Skip to main content

Advertisement

Log in

Design of Micelle Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock Copolymers for the Encapsulation of Amphotericin B

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The clinical application of amphotericin B (AmB), a broad spectrum antifungal agent, is limited by its poor solubility in aqueous medium and also by its proven renal toxicity. In this work, AmB was encapsulated in micelles obtained from the self-assembly of PDMAEMA-b-PCL-b-PDMAEMA triblock copolymers. The amount of encapsulated AmB depended on the copolymer composition, and short blocks of polycaprolactone (PCL) and poly(2-dimethylaminoethyl methacrylate) (PDMAEMA) showed better performance. All the studied formulations exhibited a controlled release of AmB along 150 h. The formulations presented reduced hemotoxicity while maintaining antifungal activities against Candida albicans, Candida krusei, and Candida glabrata comparable with free AmB. A reduction on the hemotoxicity was found to be due to the slow release and subsequent low aggregation achieved with the use of polymer micelle nanocontainers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gallis HA, Drew RH, Pickard WW. Amphotericin B: 30 years of clinical experience. Rev Infect Dis. 1990;12:308–29.

    Article  CAS  PubMed  Google Scholar 

  2. Hamill R. Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs. 2013;73:919–34.

    Article  CAS  PubMed  Google Scholar 

  3. Groll A, Walsh T. Uncommon opportunistic fungi: new nosocomial threats. Clin Microbiol Infect. 2001;7:8–24.

    Article  CAS  PubMed  Google Scholar 

  4. Deray G. Amphotericin B, nephrotoxicity. J Antimicrob Chemother. 2002;49:37–41.

    Article  CAS  PubMed  Google Scholar 

  5. Legrand P, Romero EA, Cohen BE, Bolard J. Effects of aggregation and solvent on the toxicity of amphotericin B to human erythrocytes. Antimicrob Agents Chemother. 1992;36:2518–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ringdén O, Meunier F, Tollemar J, Ricci P, Tura S, Kuse E, et al. Efficacy of amphotericin B encapsulated in liposomes (AmBisome) in the treatment of invasive fungal infections in immunocompromised patients. J Antimicrob Chemother. 1991;28:73–82.

    Article  PubMed  Google Scholar 

  7. Walsh TJ, Finberg RW, Arndt C, Hiemenz J, Schwartz C, Bodensteiner D, et al. Liposomal amphotericin B for empirical therapy in patients with persistent fever and neutropenia. N Engl J Med. 1999;340:764–71.

    Article  CAS  PubMed  Google Scholar 

  8. Alexandridis P, Lindman B. Amphiphilic block copolymers: self-assembly and applications. Amsterdam: Elsevier; 2000.

    Google Scholar 

  9. Torchilin VP. Structure and design of polymeric surfactant-based drug delivery systems. J Control Release. 2001;73:137–72.

    Article  CAS  PubMed  Google Scholar 

  10. Loh XJ, Wu Y-L, Joseph Seow WT, Irzuan Norimzan MN, Zhang Z-X, Xu F-J, et al. Micellization and phase transition behavior of thermosensitive poly (N-isopropylacrylamide)–poly (ɛ-caprolactone)–poly (N-isopropylacrylamide) triblock copolymers. Polymer. 2008;49:5084–94.

    Article  CAS  Google Scholar 

  11. Cabral H, Kataoka K. Progress of drug-loaded polymeric micelles into clinical studies. J Control Release. 2014;190:465–76.

    Article  CAS  PubMed  Google Scholar 

  12. Pippa N, Mariaki M, Pispas S, Demetzos C. Preparation, development and in vitro release evaluation of amphotericin B-loaded amphiphilic block copolymer vectors. Int J Pharm. 2014;473:80–6.

    Article  CAS  PubMed  Google Scholar 

  13. Yoon H-J, Jang W-D. Polymeric supramolecular systems for drug delivery. J Mater Chem. 2010;20:211–22.

    Article  CAS  Google Scholar 

  14. Falamarzian A, Lavasanifar A. Chemical modification of hydrophobic block in poly(ethylene oxide) poly(caprolactone) based nanocarriers: effect on the solubilization and hemolytic activity of amphotericin B. Macromol Biosci. 2010;10:648–56.

    Article  CAS  PubMed  Google Scholar 

  15. Adams ML, Andes DR, Kwon GS. Amphotericin B encapsulated in micelles based on poly(ethylene oxide)-block-poly(L-amino acid) derivatives exerts reduced in vitro hemolysis but maintains potent in vivo antifungal activity. Biomacromolecules. 2003;4:750–7.

    Article  CAS  PubMed  Google Scholar 

  16. Yang ZL, Yang KW, Li XR, Liu Y. Preparation and in vitro release kinetics of amphotericin B-loaded poly (ethyleneglycol)-poly (dl-lactide) block copolymer micelles. Chin Pharm J. 2007;42:519–23.

