Skip to main content

Advertisement

Log in

Nanoformulated Antiretroviral Drug Combinations Extend Drug Release and Antiretroviral Responses in HIV-1-Infected Macrophages: Implications for NeuroAIDS Therapeutics

  • Original Article
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

We posit that improvements in pharmacokinetics and biodistributions of antiretroviral therapies (ART) for human immunodeficiency virus type one-infected people can be achieved through nanoformulationed drug delivery systems. To this end, we manufactured nanoparticles of atazanavir, efavirenz, and ritonavir (termed nanoART) and treated human monocyte-derived macrophages (MDM) in combination therapies to assess antiretroviral responses. This resulted in improved drug uptake, release, and antiretroviral efficacy over monotherapy. MDM rapidly, within minutes, ingested nanoART combinations, at equal or similar rates, as individual formulations. Combination nanoART ingested by MDM facilitated individual drug release from 15 to >20 days. These findings are noteworthy as a nanoART cell-mediated drug delivery provides a means to deliver therapeutics to viral sanctuaries, such as the central nervous system during progressive human immunodeficiency virus type one infection. The work brings us yet another step closer to realizing the utility of nanoART for virus-infected people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anttila S, Hukkanen J, Hakkola J, Stjernvall T, Beaune P, Edwards RJ, Boobis AR, Pelkonen O, Raunio H (1997) Expression and localization of CYP3A4 and CYP3A5 in human lung. Am J Respir Cell Mol Biol 16:242–249

    CAS  PubMed  Google Scholar 

  • Baum MK, Rafie C, Lai S, Sales S, Page B, Campa A (2009) Crack-cocaine use accelerates HIV disease progression in a cohort of HIV-positive drug users. J Acquir Immune Defic Syndr 50:93–99

    Article  PubMed  Google Scholar 

  • Best BM, Letendre SL, Brigid E, Clifford DB, Collier AC, Gelman BB, McArthur JC, McCutchan JA, Simpson DM, Ellis R, Capparelli EV, Grant I (2009) Low atazanavir concentrations in cerebrospinal fluid. Aids 23:83–87

    Article  CAS  PubMed  Google Scholar 

  • Bruce RD, Altice FL, Gourevitch MN, Friedland GH (2006a) Pharmacokinetic drug interactions between opioid agonist therapy and antiretroviral medications: implications and management for clinical practice. J Acquir Immune Defic Syndr 41:563–572

    Article  CAS  PubMed  Google Scholar 

  • Bruce RD, McCance-Katz E, Kharasch ED, Moody DE, Morse GD (2006b) Pharmacokinetic interactions between buprenorphine and antiretroviral medications. Clin Infect Dis 43(Suppl 4):S216–223

    Article  CAS  PubMed  Google Scholar 

  • Danel C, Moh R, Chaix ML, Gabillard D, Gnokoro J, Diby CJ, Toni T, Dohoun L, Rouzioux C, Bissagnene E, Salamon R, Anglaret X (2009) Two-months-off, four-months-on antiretroviral regimen increases the risk of resistance, compared with continuous therapy: a randomized trial involving West African adults. J Infect Dis 199:66–76

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Destache CJ, Morehead JR, Mosley RL, Boska MD, Kingsley J, Gorantla S, Poluektova L, Nelson JA, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2006) Development of a macrophage-based nanoparticle platform for antiretroviral drug delivery. Blood 108:2827–2835

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Morehead J, Destache CJ, Kingsley JD, Shlyakhtenko L, Zhou Y, Chaubal M, Werling J, Kipp J, Rabinow BE, Gendelman HE (2007) Laboratory investigations for the morphologic, pharmacokinetic, and anti-retroviral properties of indinavir nanoparticles in human monocyte-derived macrophages. Virology 358:148–158

    Article  CAS  PubMed  Google Scholar 

  • Dou H, Grotepas CB, McMillan JM, Destache CJ, Chaubal M, Werling J, James K, Rabinow B, Gendelman HE (2009) Macrophage delivery of nanoformulated antiretroviral drug to the brain in a murine model of neuroAIDS. J Immunol 183:661–669

    Article  CAS  PubMed  Google Scholar 

  • Ellis R, Langford D, Masliah E (2007) HIV and antiretroviral therapy in the brain: neuronal injury and repair. Nat Rev Neurosci 8:33–44

