang CY, Hsiao GH, Chiu HC. Fixed erythrodysaesthesia plaque due to intravenous injection of docetaxel. Br J Dermatol. 2000;142(4):808–11.

    Article  PubMed  CAS  Google Scholar 

  11. Naik S, Patel D, Surti N, Misra A. Preparation of PEGylated liposomes of docetaxel using supercritical fluid technology. J Supercrit Fluids. 2010;54(1):110–9.

    Article  CAS  Google Scholar 

  12. Zhai G, Wu J, Yu B, Guo C, Yang X, Lee RJ. A transferrin receptor-targeted liposomal formulation for docetaxel. J Nanosci Nanotechnol. 2010;10(8):5129–36.

    Article  PubMed  CAS  Google Scholar 

  13. Grosse PY, Bressolle F, Pinguet F. In vitro modulation of doxorubicin and docetaxel antitumoral activity by methyl-beta-cyclodextrin. Eur J Cancer. 1998;34(1):168–74.

    Article  PubMed  CAS  Google Scholar 

  14. Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128(1):23–31.

    Article  PubMed  CAS  Google Scholar 

  15. Li X, Li R, Qian X, Ding Y, Tu Y, Guo R, et al. Superior antitumor efficiency of cisplatin-loaded nanoparticles by intratumoral delivery with decreased tumor metabolism rate. Eur J Pharm Biopharm. 2008;70(3):726–34.

    Article  PubMed  CAS  Google Scholar 

  16. Xu Z, Chen L, Gu W, Gao Y, Lin L, Zhang Z, et al. The performance of docetaxel-loaded solid lipid nanoparticles targeted to hepatocellular carcinoma. Biomaterials. 2009;30(2):226–32.

    Article  PubMed  Google Scholar 

  17. Li X, Wang D, Zhang J, Pan W. Preparation and pharmacokinetics of docetaxel based on nanostructured lipid carriers. J Pharm Pharmacol. 2009;61(11):1485–92.

    Article  PubMed  CAS  Google Scholar 

  18. Chen J, Ping QN, Guo JX, Chu XZ, Song MM. Effect of phospholipid composition on characterization of liposomes containing 9-nitrocamptothecin. Drug Dev Ind Pharm. 2006;32(6):719–26.

    Article  PubMed  CAS  Google Scholar 

  19. Kan P, Tsao CW, Wang AJ, Su WC, Liang HF. A liposomal formulation able to incorporate a high content of Paclitaxel and exert promising anticancer effect. J Drug Deliv, 2011, Article ID 629234, 9 pages.

  20. Bangham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol. 1965;13(1):238–52.

    Article  PubMed  CAS  Google Scholar 

  21. Kumar D, Tomar RS, Deolia SK, Mitra M, Mukherjee R, Burman AC. Isolation and characterization of degradation impurities in docetaxel drug substance and its formulation. J Pharm Biomed Anal. 2007;43(4):1228–35.

    Article  PubMed  CAS  Google Scholar 

  22. Rao BM, Chakraborty A, Srinivasu MK, Devi ML, Kumar PR, Chandrasekhar KB, et al. A stability-indicating HPLC assay method for docetaxel. J Pharm Biomed Anal. 2006;41(2):676–81.

    Article  PubMed  CAS  Google Scholar 

  23. Nanjwade BK, Manjappa AS, Murthy RSR, Pol YD. A novel pH-triggered in situ gel for sustained ophthalmic delivery of Ketorolac tromethamine. Asian J Pharm Sci. 2009;4(3):189–99.

    Google Scholar 

  24. Manjappa AS, Nanjwade BK, Manvi FV, Murthy RSR. Sustained ophthalmic in situ gel of ketorolac tromethamine: rheology and in vivo studies. Drug Dev Res. 2009;70(6):417–24.

    Article  CAS  Google Scholar 

  25. Stewart JC. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal Biochem. 1980;104(1):10–4.

    Article  PubMed  CAS  Google Scholar 

  26. Ishida T, Ichihara M, Wang X, Yamamoto K, Kimura J, Majima E, et al. Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J Control Release. 2006;112(1):15–25.

    Article  PubMed  CAS  Google Scholar 

  27. Chonn A, Semple SC, Cullis PR. Association of blood proteins with large unilamellar liposomes in vivo. Relation to circulation lifetimes. J Biol Chem. 1992;267(26):18759–65.

