Skip to main content

Advertisement

Log in

Layer-by-Layer Assembled Nanostructured Lipid Carriers for CD-44 Receptor–Based Targeting in HIV-Infected Macrophages for Efficient HIV-1 Inhibition

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Macrophages act as a cellular reservoir in HIV infection. Elimination of HIV from macrophages has been an unfulfilled dream due to the failure of drugs to reach them. To address this, we developed CD44 receptor–targeted, novel hyaluronic acid (HA)-coated nanostructured lipid carriers (NLCs) of efavirenz via washless layer-by-layer (LbL) assembly of HA and polyallylamine hydrochloride (PAH). NLCs were subjected to TEM analysis, size and zeta potential, in vitro release and encapsulation efficiency studies. The uptake of NLCs in THP-1 cells was studied using fluorescence microscopy and flow cytometry. The anti-HIV efficacy was evaluated using p24 antigen inhibition assay. NLCs were found to be spherical in shape with anionic zeta potential (−23.66 ± 0.87 mV) and 241.83 ± 5.38 nm particle size. NLCs exhibited prolonged release of efavirenz during in vitro drug release studies. Flow cytometry revealed 1.73-fold higher uptake of HA-coated NLCs in THP-1 cells. Cytotoxicity studies showed no significant change in cell viability in presence of NLCs as compared with the control. HA-coated NLCs distributed throughout the cell including cytoplasm, plasma membrane and nucleus, as observed during fluorescence microscopy. HA-coated NLCs demonstrated consistent and significantly higher inhibition (81.26 ± 1.70%) of p24 antigen which was 2.08-fold higher than plain NLCs. The obtained results suggested preferential uptake of HA-coated NLCs via CD44-mediated uptake. The present finding demonstrates that HA-based CD44 receptor targeting in HIV infection is an attractive strategy for maximising the drug delivery to macrophages and achieve effective viral inhibition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. UNAIDS. Global HIV and AIDS statistics 2019 Fact sheet. Glob HIV AIDs ststistics, World AIDS day 2019 Fact Sheet. 2019;

  2. Poluektova LY, Munn DH, Persidsky Y, Gendelman HE. Generation of cytotoxic T cells against virus-infected human brain macrophages in a murine model of HIV-1 encephalitis. J Immunol. 2002;168:3941–9.

    Article  CAS  Google Scholar 

  3. Shehu-Xhilaga M, Tachedjian G, Crowe S, Kedzierska K. Antiretroviral compounds: mechanisms underlying failure of HAART to Eradicate HIV-1. Curr Med Chem. 2005;12:1705–19.

    Article  CAS  Google Scholar 

  4. Le Douce V, Herbein G, Rohr O, Schwartz C. Molecular mechanisms of HIV-1 persistence in the monocyte-macrophage lineage. Retrovirology. 2010.

  5. Campbell JH, Hearps AC, Martin GE, Williams KC, Crowe SM. The importance of monocytes and macrophages in HIV pathogenesis,treatment,and cure. AIDS. 2014.

  6. Crowe S, Mills J, McGrath MS, Lekas P, McManus N. Quantitative immunocytofluorographic analysis of CD4 surface antigen expression and HIV infection of human peripheral blood monocyte/macrophages. AIDS Res Hum Retroviruses. 1987;3:135–45.

    Article  CAS  Google Scholar 

  7. Zhu T, Muthui D, Holte S, Nickle D, Feng F, Brodie S, et al. Evidence for human immunodeficiency virus type 1 replication in vivo in CD14+ monocytes and its potential role as a source of virus in patients on highly active antiretroviral therapy. J Virol. 2002;76:707–16.

    Article  CAS  Google Scholar 

  8. Lee-Sayer SSM, Dong Y, Arif AA, Olsson M, Brown KL, Johnson P. The where, when, how and why of hyaluronan binding by immune cells. Front Immunol. 2015.

  9. Hart SP, Rossi AG, Haslett C, Dransfield I. Characterization of the effects of cross-linking of macrophage CD44 associated with increased phagocytosis of apoptotic PMN. PLoS One. 2012;7:e33142.

    Article  CAS  Google Scholar 

  10. Hollingsworth JW, Li Z, Brass DM, Carantziotis S, Timberlake SH, Kim A, et al. CD44 regulates macrophage recruitment to the lung in lipopolysaccharide- induced airway disease. Am J Respir Cell Mol Biol. 2007;37:248–53.