    Article  CAS  PubMed  Google Scholar 

  • Epstein LG, Gendelman HE (1993) Human immunodeficiency virus type 1 infection of the nervous system: pathogenetic mechanisms. Ann Neurol 33:429–436

    Article  CAS  PubMed  Google Scholar 

  • Feldt T, Oette M, Kroidl A, Gobels K, Leidel R, Sagir A, Kuschak D, Haussinger D (2005) Atazanavir for treatment of HIV infection in clinical routine: efficacy, pharmacokinetics and safety. Eur J Med Res 10:7–10

    CAS  PubMed  Google Scholar 

  • Fellay J, Boubaker K, Ledergerber B, Bernasconi E, Furrer H, Battegay M, Hirschel B, Vernazza P, Francioli P, Greub G, Flepp M, Telenti A (2001) Prevalence of adverse events associated with potent antiretroviral treatment: Swiss HIV Cohort Study. Lancet 358:1322–1327

    Article  CAS  PubMed  Google Scholar 

  • Garvie PA, Lawford J, Flynn PM, Gaur AH, Belzer M, McSherry GD, Hu C (2009) Development of a directly observed therapy adherence intervention for adolescents with human immunodeficiency virus-1: application of focus group methodology to inform design, feasibility, and acceptability. J Adolesc Health 44:124–132

    Article  PubMed  Google Scholar 

  • Gendelman HE, Orenstein JM, Martin MA, Ferrua C, Mitra R, Phipps T, Wahl LA, Lane HC, Fauci AS, Burke DS et al (1988) Efficient isolation and propagation of human immunodeficiency virus on recombinant colony-stimulating factor 1-treated monocytes. J Exp Med 167:1428–1441

    Article  CAS  PubMed  Google Scholar 

  • Gianotti N, Soria A, Lazzarin A (2007) Antiviral activity and clinical efficacy of atazanavir in HIV-1-infected patients: a review. New Microbiol 30:79–88

    CAS  PubMed  Google Scholar 

  • Gisslen M, Ahlqvist-Rastad J, Albert J, Blaxhult A, Hamberg AK, Lindback S, Sandstrom E, Uhnoo I (2006) Antiretroviral treatment of HIV infection: Swedish recommendations 2005. Scand J Infect Dis 38:86–103

    Article  CAS  PubMed  Google Scholar 

  • Gray F, Adle-Biassette H, Chretien F, Lorin de la Grandmaison G, Force G, Keohane C (2001) Neuropathology and neurodegeneration in human immunodeficiency virus infection. Pathogenesis of HIV-induced lesions of the brain, correlations with HIV-associated disorders and modifications according to treatments. Clin Neuropathol 20:146–155

    CAS  PubMed  Google Scholar 

  • Hawkins T (2006) Appearance-related side effects of HIV-1 treatment. AIDS Patient Care STDS 20:6–18

    Article  PubMed  Google Scholar 

  • Hesse LM, von Moltke LL, Shader RI, Greenblatt DJ (2001) Ritonavir, efavirenz, and nelfinavir inhibit CYP2B6 activity in vitro: potential drug interactions with bupropion. Drug Metab Dispos 29:100–102

    CAS  PubMed  Google Scholar 

  • Horberg M, Klein D, Hurley L, Silverberg M, Towner W, Antoniskis D, Kovach D, Mogyoros M, Blake W, Dobrinich R, Dodge W (2008) Efficacy and safety of ritonavir-boosted and unboosted atazanavir among antiretroviral-naive patients. HIV Clin Trials 9:367–374

    Article  PubMed  Google Scholar 

  • Hukkanen J, Hakkola J, Anttila S, Piipari R, Karjalainen A, Pelkonen O, Raunio H (1997) Detection of mRNA encoding xenobiotic-metabolizing cytochrome P450s in human bronchoalveolar macrophages and peripheral blood lymphocytes. Mol Carcinog 20:224–230

    Article  CAS  PubMed  Google Scholar 

  • Hukkanen J, Pelkonen O, Hakkola J, Raunio H (2002) Expression and regulation of xenobiotic-metabolizing cytochrome P450 (CYP) enzymes in human lung. Crit Rev Toxicol 32:391–411

