Skip to main content
Log in

MPEG-PCL Copolymeric Micelles for Encapsulation of Azithromycin

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Macrolide antibiotics are lipophilic drugs with some limitations including low solubility, limited cellular permeation, patients discomfort, etc. With amphiphilic methoxy poly(ethylene glycol)-b-poly(ε-caprolactone) (MPEG-PCL) copolymer and azithromycin (AZT) as drug carrier and model drug, AZT-loaded micelles were prepared via thin-membrane hydration method in order to overcome these limitations. Encapsulation efficiency of AZT-loaded micelles was 94.40% with good storage stability for 28 days, and AZT’s water solubility was enhanced to 944 μg/mL. Fourier transform infrared spectrum and x-ray diffraction analysis indicated that AZT was enveloped into the micelles in amorphous form due to its interaction with the copolymer. AZT’s in vitro release from the AZT-loaded micelles demonstrated a slow and continuous behavior when compared with raw AZT. The release dynamics was accorded with Weibull equation, meaning that release amount of AZT lowered with time and was proportional to remaining amount of drug in the AZT-loaded micelles. Korsmeyer-Peppas fitting result suggested that drug release process was a classical Fickian diffusion-controlled manner. With Staphylococcus aureus as bacterial strain, antibacterial activity of the AZT-loaded micelles displayed was comparable with raw AZT. In conclusion, MPEG-PCL should be a promising carrier for macrolide antibiotic delivery in treatment of bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bradbury F. Comparison of azithromycin versus clarithromycin in the treatment of patients with lower respiratory tract infection. J Antimicrob Chemother. 1993;31(suppl_E):153–62.

    Article  PubMed  Google Scholar 

  2. Fernandez-Obregon AC. Azithromycin for the treatment of acne. Int J Dermatol. 2000;39(1):45–50.

    Article  PubMed  CAS  Google Scholar 

  3. Kalhapure RS, Suleman N, Mocktar C, Seedat N, Govender T. Nanoengineered drug delivery systems for enhancing antibiotic therapy. J Pharm Sci. 2015;104(3):872–905.

    Article  PubMed  CAS  Google Scholar 

  4. Azhdarzadeh M, Lotfipour F, Zakeri-Milani P, Mohammadi G, Valizadeh H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv Pharm Bull. 2012;2(1):17–24.

    PubMed  PubMed Central  Google Scholar 

  5. Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M, et al. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B Biointerfaces. 2010;80(1):34–9.

    Article  PubMed  CAS  Google Scholar 

  6. Toti US, Guru BR, Hali M, McPharlin CM, Wykes SM, Panyam J, et al. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials. 2011;32(27):6606–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kwon GS, Kataoka K. Block copolymer micelles as long-circulating drug vehicles. Adv Drug Del Rev. 2012;64(2–3):237–45.

    Article  Google Scholar 

  8. Liu L, Venkatraman SS, Yang YY, Guo K, Lu J, He B, et al. Polymeric micelles anchored with TAT for delivery of antibiotics across the blood-brain barrier. Biopolymers. 2010;90(5):617–23.

    Article  CAS  Google Scholar 

  9. Sinha VR, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-epsilon-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278(1):1–23.

    Article  PubMed  CAS  Google Scholar 

  10. Song ZM, Zhu WX, Liu N, Yang FY, Feng RL. Linolenic acid-modified PEG-PCL micelles for curcumin delivery. Int J Pharm. 2014;471(1–2):312–21.

    Article  PubMed  CAS  Google Scholar 

  11. Gou M, Men K, Shi H, Xiang M, Zhang J, Song J, et al. Curcumin-loaded biodegradable polymeric micelles for colon cancer therapy in vitro and in vivo. Nano. 2011;3(4):1558–67.

    CAS  Google Scholar 

  12. Gong C, Deng S, Wu Q, Xiang M, Wei X, Li L, et al. Improving antiangiogenesis and anti-tumor activity of curcumin by biodegradable polymeric micelles. Biomaterials. 2013;34(4):1413–32.