    CAS  Google Scholar 

  17. Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block–poly(N-hexyl-l-aspartamide)-acyl conjugate micelles: effects of acyl chain length. J Control Release. 2003;87:23–32.

    Article  CAS  PubMed  Google Scholar 

  18. Sinha V, Bansal K, Kaushik R, Kumria R, Trehan A. Poly-ϵ-caprolactone microspheres and nanospheres: an overview. Int J Pharm. 2004;278:1–23.

    Article  CAS  PubMed  Google Scholar 

  19. Nair LS, Laurencin CT. Biodegradable polymers as biomaterials. Prog Polym Sci. 2007;32:762–98.

    Article  CAS  Google Scholar 

  20. Gaucher G, Dufresne M-H, Sant VP, Kang N, Maysinger D, Leroux J-C. Block copolymer micelles: preparation, characterization and application in drug delivery. J Control Release. 2005;109:169–88.

    Article  CAS  PubMed  Google Scholar 

  21. Burt HM, Zhang X, Toleikis P, Embree L, Hunter WL. Development of copolymers of poly (D, L-lactide) and methoxypolyethylene glycol as micellar carriers of paclitaxel. Colloids Surf B: Biointerfaces. 1999;16:161–71.

    Article  CAS  Google Scholar 

  22. Shuai X, Ai H, Nasongkla N, Kim S, Gao J. Micellar carriers based on block copolymers of poly (ε-caprolactone) and poly (ethylene glycol) for doxorubicin delivery. J Control Release. 2004;98:415–26.

    Article  CAS  PubMed  Google Scholar 

  23. Aliabadi HM, Elhasi S, Mahmud A, Gulamhusein R, Mahdipoor P, Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm. 2007;329:158–65.

    Article  CAS  PubMed  Google Scholar 

  24. Xu F, Neoh K, Kang E. Bioactive surfaces and biomaterials via atom transfer radical polymerization. Prog Polym Sci. 2009;34:719–61.

    Article  CAS  Google Scholar 

  25. Qian X, Long L, Shi Z, Liu C, Qiu M, Sheng J, et al. Star-branched amphiphilic PLA-b-PDMAEMA copolymers for co-delivery of miR-21 inhibitor and doxorubicin to treat glioma. Biomaterials. 2014;35:2322–35.

    Article  CAS  PubMed  Google Scholar 

  26. Lee AS, Gast AP, Bütün V, Armes SP. Characterizing the structure of pH dependent polyelectrolyte block copolymer micelles. Macromolecules. 1999;32:4302–10.

    Article  CAS  Google Scholar 

  27. Baines F, Billingham N, Armes S. Synthesis and solution properties of water-soluble hydrophilic-hydrophobic block copolymers. Macromolecules. 1996;29:3416–20.

    Article  CAS  Google Scholar 

  28. Liu S, Weaver JV, Tang Y, Billingham NC, Armes SP, Tribe K. Synthesis of shell cross-linked micelles with pH-responsive cores using ABC triblock copolymers. Macromolecules. 2002;35:6121–31.

    Article  CAS  Google Scholar 

  29. Zhang W, He J, Liu Z, Ni P, Zhu X. Biocompatible and pH-responsive triblock copolymer mPEG-b-PCL-b-PDMAEMA: synthesis, self-assembly, and application. J Polym Sci A Polym Chem. 2010;48:1079–91.

    Article  CAS  Google Scholar 

  30. Lavasanifar A, Samuel J, Kwon GS. Poly(ethylene oxide)-block-poly(l-amino acid) micelles for drug delivery. Adv Drug Deliv Rev. 2002;54:169–90.

    Article  CAS  PubMed  Google Scholar 

  31. Lebouille JJL, Vleugels LW, Dias A, Leermakers FM, Cohen Stuart M, Tuinier R. Controlled block copolymer micelle formation for encapsulation of hydrophobic ingredients. Eur Phys J E. 2013;36:1–12.

    Article  Google Scholar 

  32. McLaughlin CK, Logie J, Shoichet MS. Core and corona modifications for the design of polymeric micelle drug-delivery systems. Isr J Chem. 2013;53:670–9.

    CAS  Google Scholar 

  33. Diaz I, Perez L. Synthesis and micellization properties of triblock copolymers PDMAEMA-b-PCL-b-PDMAEMA and their applications in the fabrication of amphotericin B-loaded nanocontainers. Colloid Polym Sci. 2014;1–11.

  34. Maiti S, Chatterji PR, Nisha C, Manorama S, Aswal VK, Goyal PS. Aggregation and polymerization of PEG-based macromonomers with methacryloyl group as the only hydrophobic segment. J Colloid Interface Sci. 2001;240:630–5.

    Article  CAS  PubMed  Google Scholar 

  35. Shim WS, Kim SW, Choi EK, Park HJ, Kim JS, Lee DS. Novel pH sensitive block copolymer micelles for solvent free drug loading. Macromol Biosci. 2006;6:179–86.