    PubMed  CAS  Google Scholar 

  28. Yang T, Cui FD, Choi MK, Cho JW, Chung SJ, Shim CK, et al. Enhanced solubility and stability of PEGylated liposomal paclitaxel: in vitro and in vivo evaluation. Int J Pharm. 2007;338(1–2):317–26.

    Article  PubMed  CAS  Google Scholar 

  29. Zhang C, Qineng P, Zhang H. Self-assembly and characterization of paclitaxel-loaded N-octyl-O-sulfate chitosan micellar system. Colloids Surf B Biointerfaces. 2004;39(1–2):69–75.

    Article  PubMed  CAS  Google Scholar 

  30. Koziara JM, Lockman PR, Allen DD, Mumper RJ. Paclitaxel nanoparticles for the potential treatment of brain tumors. J Control Release. 2004;99(2):259–69.

    Article  PubMed  CAS  Google Scholar 

  31. Twentyman PR, Luscombe M. A study of some variables in a tetrazolium dye (MTT) based assay for cell growth and chemosensitivity. Br J Cancer. 1987;56(3):279–85.

    Article  PubMed  CAS  Google Scholar 

  32. Goel PN, Gude RP. Unravelling the antimetastatic potential of pentoxifylline, a methylxanthine derivative in human MDA-MB-231 breast cancer cells. Mol Cell Biochem. 2011;358(1–2):141–51.

    Article  PubMed  CAS  Google Scholar 

  33. Sharma A, Sharma US, Straubinger RM. Paclitaxel-liposomes for intracavitary therapy of intraperitoneal P388 leukemia. Cancer Lett. 1996;107(2):265–72.

    Article  PubMed  CAS  Google Scholar 

  34. Hwang PH, Yi HK, Kim DS, Nam SY, Kim JS, Lee DY. Suppression of tumorigenicity and metastasis in B16F10 cells by PTEN/MMAC1/TEP1 gene. Cancer Lett. 2001;172(1):83–91.

    Article  PubMed  CAS  Google Scholar 

  35. Gautam A, Waldrep JC, Densmore CL, Koshkina N, Melton S, Roberts L, et al. Growth inhibition of established B16-F10 lung metastases by sequential aerosol delivery of p53 gene and 9-nitrocamptothecin. Gene Ther. 2002;9(5):353–7.

    Article  PubMed  CAS  Google Scholar 

  36. Chen L, Lu Y, Wu JM, Xu B, Zhang LJ, Gao M, et al. Ligustrazine inhibits B16F10 melanoma metastasis and suppresses angiogenesis induced by Vascular Endothelial Growth Factor. Biochem Biophys Res Commun. 2009;386(2):374–9.

    Article  PubMed  CAS  Google Scholar 

  37. Dora CL, Alvarez-Silva M, Trentin AG, de Faria TJ, Fernandes D, da Costa R, et al. Evaluation of antimetastatic activity and systemic toxicity of camptothecin-loaded microspheres in mice injected with B16-F10 melanoma cells. J Pharm Pharm Sci. 2006;9(1):22–31.

    PubMed  CAS  Google Scholar 

  38. Chen Y, Zhu X, Zhang X, Liu B, Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther. 2010;18(9):1650–6.

    Article  PubMed  CAS  Google Scholar 

  39. Javeri I, Andover MA, Kaliappanadar N, Lexington MA. Methods for the Preparation of Liposomes Comprising Docetaxel. US Patent 2011, US 201 10070293A1.

  40. Malleswara Reddy A, Banda N, Govind Dagdu S, Venugopala Rao D, Kocherlakota CS, Krishnamurthy V. Evaluation of the pharmaceutical quality of docetaxel injection using new stability indicating chromatographic methods for assay and impurities. Sci Pharm. 2010;78(2):215–31.

    Article  PubMed  Google Scholar 

  41. Drummond DC, Meyer O, Hong K, Kirpotin DB, Papahadjopoulos D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–743.

    PubMed  CAS  Google Scholar 

  42. Hinrichs WLJ, Manceñido FA, Sanders NN, Braeckmans K, De Smedt SC, Demeester J, et al. The choice of a suitable oligosac-charide to prevent aggregation of PEGylated nanoparticles during freeze thawing and freeze drying. Int J Pharm. 2006;311:237–44.

    Article  PubMed  CAS  Google Scholar 

  43. Thomas LC. Use of multiple heating rate DSC and modulated temperature DSC to detect and analyze temperature-time-dependent transitions in materials. Am Lab. 2001;33(1):26–31.