    Article  CAS  Google Scholar 

  11. Puré E, Cuff CA. A crucial role for CD44 in inflammation. Trends Mol. Med. 2001;7:213–21.

    Article  Google Scholar 

  12. Levesque MC, Haynes BF. In vitro culture of human peripheral blood monocytes induces hyaluronan binding and up-regulates monocyte variant CD44 isoform expression. J Immunol. 1996.

  13. Jordan AR, Racine RR, Hennig MJP, Lokeshwar VB. The role of CD44 in disease pathophysiology and targeted treatment. Front Immunol. 2015.

  14. Guo MML, JEK H. HIV acquires functional adhesion receptors from host cells. AIDS Res Hum Retroviruses. 1995.

  15. Zhang G, Zhang H, Liu Y, He Y, Wang W, Du Y, et al. CD44 clustering is involved in monocyte differentiation. Acta Biochim Biophys Sin (Shanghai). 2014.

  16. Murakami S, Shimabukuro Y, Miki Y, Saho T, Hino E, Kasai D, et al. Inducible binding of human lymphocytes to hyaluronate via CD44 does not require cytoskeleton association but does require new protein synthesis. J Immunol. 1994.

  17. Culty M, O’Mara TE, Underhill CB, Yeager H, Swartz RP. Hyaluronan receptor (CD44) expression and function in human peripheral blood monocytes and alveolar macrophages. J Leukoc Biol. 1994;56:605–11.

    Article  CAS  Google Scholar 

  18. Katoh S, Matsubara Y, Taniguchi H, Fukushima K, Mukae H, Kadota J, et al. Characterization of CD44 expressed on alveolar macrophages in patients with diffuse panbronchiolitis. Clin Exp Immunol. 2001;126:545–50.

    Article  CAS  Google Scholar 

  19. Nowacek AS, McMillan J, Miller R, Anderson A, Rabinow B, Gendelman HE. Nanoformulated antiretroviral drug combinations extend drug release and antiretroviral responses in HIV-1-infected macrophages: implications for NeuroAIDS therapeutics. J Neuroimmune Pharmacol. 2010;5:592–601.

    Article  Google Scholar 

  20. Nowacek AS, Miller RL, JE MM, Kanmogne G, Kanmogne M, Mosley RL, et al. NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomedicine. 2009.

  21. Shutava TG, Pattekari PP, Arapov KA, Torchilin VP, Lvov YM. Architectural layer-by-layer assembly of drug nanocapsules with PEGylated polyelectrolytes. Soft Matter. 2012.

  22. Polomska A, Gauthier MA, Leroux JC. In vitro and in vivo evaluation of PEGylated layer-by-layer polyelectrolyte-coated paclitaxel nanocrystals. Small. 2017.

  23. Gu L, Deng ZJ, Roy S, Hammond PT. A combination RNAi-chemotherapy layer-by-layer nanoparticle for systemic targeting of KRAS/P53 with cisplatin to treat non–small cell lung cancer. Clin Cancer Res. 2017;23:7312–23.

    Article  CAS  Google Scholar 

  24. Santos AC, Ferreira C, Veiga F, Ribeiro AJ, Panchal A, Lvov Y, et al. Halloysite clay nanotubes for life sciences applications: from drug encapsulation to bioscaffold. Adv. Colloid Interface Sci. 2018;257:58–70.

    Article  CAS  Google Scholar 

  25. De Villiers MM, Otto DP, Strydom SJ, Lvov YM. Introduction to nanocoatings produced by layer-by-layer (LbL) self-assembly. Adv Drug Deliv Rev. 2011.

  26. Santos AC, Pattekari P, Jesus S, Veiga F, Lvov Y, Ribeiro AJ. Sonication-assisted layer-by-layer assembly for low solubility drug nanoformulation. ACS Appl Mater Interfaces. 2015.

  27. Correa S, Choi KY, Dreaden EC, Renggli K, Shi A, Gu L, et al. Highly scalable, closed-loop synthesis of drug-loaded, layer-by-layer nanoparticles. Adv Funct Mater. 2016.

  28. Bantchev G, Lu Z, Lvov Y. Layer-by-layer nanoshell assembly on colloids through simplified wash less Process. J Nanosci Nanotechnol. 2009.

  29. Tran TH, Ramasamy T, Truong DH, Choi HG, Yong CS, Kim JO. Preparation and characterization of fenofibrate-loaded nanostructured lipid carriers for oral bioavailability enhancement. AAPS PharmSciTech. 2014.

  30. Lakshmi Sailaja A, Kishore Kumar K, Ravi Kumar DVR, Mohan Kumar C, Yugandhar NM, Srinubabu G. Development and validation of a liquid chromatographic method for determination of efavirenz in human plasma. Chromatographia. 2007;65:359–61.

