Skip to main content

Advertisement

Log in

Biodegradable Ingredient-Based Emulgel Loaded with Ketoprofen Nanoparticles

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Biodegradable materials are extensively employed to design nanocarriers that mimic extracellular environment in arthritis. The aim of this study was to formulate and characterize biocompatible, biodegradable ketoprofen-loaded chitosan-chondroitin sulfate (CHS-CS) nanoparticles with natural ingredients for transdermal applications. Polymers used in the design of nanocarriers are biodegradable and produce synergistic anti-inflammatory effect for the treatment of arthritis. For transdermal application, argan oil-based emulgel is utilized to impart viscosity to the formulation. Furthermore, naturally occurring argan oil synergizes anti-inflammatory effect of formulation and promotes skin penetration. CHS and CS form nanoparticles by polyelectrolyte complex formation or complex coacervation at pH 5.0. These particles were loaded into argan oil-based emulgel. Employing this method, nanoparticles were formulated with particle size in the range of 300–500 nm. These nanocarriers entrapped ketoprofen and showed more than 76% encapsulation efficiency and 77% release of the ketoprofen at pH 7.4 within 72 h. Drug releases from CHS-CS nanoparticles by mechanism of simple diffusion. Nanoparticle-loaded argan oil emulgel significantly enhanced skin penetration of ketoprofen as compared to marketed gel (p < 0.05). Nanocarriers prepared successfully delivered drug through transdermal route using natural ingredients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Van Vollenhoven RF. Treatment of rheumatoid arthritis: state of the art 2009. Nat Rev Rheumatol. 2009;5(10):531–41.

    Article  PubMed  Google Scholar 

  2. Dolati S, Sadreddini S, Rostamzadeh D, Ahmadi M, Jadidi-Niaragh F, Yousefi M. Utilization of nanoparticle technology in rheumatoid arthritis treatment. Biomed Pharmacother. 2016;80:30–41.

    Article  CAS  PubMed  Google Scholar 

  3. Prausnitz MR, Mitragotri S, Langer R. Current status and future potential of transdermal drug delivery. Nat Rev Drug Discov. 2004;3(2):115–24.

    Article  CAS  PubMed  Google Scholar 

  4. Cevc G, Vierl U. Nanotechnology and the transdermal route: a state of the art review and critical appraisal. J Control Release. 2010;141(3):277–99.

    Article  CAS  PubMed  Google Scholar 

  5. Alexander A, Dwivedi S, Giri TK, Saraf S, Saraf S, Tripathi DK. Approaches for breaking the barriers of drug permeation through transdermal drug delivery. J Control Release. 2012;164(1):26–40.

    Article  CAS  PubMed  Google Scholar 

  6. Escobar-Chávez JJ, Revilla-Vázquez AL, Domínguez-Delgado CL, Rodríguez-Cruz IM, Aléncaster NC, Díaz-Torres R. Nanocarrier systems for transdermal drug delivery: INTECH Open Access Publisher; 2012.

  7. Mir M, Ishtiaq S, Rabia S, Khatoon M, Zeb A, Khan GM, et al. Nanotechnology: from in vivo imaging system to controlled drug delivery. Nanoscale Res Lett. 2017;12(1):500.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Katikaneni S. Transdermal delivery of biopharmaceuticals: dream or reality? Ther Deliv. 2015;6(9):1109–16.

    Article  CAS  PubMed  Google Scholar 

  9. Prow TW, Grice JE, Lin LL, Faye R, Butler M, Becker W, et al. Nanoparticles and microparticles for skin drug delivery. Adv Drug Deliv Rev. 2011;63(6):470–91.

    Article  CAS  PubMed  Google Scholar 

  10. Badri W, Eddabra R, Fessi H, Elaissari A. Biodegradable polymer based nanoparticles: dermal and transdermal drug delivery. J Colloid Sci Biotechnol. 2014;3(2):141–9.

    Article  CAS  Google Scholar 

  11. Carmona-Ribeiro AM. Biomimetic nanoparticles: preparation, characterization and biomedical applications. Int J Nanomedicine. 2010;5:249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kumari A, Yadav SK, Yadav SC. Biodegradable polymeric nanoparticles based drug delivery systems. Colloids Surf B: Biointerfaces. 2010;75(1):1–18.

    Article  CAS  PubMed  Google Scholar 

  13. Rinaudo M. Main properties and current applications of some polysaccharides as biomaterials. Polym Int. 2008;57(3):397–430.

    Article  CAS  Google Scholar 

  14. Chaudhary Z, Ahmed N, Ur-Rehman A, Khan GM. Lipid polymer hybrid carrier systems for cancer targeting: a review. International Journal of Polymeric Materials and Polymeric Biomaterials. 2017 (just-accepted).

  15. Hamidi M, Azadi A, Rafiei P. Hydrogel nanoparticles in drug delivery. Adv Drug Deliv Rev. 2008;60(15):1638–49.

    Article  CAS  PubMed  Google Scholar 

  16. Bodnar M, Hartmann JF, Borbely J. Preparation and characterization of chitosan-based nanoparticles. Biomacromolecules. 2005;6(5):2521–7.

    Article  CAS  PubMed  Google Scholar 

  17. Rampino A, Borgogna M, Blasi P, Bellich B, Cesàro A. Chitosan nanoparticles: preparation, size evolution and stability. Int J Pharm. 2013;455(1):219–28.

    Article  CAS  PubMed  Google Scholar 

  18. Piai JF, Rubira AF, Muniz EC. Self-assembly of a swollen chitosan/chondroitin sulfate hydrogel by outward diffusion of the chondroitin sulfate chains. Acta Biomater. 2009;5(7):2601–9.

