Skip to main content
Log in

Nanoparticulate tablet dosage form of lisofylline-linoleic acid conjugate for type 1 diabetes: in situ single-pass intestinal perfusion (SPIP) studies and pharmacokinetics in rat

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Lisofylline (LSF) is an anti-inflammatory molecule with high aqueous solubility and rapid metabolic interconversion to its parent drug, pentoxifylline (PTX) resulting in very poor pharmacokinetic (PK) parameters, necessitating high dose and dosing frequency. In the present study, we resolved the physicochemical and pharmacokinetic limitations associated with LSF and designed its oral dosage form as a tablet for effective treatment in type 1 diabetes (T1D). Self-assembling polymeric micelles of LSF (lisofylline-linoleic acid polymeric micelles (LSF-LA PLM)) were optimized for scale-up (6 g batch size) and lyophilized followed by compression into tablets. Powder blend and tablets were evaluated as per USP. LSF-LA PLM tablet so formed was evaluated for in vitro release in simulated biological fluids (with enzymes) and for cell viability in MIN-6 cells. LSF-LA PLM in tablet formulation was further evaluated for intestinal permeability (in situ) along with LSF and LSF-LA self-assembled micelles (SM) as controls in a rat model using single-pass intestinal perfusion (SPIP) study. SPIP studies revealed 1.8-fold higher oral absorption of LSF-LA from LSF-LA PLM as compared to LSF-LA SM and ~5.9-fold higher than LSF (alone) solution. Pharmacokinetic studies of LSF-LA PLM tablet showed greater Cmax than LSF, LSF-LA, and LSF-LA PLM. Designed facile LSF-LA PLM tablet dosage form has potential for an immediate decrease in the postprandial glucose levels in patients of T1D.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

Ø :

Angle of repose

AUC:

Area under curve

AUMC:

Area under first moment curve

CAF:

Central animal facility

C max :

Maximum (or peak) concentration

GIT:

Gastrointestinal tract

HPLC:

High-performance liquid chromatography

IAEC:

Institutional Animal Ethics Committee

Ka :

Apparent first-order absorption rate constant

LA:

Linoleic acid

LSF:

Lisofylline

LSF-LA:

Lisofylline-linoleic acid

LSF-LA PLM:

Lisofylline-linoleic acid polymeric micelles

LSF-LA SM:

Lisofylline-linoleic acid self-assembled micelles

MCC:

Microcrystalline cellulose

MIN-6:

Mouse insulinoma 6

mPEG-b-P(CB-co-LA):

Methoxy-polyethylene-glycol-b-poly(carbonate-colactide)

MRT:

Mean residence time

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

PD:

Pharmacodynamics

PDA:

Photodiode array

PDE:

Phosphodiesterase

PDI:

Polydispersity index

PEG-2000:

Polyethylene glycol 2000

P eff :

Permeability coefficient

PK:

Pharmacokinetic

PLM:

Polymeric micelles

PTX:

Pentoxifylline

RPMI:

Roswell Park Memorial Institute Medium

SGF:

Simulated gastric fluid

SIF:

Simulated intestinal fluid

SPIP:

Single-pass intestinal perfusion

T1:

Tablets without LSF-LA PLM (blank tablets)

T2:

Tablets with LSF-LA PLM

t1/2 :

Half-life

T1D:

Type 1 diabetes

USP:

United States Pharmacopeia

References

  1. McCarty MF, O’Keefe JH, DiNicolantonio JJ. Pentoxifylline for vascular health: a brief review of the literature. Open Heart. 2016;3(1):e000365.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Yang Z, Chen M, Nadler JL. Lisofylline: a potential lead for the treatment of diabetes. Biochem Pharmacol. 2005;69(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  3. Italiya KS, Mazumdar S, Sharma S, Chitkara D, Mahato RI, Mittal A. Self-assembling lisofylline-fatty acid conjugate for effective treatment of diabetes mellitus. Nanomedicine: NBM. 2019;15(1):175–87. https://doi.org/10.1016/j.nano.2018.09.014.