    Article  CAS  PubMed  Google Scholar 

  36. Rao JP, Geckeler KE. Polymer nanoparticles: preparation techniques and size-control parameters. Prog Polym Sci. 2011;36:887–913.

    Article  CAS  Google Scholar 

  37. Wang C-H, Wang W-T, Hsiue G-H. Development of polyion complex micelles for encapsulating and delivering amphotericin B. Biomaterials. 2009;30:3352–8.

    Article  CAS  PubMed  Google Scholar 

  38. Lavasanifar A, Samuel J, Sattari S, Kwon GS. Block copolymer micelles for the encapsulation and delivery of amphotericin B. Pharm Res. 2002;19:418–22.

    Article  CAS  PubMed  Google Scholar 

  39. Rojas J, García A, López A. Evaluación de dos metodologías para determinar la actividad antimicrobiana de plantas medicinales. Bol Latinoam Caribe Plant Med Aromat. 2005;4:28–32.

    Google Scholar 

  40. Luján MC, Pérez Corral C. Cribado para evaluar actividad antibacteriana y antimicótica en plantas utilizadas en medicina popular de Argentina. Rev Cuba Farm 2008;42

  41. Fittler A, Kocsis B, Gerlinger I, Botz L. Optimization of bioassay method for the quantitative microbiological determination of amphotericin B. Mycoses. 2010;53:57–61.

    Article  CAS  PubMed  Google Scholar 

  42. Allen C, Maysinger D, Eisenberg A. Nano-engineering block copolymer aggregates for drug delivery. Colloids Surf B: Biointerfaces. 1999;16:3–27.

    Article  CAS  Google Scholar 

  43. Shim YH, Lee HJ, Dubois P, Chung CW, Jeong YI. Amphotericin B aggregation inhibition with novel nanoparticles prepared with poly (ε-caprolactone)/poly (N, N-dimethylamino-2-ethyl methacrylate) diblock copolymer. J Microbiol Biotechnol. 2011;21:28–36.

    Article  CAS  PubMed  Google Scholar 

  44. Mok MM, Thiagarajan R, Flores M, Morse DC, Lodge TP. Apparent critical micelle concentrations in block copolymer/ionic liquid solutions: remarkably weak dependence on solvophobic block molecular weight. Macromolecules. 2012;45:4818–29.

    Article  CAS  Google Scholar 

  45. Stoodley R, Wasan KM, Bizzotto D. Fluorescence of amphotericin B-deoxycholate (Fungizone) monomers and aggregates and the effect of heat-treatment. Langmuir. 2007;23:8718–25.

    Article  CAS  PubMed  Google Scholar 

  46. Barwicz J, Gruszecki WI, Gruda I. Spontaneous organization of amphotericin B in aqueous medium. J Colloid Interface Sci. 1993;158:71–6.

    Article  CAS  Google Scholar 

  47. Jain JP, Kumar N. Development of amphotericin B loaded polymersomes based on (PEG)3-PLA co-polymers: factors affecting size and in vitro evaluation. Eur J Pharm Sci. 2010;40:456–65.

    Article  CAS  PubMed  Google Scholar 

  48. Ahmad Z, Shah A, Siddiq M, Kraatz H-B. Polymeric micelles as drug delivery vehicles. RSC Adv. 2014;4:17028–38.

    Article  CAS  Google Scholar 

  49. Yu BG, Okano T, Kataoka K, Sardari S, Kwon GS. In vitro dissociation of antifungal efficacy and toxicity for amphotericin B-loaded poly(ethylene oxide)-block-poly(β-benzyl-L-aspartate) micelles. J Control Release. 1998;56:285–91.

    Article  CAS  PubMed  Google Scholar 

  50. Pujol I, Pastor FJ, dos Santos Lazéra M, Artigas JG. Evaluation of the Neo-Sensitabs® diffusion method for determining the antifungal susceptibilities of Cryptococcus gattii isolates, using three different agar media. Rev Iberoam Micol. 2008;25:215–20.

    Article  PubMed  Google Scholar 

  51. Ruiz HK, Serrano DR, Dea-Ayuela MA, Bilbao-Ramos PE, Bolás-Fernández F, Torrado JJ, et al. New amphotericin B-gamma cyclodextrin formulation for topical use with synergistic activity against diverse fungal species and Leishmania spp. Int J Pharm. 2014;473:148–57.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGEMENTS

The authors thank to the Pontificia Universidad Javeriana for the financial support throught the grant number 5620.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leon D. Perez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Diaz, I.L., Parra, C., Linarez, M. et al. Design of Micelle Nanocontainers Based on PDMAEMA-b-PCL-b-PDMAEMA Triblock Copolymers for the Encapsulation of Amphotericin B. AAPS PharmSciTech 16, 1069–1078 (2015). https://doi.org/10.1208/s12249-015-0298-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-015-0298-9

KEY WORDS

Navigation