Skip to main content
Log in

Azithromycin-loaded linolenic acid-modified methoxy poly(ethylene glycol) micelles for bacterial infection treatment

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

In the study, new polymeric micelles loaded with azithromycin were prepared to enhance azithromycin’s solubility and evaluate its in vitro/in vivo antibacterial activity against Staphylococcus aureus. Amphiphilic α-Linolenic acid-methoxy poly (ethylene glycol) polymer (MPEG-LNA) was synthesized through DCC-DMAP esterification procedure. Through thin-film hydration method, optimized azithromycin-loaded micelles (AZI-M) were prepared with 87.15% of encapsulation efficiency and 11.07% of drug loading capacity when the ratio of LNA to MPEG was 4. Azithromycin’s water-solubility was obviously enhanced due to its loading into the polymeric micelles. The azithromycin-loaded micelles were characterized in terms of x-ray diffraction, Fourier transform infrared spectroscopy, in vitro release, and in vitro/in vivo antibacterial experiments. Although the drug-loaded micelles provided a slow and continuous azithromycin’s release in comparison with free azithromycin, in vitro antibacterial activity results confirmed that its effect on the inhibition of bacterial growth and biofilm formation was similar to free azithromycin. It is more interesting that the azithromycin-loaded micelles achieved good in vivo antibacterial therapeutic effect like QiXian® (azithromycin lactobionate injection) in mouse model of intraperitoneal infection. AZI-M can be considered as a potential candidate for in vivo antibiotic therapy of Staphylococcus aureus infections.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tong SY, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–61. https://doi.org/10.1128/CMR.00134-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zuckerman JM, Qamar F, Bono BR (2011) Review of macrolides (azithromycin, clarithromycin), ketolids (telithromycin) and glycylcyclines (tigecycline). Med Clin North Am 95 (4):761–791, viii. https://doi.org/10.1016/j.mcna.2011.03.012.

  3. Adeli E. A comparative evaluation between utilizing SAS supercritical fluid technique and solvent evaporation method in preparation of azithromycin solid dispersions for dissolution rate enhancement. J Supercrit Fluids. 2014;87:9–21. https://doi.org/10.1016/j.supflu.2013.12.020.

    Article  CAS  Google Scholar 

  4. Azhdarzadeh M, Lotfipour F, Zakeri-Milani P, Mohammadi G, Valizadeh H. Anti-bacterial performance of azithromycin nanoparticles as colloidal drug delivery system against different gram-negative and gram-positive bacteria. Adv Pharm Bull. 2012;2(1):17–24. https://doi.org/10.5681/apb.2012.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhang D, Tan T, Gao L, Zhao W, Wang P. Preparation of azithromycin nanosuspensions by high pressure homogenization and its physicochemical characteristics studies. Drug Dev Ind Pharm. 2007;33(5):569–75. https://doi.org/10.1080/03639040600975147.

    Article  CAS  PubMed  Google Scholar 

  6. Adibkia K, Khorasani G, Payab S, Lotfipour F. Anti pneumococcal activity of azithromycin-eudragit RS100 nano-formulations. Adv Pharm Bull. 2016;6(3):455–9. https://doi.org/10.15171/apb.2016.059.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wang JS, Zhu JB, Lu RQ, Shen W. Preparation of lung targeting azithromycin liposomes and its tissue distribution in mice. Yao Xue Xue Bao. 2005;40(3):274–8.

    CAS  PubMed  Google Scholar 

  8. Ren T, Lin X, Zhang Q, You D, Liu X, Tao X, Gou J, Zhang Y, Yin T, He H, Tang X. Encapsulation of azithromycin ion pair in liposome for enhancing ocular delivery and therapeutic efficacy on dry eye. Mol Pharm. 2018;15(11):4862–71. https://doi.org/10.1021/acs.molpharmaceut.8b00516.

    Article  CAS  PubMed  Google Scholar 

  9. Venkatesh MP, Kumar TM, Avinash BS, Kumar GS. Development, in vitro and in vivo evaluation of novel injectable smart gels of azithromycin for chronic periodontitis. Curr Drug Deliv. 2013;10(2):188–97. https://doi.org/10.2174/1567201811310020005.