    Article  CAS  Google Scholar 

  4. Chen M, Yang Z, Wu R, Nadler JL. Lisofylline, a novel antiinflammatory agent, protects pancreatic β-cells from proinflammatory cytokine damage by promoting mitochondrial metabolism. Endocrinology. 2002;143(6):2341–8. https://doi.org/10.1210/endo.143.6.8841.

    Article  CAS  PubMed  Google Scholar 

  5. Świerczek A, Wyska E, Pociecha K, Baś S, Mlynarski J. Influence of inflammatory disorders on pharmacokinetics of lisofylline in rats: implications for studies in humans. Xenobiotica. 2019;49(10):1209–20.

    Article  PubMed  CAS  Google Scholar 

  6. Wyska E, Pekala E, Szymura-Oleksiak J. Interconversion and tissue distribution of pentoxifylline and lisofylline in mice. Chirality. 2006;18(8):644–51.

    Article  CAS  PubMed  Google Scholar 

  7. Song WH, Yeom DW, Lee DH, Lee KM, Yoo HJ, Chae BR, et al. In situ intestinal permeability and in vivo oral bioavailability of celecoxib in supersaturating self-emulsifying drug delivery system. Arch Pharm Res. 2014;37(5):626–35.

    Article  CAS  PubMed  Google Scholar 

  8. Wyska E, Świerczek A, Pociecha K, Pomierny KP. Physiologically based modeling of lisofylline pharmacokinetics following intravenous administration in mice. Eur J Drug Metab Pharmacokinet. 2016;41(4):403–12.

    Article  CAS  PubMed  Google Scholar 

  9. Wyska E, Szymura-Oleksiak J, Pȩkala E, Obruśnik A. Pharmacokinetic modelling of pentoxifylline and lisofylline after oral and intravenous administration in mice. J Pharm Pharmacol. 2007;59(4):495–501.

    Article  CAS  PubMed  Google Scholar 

  10. Striffler JS, Nadler JL. Lisofylline, a novel anti-inflammatory agent, enhances glucose-stimulated insulin secretion in vivo and in vitro: studies in prediabetic and normal rats. Metabolism. 2004;53(3):290–6. https://doi.org/10.1016/j.metabol.2003.10.008.

    Article  CAS  PubMed  Google Scholar 

  11. Lillibridge JA, Kalhorn TF, Slattery JT. Metabolism of lisofylline and pentoxifylline in human liver microsomes and cytosol. Drug Metab Dispos. 1996;24(11):1174–9.

    CAS  PubMed  Google Scholar 

  12. Cui P, Macdonald TL, Chen M, Nadler JL. Synthesis and biological evaluation of lisofylline (LSF) analogs as a potential treatment for type 1 diabetes. Bioorg Med Chem Lett. 2006;16(13):3401–5.

    Article  CAS  PubMed  Google Scholar 

  13. Italiya KS, Basak M, Mazumdar S, Sahel DK, Shrivastava R, Chitkara D, et al. Scalable self-assembling micellar system for enhanced oral bioavailability and efficacy of lisofylline for treatment of type-I diabetes. Mol Pharm. 2019;16(12):4954–67. https://doi.org/10.1021/acs.molpharmaceut.9b00833.

    Article  CAS  PubMed  Google Scholar 

  14. Irby D, Du C, Li F. Lipid–drug conjugate for enhancing drug delivery. Mol Pharm. 2017;14(5):1325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Date AA, Hanes J, Ensign LM. Nanoparticles for oral delivery: design, evaluation and state-of-the-art. J Control Release. 2016;240:504–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xu W, Ling P, Zhang T. Polymeric micelles, a promising drug delivery system to enhance bioavailability of poorly water-soluble drugs. J Drug Deliv. 2013;2013:340315.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63(6):456–69.