    Article  Google Scholar 

  31. Reil H, Höxter M, Moosmayer D, Pauli G, Hauser H. CD4 expressing human 293 cells as a tool for studies in HIV-1 replication: the efficiency of translational frameshifting is not altered by HIV-1 infection. Virology. 1994;205:371–5.

    Article  CAS  Google Scholar 

  32. Janas AM, Wu L. HIV-1 interactions with cells: from viral binding to cell-cell transmission. Curr Protoc Cell Biol. 2009.

  33. Hammer SM, Saag MS, Schechter M, Montaner JSG, Schooley RT, Jacobsen DM, et al. Treatment for adult HIV infection: 2006 Recommendations of the International AIDS Society-USA panel. J Am Med Assoc. 2006:827–43.

  34. Makwana V, Jain R, Patel K, Nivsarkar M, Joshi A. Solid lipid nanoparticles (SLN) of efavirenz as lymph targeting drug delivery system: elucidation of mechanism of uptake using chylomicron flow blocking approach. Int J Pharm. 2015;495:439–46.

    Article  CAS  Google Scholar 

  35. Müller RH, Alexiev U, Sinambela P, Keck CM. Nanostructured lipid carriers (NLC): the second generation of solid lipid nanoparticles. Percutaneous Penetration Enhanc Chem Methods Penetration Enhanc Nanocarriers. Springer Berlin Heidelberg; 2016. p. 161–85.

  36. Joshi M, Pathak S, Sharma S, Patravale V. Design and in vivo pharmacodynamic evaluation of nanostructured lipid carriers for parenteral delivery of artemether: Nanoject. Int J Pharm. 2008;364:119–26.

    Article  CAS  Google Scholar 

  37. Khan S, Baboota S, Ali J, Khan S, Narang RS, Narang JK. Nanostructured lipid carriers: an emerging platform for improving oral bioavailability of lipophilic drugs. Int J Pharm Investig Wolters Kluwer Medknow Publications. 2015:182–91.

  38. Strickley RG. Solubilizing excipients in oral and injectable formulations. Pharm. Res. 2004;21:201–30.

    Article  CAS  Google Scholar 

  39. Freitas C, Müller RH. Correlation between long-term stability of solid lipid nanoparticles (SLN(TM)) and crystallinity of the lipid phase. Eur J Pharm Biopharm. 1999;47:125–32.

    Article  CAS  Google Scholar 

  40. Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Adv Pharm Bull. 2015.

  41. Szarpak A, Pignot-Paintrand I, Nicolas C, Picart C, Auzély-Velty R. Multilayer assembly of hyaluronic acid/poly(allylamine): control of the buildup for the production of hollow capsules. Langmuir. 2008;24:9767–74.

    Article  CAS  Google Scholar 

  42. Lee H, Jeong Y, Park TG. Shell cross-linked hyaluronic acid/polylysine layer-by-layer polyelectrolyte microcapsules prepared by removal of reducible hyaluronic acid microgel cores. Biomacromolecules. 2007.

  43. Picart C. Polyelectrolyte multilayer films: from physico-chemical properties to the control of cellular processes. Curr Med Chem. 2008;15:685–97.

    Article  CAS  Google Scholar 

  44. Burke SE, Barrett CJ. Acid-base equilibria of weak polyelectrolytes in multilayer thin films. Langmuir. 2003.

  45. Kato N, Schuetz P, Fery A, Caruso F. Thin multilayer films of weak polyelectrolytes on colloid particles. Macromolecules. 2002.

  46. Mauser T, Déjugnat C, Sukhorukov GB. Reversible pH-dependent properties of multilayer microcapsules made of weak polyelectrolytes. Macromol Rapid Commun. 2004.

  47. Alves NM, Picart C, Mano JF. Self assembling and crosslinking of polyelectrolyte multilayer films of chitosan and alginate studies by OCM and IR spectroscopy. Macromol Biosci. 2009.

  48. Shiratori SS, Rubner MF. pH-dependent thickness behavior of sequentially adsorbed layers of weak polyelectrolytes. Macromolecules. 2000;33:4213–9.

    Article  CAS  Google Scholar 

  49. Mero A, Campisi M. Hyaluronic acid bioconjugates for the delivery of bioactive molecules. Polymers (Basel). 2014.

  50. Cranford SW, Ortiz C, Buehler MJ. Mechanomutable properties of a PAA/PAH polyelectrolyte complex: Rate dependence and ionization effects on tunable adhesion strength. Soft Matter. 2010;6:4175.