    Article  CAS  PubMed  Google Scholar 

  • Johnson M, Grinsztejn B, Rodriguez C, Coco J, DeJesus E, Lazzarin A, Lichtenstein K, Rightmire A, Sankoh S, Wilber R (2005) Atazanavir plus ritonavir or saquinavir, and lopinavir/ritonavir in patients experiencing multiple virological failures. Aids 19:685–694

    Article  CAS  PubMed  Google Scholar 

  • Kabanov AV, Gendelman HE (2007) Nanomedicine in the diagnosis and therapy of neurodegenerative disorders. Progress in Polymer Science 32:1054–1082

    Article  CAS  PubMed  Google Scholar 

  • Kalter DC, Greenhouse JJ, Orenstein JM, Schnittman SM, Gendelman HE, Meltzer MS (1991) Epidermal Langerhans cells are not principal reservoirs of virus in HIV disease. J Immunol 146:3396–3404

    CAS  PubMed  Google Scholar 

  • Kraft-Terry SD, Buch SJ, Fox HS, Gendelman HE (2009) A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron 64:133–145

    Article  CAS  PubMed  Google Scholar 

  • Kumagai AK, Eisenberg JB, Pardridge WM (1987) Absorptive-mediated endocytosis of cationized albumin and a beta-endorphin-cationized albumin chimeric peptide by isolated brain capillaries. Model system of blood–brain barrier transport. J Biol Chem 262:15214–15219

    CAS  PubMed  Google Scholar 

  • Kumar GN, Dykstra J, Roberts EM, Jayanti VK, Hickman D, Uchic J, Yao Y, Surber B, Thomas S, Granneman GR (1999) Potent inhibition of the cytochrome P-450 3A-mediated human liver microsomal metabolism of a novel HIV protease inhibitor by ritonavir: a positive drug–drug interaction. Drug Metab Dispos 27:902–908

    CAS  PubMed  Google Scholar 

  • Mascolini M, Larder BA, Boucher CA, Richman DD, Mellors JW (2008) Broad advances in understanding HIV resistance to antiretrovirals: report on the XVII International HIV Drug Resistance Workshop. Antivir Ther 13:1097–1113

    PubMed  Google Scholar 

  • Meade CS, Hansen NB, Kochman A, Sikkema KJ (2009) Utilization of medical treatments and adherence to antiretroviral therapy among HIV-positive adults with histories of childhood sexual abuse. AIDS Patient Care STDS 23:259–266

    Article  PubMed  Google Scholar 

  • Metzner KJ, Giulieri SG, Knoepfel SA, Rauch P, Burgisser P, Yerly S, Gunthard HF, Cavassini M (2009) Minority quasispecies of drug-resistant HIV-1 that lead to early therapy failure in treatment-naive and -adherent patients. Clin Infect Dis 48:239–247

    Article  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Murri R, Lepri AC, Cicconi P, Poggio A, Arlotti M, Tositti G, Santoro D, Soranzo ML, Rizzardini G, Colangeli V, Montroni M, Monforte AD (2006) Is moderate HIV viremia associated with a higher risk of clinical progression in HIV-infected people treated with highly active antiretroviral therapy: evidence from the Italian cohort of antiretroviral-naive patients study. J Acquir Immune Defic Syndr 41:23–30

    Article  PubMed  Google Scholar 

  • Nowacek A, Gendelman HE (2009) NanoART, neuroAIDS and CNS drug delivery. Nanomed 4:557–574

    Article  CAS  Google Scholar 

  • Nowacek A, Kosloski LM, Gendelman HE (2009a) Neurodegenerative disorders and nanoformulated drug development. Nanomed 4:541–555

    Article  CAS  Google Scholar 

  • Nowacek AS, Miller RL, McMillan J, Kanmogne G, Kanmogne M, Mosley RL, Ma Z, Graham S, Chaubal M, Werling J, Rabinow B, Dou H, Gendelman HE (2009b) NanoART synthesis, characterization, uptake, release and toxicology for human monocyte-macrophage drug delivery. Nanomed 4:903–917

    Article  CAS  Google Scholar 

  • Paterson DL, Swindells S, Mohr J, Brester M, Vergis EN, Squier C, Wagener MM, Singh N (2000) Adherence to protease inhibitor therapy and outcomes in patients with HIV infection. Ann Intern Med 133:21–30