    Article  CAS  PubMed  Google Scholar 

  18. Schmidt C, Bodmeier R. Incorporation of polymeric nanoparticles into solid dosage forms. J Control Release. 1999;57(2):115–25.

    Article  CAS  PubMed  Google Scholar 

  19. Nikolakakis I, Partheniadis I. Self-emulsifying granules and pellets: composition and formation mechanisms for instant or controlled release. Pharmaceutics. 2017;9(4):50.

    Article  PubMed Central  CAS  Google Scholar 

  20. Patel HP, Patel J, Patel RR, Patel MP. Pellets: A general overview. Int J Pharm World Res. 2010;1(2):1–15.

    Google Scholar 

  21. Usman F, Javed I, Hussain SZ, Ranjha NM, Hussain I. Hydrophilic nanoparticles packed in oral tablets can improve the plasma profile of short half-life hydrophobic drugs. RSC Adv. 2016;6(97):94896–904.

    Article  CAS  Google Scholar 

  22. Ilhan E, Ugurlu T, Kerimoglu O. Mini tablets: a short review-revision. Peertechz J Med Chem Res. 2017;3(1):012–22.

    Google Scholar 

  23. Ansari M. Oral delivery of insulin for treatment of diabetes: classical challenges and current opportunities. J Med Sci. 2015;15(5):209–20.

    Article  CAS  Google Scholar 

  24. Balducci AG, Magosso E, Colombo G, Sonvico F. From tablets to pharmaceutical nanotechnologies: innovation in drug delivery strategies for the administration of antimalarial drugs. J Drug Deliv Sci Technol. 2016;32:167–73.

    Article  CAS  Google Scholar 

  25. Ilhan E, Ugurlu T, Kerimoglu O. Mini tablets: a short review-revision. Open J Chem. 2017;3(1):012–22.

    Google Scholar 

  26. El-Nabarawi MA, Elshafeey AH, Mahmoud DM, El Sisi AM. Fabrication, optimization, and in vitro/in vivo evaluation of diclofenac epolamine flash tablet. Drug Deliv Transl Res. 2020;10:1–13.

    Article  CAS  Google Scholar 

  27. Ahmed IS, Shamma RN, Shoukri RA. Development and optimization of lyophilized orally disintegrating tablets using factorial design. Pharm Dev Technol. 2013;18(4):935–43.

    Article  CAS  PubMed  Google Scholar 

  28. Chavan P, Ughade S. Preparation, characterization and evalution of tablet for colonic delivery. Int J Pharm Sci Res. 2018;9(5):2027–33.

    CAS  Google Scholar 

  29. Hadi MA, Rao NR, Rao AS. Formulation and evaluation of ileo-colonic targeted matrix-mini-tablets of naproxen for chronotherapeutic treatment of rheumatoid arthritis. Saudi Pharm J. 2016;24(1):64–73.

    Article  PubMed  Google Scholar 

  30. United States Pharmacopeia and National Formulary (USP 41-NF 36). United States Pharmacopeial Convention; General tests and assays. 2016. Accessed Jan 26, 2021 https://online.uspnf.com/uspnf/document/GUID-AC788D41-90A2-4F36-A6E7-769954A9ED09_1_en-US.2016.

  31. United States Pharmacopeia and National Formulary (USP 41-NF 36). United States Pharmacopeial Convention; Reagents: solutions: test solutions. 2016. Accessed Jan 26, 2021 https://online.uspnf.com/uspnf/document/GUID-AC788D41-90A2-4F36-A6E7-769954A9ED09_1_en-US.2016.

  32. Jain R, Duvvuri S, Kansara V, Mandava NK, Mitra AK. Intestinal absorption of novel-dipeptide prodrugs of saquinavir in rats. Int J Pharm. 2007;336(2):233–40.

    Article  CAS  PubMed  Google Scholar 

  33. Dezani TM, Dezani AB, da Silva Junior JB, dos Reis Serra CH. Single-Pass Intestinal Perfusion (SPIP) and prediction of fraction absorbed and permeability in humans: a study with antiretroviral drugs. Eur J Pharm Biopharm. 2016;104:131–9.