    Article  PubMed  CAS  Google Scholar 

  13. Wang BL, Shen YM, Zhang QW, Li YL, Luo M, Liu Z, et al. Codelivery of curcumin and doxorubicin by MPEG-PCL results in improved efficacy of systemically administered chemotherapy in mice with lung cancer. Int J Nanomedicine. 2013;8:3521–31.

    PubMed  PubMed Central  Google Scholar 

  14. Kheiri Manjili H, Ghasemi P, Malvandi H, Mousavi MS, Attari E, Danafar H. Pharmacokinetics and in vivo delivery of curcumin by copolymeric mPEG-PCL micelles. Eur J Pharm Biopharm. 2017;116:17–30.

    Article  PubMed  CAS  Google Scholar 

  15. Sun CT, Zhou L, Gou ML, Shi S, Li T, Lang JY. Improved antitumor activity and reduced myocardial toxicity of doxorubicin encapsulated in MPEG-PCL nanoparticles. Oncol Rep. 2016;35(6):3600–6.

    Article  PubMed  CAS  Google Scholar 

  16. Soliman GM, Attia MA, Mohamed RA. Poly(ethylene glycol)-block-poly(epsilon-caprolactone) nanomicelles for the solubilization and enhancement of antifungal activity of sertaconazole. Curr Drug Del. 2014;11(6):753–62.

    Article  CAS  Google Scholar 

  17. Song Z, Zhu W, Song J, Wei P, Yang F, Liu N, et al. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (epsilon-caprolactone) copolymer micelles for the delivery of curcumin. Drug Deliv. 2015;22(1):58–68.

    Article  PubMed  CAS  Google Scholar 

  18. Lee H, Zeng F, Dunne M, Allen C. Methoxy poly(ethylene glycol)-block-poly(δ-valerolactone) copolymer micelles for formulation of hydrophobic drugs. Biomacromolecules. 2005;6(6):3119–28.

    Article  PubMed  CAS  Google Scholar 

  19. Gong C, Xie Y, Wu Q, Wang Y, Deng S, Xiong D, et al. Improving anti-tumor activity with polymeric micelles entrapping paclitaxel in pulmonary carcinoma. Nano. 2012;4(19):6004–17.

    CAS  Google Scholar 

  20. Aucamp M, Odendaal R, Liebenberg W, Hamman J. Amorphous azithromycin with improved aqueous solubility and intestinal membrane permeability. Drug Dev Ind Pharm. 2015;41(7):1100–8.

    Article  PubMed  CAS  Google Scholar 

  21. Yadav AK, Mishra P, Jain S, Mishra P, Mishra AK, Agrawal GP. Preparation and characterization of HA–PEG–PCL intelligent core–corona nanoparticles for delivery of doxorubicin. J Drug Target. 2008;16(6):464–78.

    Article  PubMed  CAS  Google Scholar 

  22. Zuo J, Gao Y, Bouchacra N, Löbenberg R. Evaluation of the DDSolver Software Applications. Biomed Res Int. 2014;2014(4):204925.

    PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Sharma R, Walker RB, Pathak K. Evaluation of the kinetics and mechanism of drug release from econazole nitrate nanosponge loaded carbapol hydrogel. Indian J Pharm Edu Res. 2011;45(1):25–31.

    Google Scholar 

  25. Gandhi A, Jana S, Sen KK. In-vitro release of acyclovir loaded Eudragit RLPO® nanoparticles for sustained drug delivery. Int J Biol Macromol. 2014;67(Supplement C):478–82.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

This work is supported by the Natural Science Foundation of Shandong Province under grant number ZR2016BL15, and Science and Technology Project of University of Jinan under grant number XKY1732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runliang Feng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, W., Li, S., Xu, H. et al. MPEG-PCL Copolymeric Micelles for Encapsulation of Azithromycin. AAPS PharmSciTech 19, 2041–2047 (2018). https://doi.org/10.1208/s12249-018-1009-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-1009-0

KEY WORDS

Navigation