    Article  CAS  Google Scholar 

  51. Sadeghpour A, Seyrek E, Szilaźgyi I, Hierrezuelo J, Borkovec M. Influence of the degree of ionization and molecular mass of weak polyelectrolytes on charging and stability behavior of oppositely charged colloidal particles. Langmuir. 2011.

  52. Kim JO, Ramasamy T, Tran TH, Choi JY, Cho HJ, Kim JH, et al. Layer-by-layer coated lipid-polymer hybrid nanoparticles designed for use in anticancer drug delivery. Carbohydr Polym. 2014.

  53. Nyström RS, Rosenholm JB, Nurmi K. Flocculation of semidilute calcite dispersions induced by anionic sodium polyacrylate-cationic starch complexes. Langmuir. 2003.

  54. Díez-Pascual AM, Wong JE. Effect of layer-by-layer confinement of polypeptides and polysaccharides onto thermoresponsive microgels: a comparative study. J Colloid Interface Sci. 2010;347:79–89.

    Article  Google Scholar 

  55. Ngankam AP, Van Tassel PR. In situ layer-by-layer film formation kinetics under an applied voltage measured by optical waveguide lightmode spectroscopy. Langmuir. 2005.

  56. Picart C, Lavalle P, Hubert P, Cuisinier FJG, Decher G, Schaaf P, et al. Buildup mechanism for poly(L-lysine)/hyaluronic acid films onto a solid surface. Langmuir. 2001;17:7414–24.

    Article  CAS  Google Scholar 

  57. Picart C, Mutterer J, Richert L, Luo Y, Prestwich GD, Schaaf P, et al. Molecular basis for the explanation of the exponential growth of polyelectrolyte multilayers. Proc Natl Acad Sci U S A. 2002.

  58. Ariga K, Lvov YM, Kawakami K, Ji Q, Hill JP. Layer-by-layer self-assembled shells for drug delivery. Adv Drug Deliv Rev. 2011;63:762–71.

    Article  CAS  Google Scholar 

  59. Paliwal R, Rai S, Vaidya B, Khatri K, Goyal AK, Mishra N, et al. Effect of lipid core material on characteristics of solid lipid nanoparticles designed for oral lymphatic delivery. Nanomed Nanotechnol Biol Med. 2009.

  60. Prajapati HN, Dalrymple DM, Serajuddin ATM. A comparative evaluation of mono-, di- and triglyceride of medium chain fatty acids by lipid/surfactant/water phase diagram, solubility determination and dispersion testing for application in pharmaceutical dosage form development. Pharm Res. 2012;29:285–305.

    Article  CAS  Google Scholar 

  61. Nabi-Meibodi M, Vatanara A, Najafabadi AR, Rouini MR, Ramezani V, Gilani K, et al. The effective encapsulation of a hydrophobic lipid-insoluble drug in solid lipid nanoparticles using a modified double emulsion solvent evaporation method. Colloids Surfaces B Biointerfaces. 2013.

  62. Sun J, Bi C, Chan HM, Sun S, Zhang Q, Zheng Y. Curcumin-loaded solid lipid nanoparticles have prolonged in vitro antitumour activity, cellular uptake and improved in vivo bioavailability. Colloids Surfaces B Biointerfaces. 2013;111:367–75.

    Article  Google Scholar 

  63. Fu Y, Kao WJ. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin Drug Deliv. 2010;7:429–44.

    Article  CAS  Google Scholar 

  64. Strydom SJ, Otto DP, Stieger N, Aucamp ME, Liebenberg W, De Villiers MM. Self-assembled macromolecular nanocoatings to stabilize and control drug release from nanoparticles. Powder Technol. 2014.

  65. Junghanns JUAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomed. 2008.

  66. Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocyte-derived macrophages. PLoS One. 2010;5:e8668.

    Article  Google Scholar 

  67. Doktorovova S, Souto EB, Silva AM. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - a systematic review of in vitro data. Eur J Pharm Biopharm. 2014;87:1–18.

    Article  CAS  Google Scholar 

  68. Brugè F, Damiani E, Marcheggiani F, Offerta A, Puglia C, Tiano L. A comparative study on the possible cytotoxic effects of different nanostructured lipid carrier (NLC) compositions in human dermal fibroblasts. Int J Pharm Elsevier. 2015;495:879–85.