    Article  CAS  PubMed  Google Scholar 

  34. Sutton SC, Rinaldi M, Vukovinsky K. Comparison of the gravimetric, phenol red, and 14C-PEG-3350 methods to determine water absorption in the rat single-pass intestinal perfusion model. AAPS PharmSci. 2001;3(3):E25.

    Article  CAS  PubMed  Google Scholar 

  35. Kang MJ, Kim HS, Jeon HS, Park JH, Lee BS, Ahn BK, et al. In situ intestinal permeability and in vivo absorption characteristics of olmesartan medoxomil in self-microemulsifying drug delivery system. Drug Dev Ind Pharm. 2012;38(5):587–96.

    Article  CAS  PubMed  Google Scholar 

  36. Rathore R, Jain JP, Srivastava A, Jachak S, Kumar N. Simultaneous determination of hydrazinocurcumin and phenol red in samples from rat intestinal permeability studies: HPLC method development and validation. J Pharm Biomed Anal. 2008;46(2):374–80.

    Article  CAS  PubMed  Google Scholar 

  37. Zakeri-Milani P, Barzegar-Jalali M, Tajerzadeh H, Azarmi Y, Valizadeh H. Simultaneous determination of naproxen, ketoprofen and phenol red in samples from rat intestinal permeability studies: HPLC method development and validation. J Pharm Biomed Anal. 2005;39(3-4):624–30.

    Article  CAS  PubMed  Google Scholar 

  38. Tabatabayi H, Valizade PZ-MH, Azarmi Y, Jalali MB, Tajerzadeh H. An HPLC method development for simultaneous determination of metoprolol, propranolol and phenol red: application in perfusion studies. Res Pharm Sci. 2012;7(5):637.

    Google Scholar 

  39. Escribano E, Sala XG, Salamanca J, Navarro CR, Regué JQ. Single-pass intestinal perfusion to establish the intestinal permeability of model drugs in mouse. Int J Pharm. 2012;436(1-2):472–7.

    Article  CAS  PubMed  Google Scholar 

  40. Italiya KS, Sharma S, Kothari I, Chitkara D, Mittal A. Simultaneous estimation of lisofylline and pentoxifylline in rat plasma by high performance liquid chromatography-photodiode array detector and its application to pharmacokinetics in rat. J Chromatogr B. 2017;1061:49–56.

    Article  CAS  Google Scholar 

  41. Frandsen CS, Dejgaard TF, Madsbad S. Non-insulin drugs to treat hyperglycaemia in type 1 diabetes mellitus. Lancet Diabetes Endocrinol. 2016;4(9):766–80.

    Article  CAS  PubMed  Google Scholar 

  42. Bahman F, Greish K, Taurin S. Insulin nanoformulations for nonparenteral administration in diabetic patients. Theory Appl Nonparenter Nanomed. 2021;2021:409–43.

    Article  Google Scholar 

  43. Dewanjee S, Chakraborty P, Mukherjee B, De Feo V. Plant-based antidiabetic nanoformulations: the emerging paradigm for effective therapy. Int J Mol Sci. 2020;21(6):2217.

    Article  CAS  PubMed Central  Google Scholar 

  44. Ganugula R, Arora M, Jaisamut P, Wiwattanapatapee R, Jørgensen HG, Venkatpurwar VP, et al. Nano-curcumin safely prevents streptozotocin-induced inflammation and apoptosis in pancreatic beta cells for effective management of Type 1 diabetes mellitus. Br J Pharmacol. 2017;174(13):2074–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, et al. Nanoparticle delivery systems in the treatment of diabetes complications. Molecules. 2019;24(23):4209.

    Article  CAS  PubMed Central  Google Scholar 

  46. Pathak K, Raghuvanshi S. Oral bioavailability: issues and solutions via nanoformulations. Clin Pharmacokinet. 2015;54(4):325–57.