    CAS  PubMed  Google Scholar 

  • Perry VH, Bell MD, Brown HC, Matyszak MK (1995) Inflammation in the nervous system. Curr Opin Neurobiol 5:636–641

    Article  CAS  PubMed  Google Scholar 

  • Piipari R, Savela K, Nurminen T, Hukkanen J, Raunio H, Hakkola J, Mantyla T, Beaune P, Edwards RJ, Boobis AR, Anttila S (2000) Expression of CYP1A1, CYP1B1 and CYP3A, and polycyclic aromatic hydrocarbon-DNA adduct formation in bronchoalveolar macrophages of smokers and non-smokers. Int J Cancer 86:610–616

    Article  CAS  PubMed  Google Scholar 

  • Raunio H, Hakkola J, Hukkanen J, Lassila A, Paivarinta K, Pelkonen O, Anttila S, Piipari R, Boobis A, Edwards RJ (1999) Expression of xenobiotic-metabolizing CYPs in human pulmonary tissue. Exp Toxicol Pathol 51:412–417

    CAS  PubMed  Google Scholar 

  • Royal SW, Kidder DP, Patrabansh S, Wolitski RJ, Holtgrave DR, Aidala A, Pals S, Stall R (2009) Factors associated with adherence to highly active antiretroviral therapy in homeless or unstably housed adults living with HIV. AIDS Care 21:448–455

    Article  PubMed  Google Scholar 

  • Valcour V, Paul R (2006) HIV infection and dementia in older adults. Clin Infect Dis 42:1449–1454

    Article  PubMed  Google Scholar 

  • Varatharajan L, Thomas SA (2009) The transport of anti-HIV drugs across blood-CNS interfaces: summary of current knowledge and recommendations for further research. Antiviral Res 82:A99–109

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Desai MC (2009) Pharmacokinetic enhancers for HIV drugs. Curr Opin Investig Drugs 10:775–786

    CAS  PubMed  Google Scholar 

  • Zeldin RK, Petruschke RA (2004) Pharmacological and therapeutic properties of ritonavir-boosted protease inhibitor therapy in HIV-infected patients. J Antimicrob Chemother 53:4–9

    Article  CAS  PubMed  Google Scholar 

  • Zolopa AR (2009) The evolution of HIV treatment guidelines: current state-of-the-art of ART. Antiviral Res 85(1):241–244

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Janice A. Taylor and James R. Talaska of the Confocal Laser Scanning Microscope Core Facility at the University of Nebraska Medical Center for providing assistance with confocal microscopy, the Nebraska Research Initiative, and the Eppley Cancer Center for their support of the Core Facility. We also thank Ms. Robin Taylor for the critical reading of the manuscript and outstanding graphic and literary support.

Financial and competing interests disclosures

The work was supported by the National Institutes of Health grants 2R01 NS034239, 2R37 NS36126, P01 NS31492, P20RR 15635, P01MH64570, and P01 NS43985 (to H.E.G.) and from a research grant from Baxter Healthcare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard E. Gendelman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental 1

3D reconstruction of nanoART laden MDM. MDM were incubated with 100 µM each of ATV-H1045 (purple) labeled with Vybrant DiO cell-labeling solution, RTV-H1025 (green) labeled with Vybrant DiD cell-labeling solution, and EFV-P1044 (red) with rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phospho-ethanolamine, triethylammonium salt. Images were acquired after 2 h of incubation with nanoART combination. Z-Stack was constructed from 25 individual fluorescent microscopy images of 1.0-μm thickness each. A 3D reconstruction of the Z-Stack was made using Zeiss LSM510 software (Carl Zeiss MicroImaging Inc., Thornwood, NY). The 3D reconstruction rotates 360° in 16 frames. All three nanoART were taken up by MDM. Overlay (white) represents colocalization of all three formulations to cytoplasmic vesicles. (GIF 117 kb; GIF 117 kb)

High Resolution Image 1 (TIFF 18918 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nowacek, A.S., McMillan, J., Miller, R. et al. Nanoformulated Antiretroviral Drug Combinations Extend Drug Release and Antiretroviral Responses in HIV-1-Infected Macrophages: Implications for NeuroAIDS Therapeutics. J Neuroimmune Pharmacol 5, 592–601 (2010). https://doi.org/10.1007/s11481-010-9198-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-010-9198-7

Keywords

Navigation