    Google Scholar 

  44. Lee JW, Thomas LC, Schmidt SJ. Effects of heating conditions on the glass transition parameters of amorphous sucrose produced by melt-quenching. J Agric Food Chem. 2011;59(7):3311–9.

    Article  PubMed  CAS  Google Scholar 

  45. Grest GS, Cohen MH. Liquid-glass transition: dependence of the glass transition on heating and cooling rates. Phys Rev B. 1980;21:4113–7.

    Article  CAS  Google Scholar 

  46. Bonte F, Juliano RL. Interacion of liposomes with serum proteins. Chem Phys Lipids. 1986;40(2–4):359–72.

    Article  PubMed  CAS  Google Scholar 

  47. Kessler RJ, Fanestil DD. Interference by lipids in the determination of protein using bicinchoninic acid. Anal Biochem. 1986;159(1):138–42.

    Article  PubMed  CAS  Google Scholar 

  48. Feng SS, Mei L, Anitha P, Gan CW, Zhou W. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Biomaterials. 2009;30(19):3297–306.

    Article  PubMed  CAS  Google Scholar 

  49. Montero A, Fossella F, Hortobagyi G, Valero V. Docetaxel for treatment of solid tumours: a systematic review of clinical data. Lancet Oncol. 2005;6(4):229–39.

    Article  PubMed  CAS  Google Scholar 

  50. Yanasarn N, Sloat BR, Cui Z. Nanoparticles engineered from lecithin-in-water emulsions as a potential delivery system for docetaxel. Int J Pharm. 2009;379(1):174–80.

    Article  PubMed  CAS  Google Scholar 

  51. Wong HL, Rauth AM, Bendayan R, Manias JL, Ramaswamy M, Liu Z, et al. A new polymer-lipid hybrid nanoparticle system increases cytotoxicity of doxorubicin against multidrug-resistant human breast cancer cells. Pharm Res. 2006;23(7):1574–85.

    Article  PubMed  CAS  Google Scholar 

  52. Serpe L, Catalano MG, Cavalli R, Ugazio E, Bosco O, Canaparo R, et al. Cytotoxicity of anticancer drugs incorporated in solid lipid nanoparticles on HT-29 colorectal cancer cell line. Eur J Pharm Biopharm. 2004;58(3):673–80.

    Article  PubMed  CAS  Google Scholar 

  53. Manjappa AS, Chaudhari KR, Venkataraju MP, Dantuluri P, Nanda B, Sidda C, et al. Antibody derivatization and conjugation strategies: application in preparation of stealth immunoliposome to target chemotherapeutics to tumor. J Control Release. 2011;150(1):2–22.

    Article  PubMed  CAS  Google Scholar 

  54. Snodin DJ, McCrossen SD. Guidelines and pharmacopoeial standards for pharmaceutical impurities: overview and critical assessment. Regul Toxicol Pharmacol. 2012;63(2):298–312.

    Article  PubMed  CAS  Google Scholar 

  55. Tannock IF, Rotin D. Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res. 1989;49(16):4373–84.

    PubMed  CAS  Google Scholar 

  56. Mahoney BP, Raghunand N, Baggett B, Gillies RJ. Tumor acidity, ion trapping and chemotherapeutics. I. Acid pH affects the distribution of chemotherapeutic agents in vitro. Biochem Pharmacol. 2003;66(7):1207–18.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

The authors would like to thank All India Council for Technical Education (AICTE), India, for grant support (F.N.:1-10/RID/NDF-PG(22)/2009-10). Peeyush N. Goel is supported by CSIR-SRF, India. The authors thank Lipoid GMBH (Ludwigshafen, Germany) for providing phospholipids (HSPC, DPPC, DSPE-mPEG2000 and DPPG) as gift samples. Authors also thank Fresenius Kabi Oncology Limited (Gurgaon, India) for providing docetaxel, 7-epidocetaxel and 10-oxo-7-epidocetaxel as gift samples. The authors would also like to thank the Flow Cytometry and Animal house facility during the course of the study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rajiv P. Gude or Rayasa S. Ramachandra Murthy.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 978 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Manjappa, A.S., Goel, P.N., Vekataraju, M.P. et al. Is an Alternative Drug Delivery System Needed for Docetaxel? The Role of Controlling Epimerization in Formulations and Beyond. Pharm Res 30, 2675–2693 (2013). https://doi.org/10.1007/s11095-013-1093-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-013-1093-5

KEY WORDS

Navigation