    Article  CAS  PubMed  Google Scholar 

  47. Mudshinge SR, Deore AB, Patil S, Bhalgat CM. Nanoparticles: emerging carriers for drug delivery. Saudi Pharm J. 2011;19(3):129–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. ElShagea HN, ElKasabgy NA, Fahmy RH, Basalious EB. Freeze-dried self-nanoemulsifying self-nanosuspension (SNESNS): a new approach for the preparation of a highly drug-loaded dosage form. AAPS PharmSciTech. 2019;20(7):1–14.

    Article  CAS  Google Scholar 

  49. Friedrich R, Bastos M, Fontana M, Ourique A, Beck R. Tablets containing drug-loaded polymeric nanocapsules: an innovative platform. J Nanosci Nanotechnol. 2010;10(9):5885–8.

    Article  CAS  PubMed  Google Scholar 

  50. Wang K, Liu T, Lin R, Liu B, Yang G, Bu X, et al. Preparation and in vitro release of buccal tablets of naringenin-loaded MPEG-PCL nanoparticles. RSC Adv. 2014;4(64):33672–9.

    Article  CAS  Google Scholar 

  51. Fan H, Zhang P, Zhou L, Mo F, Jin Z, Ma J, et al. Naringin-loaded polymeric micelles as buccal tablets: formulation, characterization, in vitro release, cytotoxicity and histopathology studies. Pharm Dev Technol. 2020;25(5):1–31.

    Article  CAS  Google Scholar 

  52. Kalasz H, Antal I. Drug excipients. Curr Med Chem. 2006;13(21):2535–63.

    Article  CAS  PubMed  Google Scholar 

  53. Rowe RC, Sheskey P, Quinn M. Handbook of pharmaceutical excipients: Libros Digitales-Pharmaceutical Press. 2009.

  54. Schlack H, Bauer-Brandl A, Schubert R, Becker D. Properties of Fujicalin®, A new modified anhydrous dibasic calcium phosphate for direct compression: comparison with dicalcium phosphate dihydrate. Drug Dev Ind Pharm. 2001;27(8):789–801.

    Article  CAS  PubMed  Google Scholar 

  55. Brüsewitz C, Schendler A, Funke A, Wagner T, Lipp R. Novel poloxamer-based nanoemulsions to enhance the intestinal absorption of active compounds. Int J Pharm. 2007;329(1-2):173–81.

    Article  PubMed  CAS  Google Scholar 

  56. Chen L, Sha X, Jiang X, Chen Y, Ren Q, Fang X. Pluronic P105/F127 mixed micelles for the delivery of docetaxel against Taxol-resistant non-small cell lung cancer: optimization and in vitro, in vivo evaluation. Int J Nanomedicine. 2013;8:73.

    PubMed  PubMed Central  Google Scholar 

  57. Varma MV, Panchagnula R. Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci. 2005;25(4-5):445–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Gangwal Chemicals Pvt. Ltd. (Mumbai, INDIA) for providing Fujicalin SG® as a gift sample for this work.

Funding

The work elaborated in the study was funded by SERB-DST, Govt. of India research grant #YSS/2014/000551 and DST-INSPIRE, fellowship to K.S.I. [#IF160659].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anupama Mittal.

Ethics declarations

Conflict of interest

The authors (DC and AM) are the founding directors of Nanobrid Innovations Private Limited that is involved in the development of nanotechnology-based products. They have business and/or financial interest in the operations of the company. The same could be disclosed on request. The authors declare that they have no conflict of interest pertaining to the work outlined in this study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Italiya, K.S., Singh, A.K., Chitkara, D. et al. Nanoparticulate tablet dosage form of lisofylline-linoleic acid conjugate for type 1 diabetes: in situ single-pass intestinal perfusion (SPIP) studies and pharmacokinetics in rat. AAPS PharmSciTech 22, 114 (2021). https://doi.org/10.1208/s12249-021-01980-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-021-01980-5

KEY WORDS

Navigation