    Article  CAS  PubMed  Google Scholar 

  10. Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance. Adv Drug Del Rev. 2012;64(1):37–48. https://doi.org/10.1016/j.addr.2012.09.013.

    Article  Google Scholar 

  11. Teng F, Deng P, Song Z, Zhou F, Feng R, Liu N. In vitro characterization of pH-sensitive azithromycin-loaded methoxy poly (ethylene glycol)-block-poly (aspartic acid-graft-imidazole) micelles. J Colloid Interface Sci. 2017;496:16–25. https://doi.org/10.1016/j.jcis.2017.02.011.

    Article  CAS  PubMed  Google Scholar 

  12. Wei W, Li S, Xu H, Zhou F, Wen Y, Song Z, Feng S, Feng R. MPEG-PCL copolymeric micelles for encapsulation of azithromycin. AAPS PharmSciTech. 2018;19(5):2041–7. https://doi.org/10.1208/s12249-018-1009-0.

    Article  CAS  PubMed  Google Scholar 

  13. Zhu K, Xiangzhou L, Shilin Y. Preparation, characterization, and properties of polylactide (PLA)–poly (ethylene glycol)(PEG) copolymers: a potential drug carrier. J Appl Polym Sci. 1990;39(1):1–9. https://doi.org/10.1002/app.1990.070390101.

    Article  CAS  Google Scholar 

  14. Li W, Zhan P, De Clercq E, Lou H, Liu X. Current drug research on PEGylation with small molecular agents. Prog Polym Sci. 2013;38(3–4):421–44. https://doi.org/10.1016/j.progpolymsci.2012.07.006.

    Article  CAS  Google Scholar 

  15. Zhang P, Li J, Ghazwani M, Zhao W, Huang Y, Zhang X, Venkataramanan R, Li S. Effective co-delivery of doxorubicin and dasatinib using a PEG-Fmoc nanocarrier for combination cancer chemotherapy. Biomaterials. 2015;67:104–14. https://doi.org/10.1016/j.biomaterials.2015.07.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao M, Huang Y, Chen Y, Xu J, Li S, Guo X. PEG-Fmoc-ibuprofen conjugate as a dual functional nanomicellar carrier for paclitaxel. Bioconjug Chem. 2016;27(9):2198–205. https://doi.org/10.1021/acs.bioconjchem.6b00415.

    Article  CAS  PubMed  Google Scholar 

  17. Priyam A, Shivhare K, Yadav S, Sharma AK, Kumar P. Enhanced solubility and self-assembly of amphiphilic sulfasalazine-PEG-OMe (S-PEG) conjugate into core-shell nanostructures useful for colonic drug delivery. Colloids Surf A Physicochem Eng Aspects. 2018;547:157–67. https://doi.org/10.1016/j.colsurfa.2018.03.048.

    Article  CAS  Google Scholar 

  18. Jung SW, Lee SW. The antibacterial effect of fatty acids on Helicobacter pylori infection. Korean J Intern Med. 2016;31(1):30–5. https://doi.org/10.3904/kjim.2016.31.1.30.

    Article  PubMed  Google Scholar 

  19. Lee JY, Kim YS, Shin DH. Antimicrobial synergistic effect of linolenic acid and monoglyceride against Bacillus cereus and Staphylococcus aureus. J Agric Food Chem. 2002;50(7):2193–9. https://doi.org/10.1021/jf011175a.

    Article  CAS  PubMed  Google Scholar 

  20. Sado-Kamdem SL, Vannini L, Guerzoni ME. Effect of alpha-linolenic, capric and lauric acid on the fatty acid biosynthesis in Staphylococcus aureus. Int J Food Microbiol. 2009;129(3):288–94. https://doi.org/10.1016/j.ijfoodmicro.2008.12.010.

    Article  CAS  PubMed  Google Scholar 

  21. Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005;579(23):5157–62. https://doi.org/10.1016/j.febslet.2005.08.028.

    Article  CAS  PubMed  Google Scholar 

  22. Desbois AP, Smith VJ. Antibacterial free fatty acids: activities, mechanisms of action and biotechnological potential. Appl Microbiol Biotechnol. 2010;85(6):1629–42. https://doi.org/10.1007/s00253-009-2355-3.