    Article  Google Scholar 

  69. Hwang TL, Aljuffali IA, Lin CF, Chang YT, Fang JY. Cationic additives in nanosystems activate cytotoxicity and inflammatory response of human neutrophils: lipid nanoparticles versus polymeric nanoparticles. Int J Nanomed. 2015.

  70. Almalik A, Karimi S, Ouasti S, Donno R, Wandrey C, Day PJ, et al. Hyaluronic acid (HA) presentation as a tool to modulate and control the receptor-mediated uptake of HA-coated nanoparticles. Biomaterials. 2013;34:5369–80.

    Article  CAS  Google Scholar 

  71. Miao X, Li Y, Wyman I, Lee SMY, Macartney DH, Zheng Y, et al. Enhanced in vitro and in vivo uptake of a hydrophobic model drug coumarin-6 in the presence of cucurbit[7]uril. Medchemcomm. 2015;6:1370–4.

    Article  CAS  Google Scholar 

  72. Rivolta I, Panariti A, Lettiero B, Sesana S, Gasco P, Gasco MR, et al. Cellular uptake of coumarin-6 as a model drug loaded in solid lipid nanoparticles. J Physiol Pharmacol. 2011.

  73. Schrijvers DM, Martinet W, De Meyer GRY, Andries L, Herman AG, Kockx MM. Flow cytometric evaluation of a model for phagocytosis of cells undergoing apoptosis. J Immunol Methods. 2004.

  74. Bajorath J, Greenfield B, Munro SB, Day AJ, Aruffo A. Identification of CD44 residues important for hyaluronan binding and delineation of the binding site. J Biol Chem. 1998;273:338–43.

    Article  CAS  Google Scholar 

  75. Lepperdinger G, Strobl B, Kreil G. HYAL2, a human gene expressed in many cells, encodes a lysosomal hyaluronidase with a novel type of specificity. J Biol Chem. 1998;273:22466–70.

    Article  CAS  Google Scholar 

  76. Harush-Frenkel O, Debotton N, Benita S, Altschuler Y. Targeting of nanoparticles to the clathrin-mediated endocytic pathway. Biochem Biophys Res Commun. 2007.

  77. Nandi A, Estess P, Siegelman MH. Hyaluronan anchoring and regulation on the surface of vascular endothelial cells is mediated through the functionally active form of CD44. J Biol Chem. 2000;275:14939–48.

    Article  CAS  Google Scholar 

  78. de la Rosa JM R, Tirella A, Gennari A, Stratford IJ, Tirelli N. The CD44-mediated uptake of hyaluronic acid-based carriers in macrophages. Adv Healthc Mater. 2017.

  79. Ouasti S, Kingham PJ, Terenghi G, Tirelli N. The CD44/integrins interplay and the significance of receptor binding and re-presentation in the uptake of RGD-functionalized hyaluronic acid. Biomaterials. 2012;33:1120–34.

    Article  CAS  Google Scholar 

  80. Zaki NM, Nasti A, Tirelli N. Nanocarriers for cytoplasmic delivery: cellular uptake and intracellular fate of chitosan and hyaluronic acid-coated chitosan nanoparticles in a phagocytic cell model. Macromol Biosci. 2011;11:1747–60.

    Article  CAS  Google Scholar 

  81. Kamat M, El-Boubbou K, Zhu DC, Lansdell T, Lu X, Li W. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. et al, Bioconjug Chem. 2010.

  82. He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010.

  83. Foroozandeh P, Aziz AA. Insight into cellular uptake and intracellular trafficking of nanoparticles. Nanoscale Res Lett. 2018;13:339.

    Article  Google Scholar 

  84. Gnanadhas DP, Dash PK, Sillman B, Bade AN, Lin Z, Palandri DL, et al. Autophagy facilitates macrophage depots of sustained-release nanoformulated antiretroviral drugs. J Clin Invest. 2017;127:857–73.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to All India Council for Technical Education (AICTE-NAFETIC) for providing research facilities. The authors are also thankful to Dr.R R Gangakhedkar, former Director-in-Charge, and Dr. Samiran Panda, Director, ICMR-NARI, for their support. The technical assistance for analysis of flow cytometry by Ms. Leila Abadi is also appreciated.

Funding

UGC-BSR for provided the research funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Vavia.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, K., Rojekar, S., Desai, D. et al. Layer-by-Layer Assembled Nanostructured Lipid Carriers for CD-44 Receptor–Based Targeting in HIV-Infected Macrophages for Efficient HIV-1 Inhibition. AAPS PharmSciTech 22, 171 (2021). https://doi.org/10.1208/s12249-021-01981-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01981-4

KEY WORDS

Navigation