    Article  CAS  PubMed  Google Scholar 

  23. Song Z, Zhu W, Song J, Wei P, Yang F, Liu N, Feng R. Linear-dendrimer type methoxy-poly (ethylene glycol)-b-poly (epsilon-caprolactone) copolymer micelles for the delivery of curcumin. Drug Deliv. 2015;22(1):58–68. https://doi.org/10.3109/10717544.2014.901436.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JH, Oh YT, Lee KS, Yun JM, Park BT, Oh KT. Development of a pH-sensitive polymer using poly(aspartic acid-graft-imidazole)-block-poly(ethylene glycol) for acidic pH targeting systems. Macromol Res. 2011;19(5):453–60. https://doi.org/10.1007/s13233-011-0502-z.

    Article  CAS  Google Scholar 

  25. Lee ES, Shin HJ, Na K, Bae YH. Poly(l-histidine)–PEG block copolymer micelles and pH-induced destabilization. J Controlled Release. 2003;90(3):363–74. https://doi.org/10.1016/s0168-3659(03)00205-0.

    Article  CAS  Google Scholar 

  26. Gui Z, Wang H, Ding T, Zhu W, Zhuang X, Chu W. Azithromycin reduces the production of alpha-hemolysin and biofilm formation in Staphylococcus aureus. Indian J Microbiol. 2014;54(1):114–7. https://doi.org/10.1007/s12088-013-0438-4.

    Article  CAS  PubMed  Google Scholar 

  27. Girard AE, Girard D, English AR, Gootz TD, Cimochowski CR, Faiella JA, Haskell SL, Retsema JA. Pharmacokinetic and in vivo studies with azithromycin (CP-62,993), a new macrolide with an extended half-life and excellent tissue distribution. Antimicrob Agents Chemother. 1987;31(12):1948–54. https://doi.org/10.1128/aac.31.12.1948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Liu X, Li Z, Wang X, Chen Y, Wu F, Men K, Xu T, Luo Y, Yang L. Novel antimicrobial peptide-modified azithromycin-loaded liposomes against methicillin-resistant Staphylococcus aureus. Int J Nanomedicine. 2016;11:6781–94. https://doi.org/10.2147/IJN.S107107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Omolo CA, Kalhapure RS, Jadhav M, Rambharose S, Mocktar C, Ndesendo VM, Govender T. Pegylated oleic acid: a promising amphiphilic polymer for nano-antibiotic delivery. Eur J Pharm Biopharm. 2017;112:96–108. https://doi.org/10.1016/j.ejpb.2016.11.022.

    Article  CAS  PubMed  Google Scholar 

  30. Chen W, Meng F, Cheng R, Zhong Z. pH-sensitive degradable polymersomes for triggered release of anticancer drugs: a comparative study with micelles. J Control Release. 2010;142(1):40–6. https://doi.org/10.1016/j.jconrel.2009.09.023.

    Article  CAS  PubMed  Google Scholar 

  31. Gandhi R, Pillai O, Thilagavathi R, Gopalakrishnan B, Kaul CL, Panchagnula R. Characterization of azithromycin hydrates. Eur J Pharm Sci. 2002;16(3):175–84. https://doi.org/10.1016/S0928-0987(02)00087-8.

    Article  CAS  PubMed  Google Scholar 

  32. Mohammadi G, Valizadeh H, Barzegar-Jalali M, Lotfipour F, Adibkia K, Milani M, Azhdarzadeh M, Kiafar F, Nokhodchi A. Development of azithromycin-PLGA nanoparticles: physicochemical characterization and antibacterial effect against Salmonella typhi. Colloids Surf B Biointerfaces. 2010;80(1):34–9. https://doi.org/10.1016/j.colsurfb.2010.05.027.

    Article  CAS  PubMed  Google Scholar 

  33. Li X, Peng H, Tian B, Gou J, Yao Q, Tao X, He H, Zhang Y, Tang X, Cai C. Preparation and characterization of azithromycin–Aerosil 200 solid dispersions with enhanced physical stability. Int J Pharm. 2015;486(1–2):175–84. https://doi.org/10.1016/j.ijpharm.2015.03.029.

    Article  CAS  PubMed  Google Scholar 

  34. Corrigan DO, Healy AM, Corrigan OI. The effect of spray drying solutions of polyethylene glycol (PEG) and lactose/PEG on their physicochemical properties. Int J Pharm. 2002;235(1–2):193–205. https://doi.org/10.1016/s0378-5173(01)00990-5.

    Article  CAS  PubMed  Google Scholar 

  35. Popat A, Liu J, Lu GQ, Qiao SZ. A pH-responsive drug delivery system based on chitosan coated mesoporous silica nanoparticles. J Mater Chem. 2012;22(22):11173. https://doi.org/10.1039/c2jm30501a.

    Article  CAS  Google Scholar 

  36. Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, Xie S. DDSolver: an add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71. https://doi.org/10.1208/s12248-010-9185-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dey S, Majhi A, Mahanti S, Dey I, Bishayi B. In vitro anti-inflammatory and immunomodulatory effects of ciprofloxacin or azithromycin in Staphylococcus aureus-stimulated Murine Macrophages are beneficial in the presence of cytochalasin D. Inflammation. 2015;38(3):1050–69. https://doi.org/10.1007/s10753-014-0070-4.

    Article  CAS  PubMed  Google Scholar 

  38. Dos Santos C, Vargas A, Fronza N, Dos Santos JHZ. Structural, textural and morphological characteristics of tannins from Acacia mearnsii encapsulated using sol-gel methods: applications as antimicrobial agents. Colloids Surf B Biointerfaces. 2017;151:26–33. https://doi.org/10.1016/j.colsurfb.2016.11.041.

    Article  CAS  PubMed  Google Scholar 

  39. Xu ZG, Gao Y, He JG, Xu WF, Jiang M, Jin HS. Effects of azithromycin on Pseudomonas aeruginosa isolates from catheter-associated urinary tract infection. Exp Ther Med. 2015;9(2):569–72. https://doi.org/10.3892/etm.2014.2120.

    Article  CAS  PubMed  Google Scholar 

  40. Sofer D, Gilboa-Garber N, Belz A, Garber NC. ‘Subinhibitory’ erythromycin represses production of Pseudomonas aeruginosa lectins, autoinducer and virulence factors. Chemotherapy. 1999;45(5):335–41. https://doi.org/10.1159/000007224.

    Article  CAS  PubMed  Google Scholar 

  41. Tateda K, Comte R, Pechere JC, Kohler T, Yamaguchi K, Van Delden C. Azithromycin inhibits quorum sensing in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2001;45(6):1930–3. https://doi.org/10.1128/AAC.45.6.1930-1933.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hoffmann N, Lee B, Hentzer M, Rasmussen TB, Song Z, Johansen HK, Givskov M, Hoiby N. Azithromycin blocks quorum sensing and alginate polymer formation and increases the sensitivity to serum and stationary-growth-phase killing of Pseudomonas aeruginosa and attenuates chronic P. aeruginosa lung infection in Cftr(-/-) mice. Antimicrob Agents Chemother. 2007;51(10):3677–87. https://doi.org/10.1128/AAC.01011-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Brunetti J, Falciani C, Bracci L, Pini A. Models of in-vivo bacterial infections for the development of antimicrobial peptide-based drugs. Curr Top Med Chem. 2017;17(5):613–9. https://doi.org/10.2174/1568026616666160713143017.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by Natural Science Foundation of Shandong Province under Grant number ZR2016BL15 and Science and Technology Project of University of Jinan under Grant number XKY1732.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runliang Feng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Research involving human and animal participants

All institutional and national guidelines for the care and use of laboratory animals were followed.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Y., Song, Z., Xu, H. et al. Azithromycin-loaded linolenic acid-modified methoxy poly(ethylene glycol) micelles for bacterial infection treatment. Drug Deliv. and Transl. Res. 12, 550–561 (2022). https://doi.org/10.1007/s13346-021-00953-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-021-00953-2

Keywords

Navigation