    Article  CAS  PubMed  Google Scholar 

  19. Hansson A, Di Francesco T, Falson F, Rousselle P, Jordan O, Borchard G. Preparation and evaluation of nanoparticles for directed tissue engineering. Int J Pharm. 2012;439(1):73–80.

    Article  CAS  PubMed  Google Scholar 

  20. Shelke NB, James R, Laurencin CT, Kumbar SG. Polysaccharide biomaterials for drug delivery and regenerative engineering. Polym Adv Technol. 2014;25(5):448–60.

    Article  CAS  Google Scholar 

  21. Malfait A-M, Schnitzer TJ. Towards a mechanism-based approach to pain management in osteoarthritis. Nat Rev Rheumatol. 2013;9(11):654–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Voilley N, de Weille J, Mamet J, Lazdunski M. Nonsteroid anti-inflammatory drugs inhibit both the activity and the inflammation-induced expression of acid-sensing ion channels in nociceptors. J Neurosci. 2001;21(20):8026–33.

    Article  CAS  PubMed  Google Scholar 

  23. Beetge E, du Plessis J, Müller DG, Goosen C, van Rensburg FJ. The influence of the physicochemical characteristics and pharmacokinetic properties of selected NSAID’s on their transdermal absorption. Int J Pharm. 2000;193(2):261–4.

    Article  CAS  PubMed  Google Scholar 

  24. Van Leerdam M, Vreeburg E, Rauws E, Geraedts A, Tijssen J, Reitsma J, et al. Acute upper GI bleeding: did anything change&quest. Am J Gastroenterol. 2003;98(7):1494–9.

    Article  PubMed  Google Scholar 

  25. Yiyun C, Na M, Tongwen X, Rongqiang F, Xueyuan W, Xiaomin W, et al. Transdermal delivery of nonsteroidal anti-inflammatory drugs mediated by polyamidoamine (PAMAM) dendrimers. J Pharm Sci. 2007;96(3):595–602.

    Article  Google Scholar 

  26. Zhang Z, Huang G. Micro- and nano-carrier mediated intra-articular drug delivery systems for the treatment of osteoarthritis. J Nanotechnol. 2012;2012(2012):1–11.

    Article  Google Scholar 

  27. Hadgraft J, du Plessis J, Goosen C. The selection of non-steroidal anti-inflammatory agents for dermal delivery. Int J Pharm. 2000;207(1):31–7.

    Article  CAS  PubMed  Google Scholar 

  28. Bishnoi M, Jain A, Hurkat P, Jain SK. Chondroitin sulphate: a focus on osteoarthritis. Glycoconj J. 2016;33(5):693–705.

    Article  CAS  PubMed  Google Scholar 

  29. Onishi H, Isoda Y, Matsuyama M. In vivo evaluation of chondroitin sulfate-glycyl-prednisolone for anti-arthritic effectiveness and pharmacokinetic characteristics. Int J Pharm. 2013;456(1):113–20.

    Article  CAS  PubMed  Google Scholar 

  30. Schneiders W, Reinstorf A, Ruhnow M, Rehberg S, Heineck J, Hinterseher I, et al. Effect of chondroitin sulphate on material properties and bone remodelling around hydroxyapatite/collagen composites. J Biomed Mater Res A. 2008;85((3):638–45.

    Article  Google Scholar 

  31. Monfort J, Pelletier J-P, Garcia-Giralt N, Martel-Pelletier J. Biochemical basis of the effect of chondroitin sulphate on osteoarthritis articular tissues. Ann Rheum Dis. 2008;67(6):735–40.

    Article  CAS  PubMed  Google Scholar 

  32. Aubry-Rozier B. Role of slow-acting anti-arthritic agents in osteoarthritis (chondroitin sulfate, glucosamine, hyaluronic acid). Rev Med Suisse. 2012;8(332):571–2. 4, 6

    CAS  PubMed  Google Scholar 

  33. Calamia V, Lourido L, Fernández-Puente P, Mateos J, Rocha B, Montell E, et al. Secretome analysis of chondroitin sulfate-treated chondrocytes reveals anti-angiogenic, anti-inflammatory and anti-catabolic properties. Arthritis Res Ther. 2012;14(5):1.

    Article  Google Scholar 

  34. Legendre F, Baugé C, Roche R, Saurel A, Pujol J. Chondroitin sulfate modulation of matrix and inflammatory gene expression in IL-1β-stimulated chondrocytes–study in hypoxic alginate bead cultures. Osteoarthr Cartil. 2008;16(1):105–14.

    Article  CAS  PubMed  Google Scholar 

  35. Chan P-S, Caron JP, Orth MW. Effect of glucosamine and chondroitin sulfate on regulation of gene expression of proteolytic enzymes and their inhibitors in interleukin-1-challenged bovine articular cartilage explants. Am J Vet Res. 2005;66(11):1870–6.

    Article  CAS  PubMed  Google Scholar 

  36. Jomphe C, Gabriac M, Hale TM, Héroux L, Trudeau LÉ, Deblois D, et al. Chondroitin sulfate inhibits the nuclear translocation of nuclear factor-κB in interleukin-1β-stimulated chondrocytes. Basic Clin Pharmacol Toxicol. 2008;102(1):59–65.

    CAS  PubMed  Google Scholar 

  37. Lemarchand C, Gref R, Couvreur P. Polysaccharide-decorated nanoparticles. Eur J Pharm Biopharm. 2004;58(2):327–41.

    Article  CAS  PubMed  Google Scholar 

  38. Liu Z, Jiao Y, Wang Y, Zhou C, Zhang Z. Polysaccharides-based nanoparticles as drug delivery systems. Adv Drug Deliv Rev. 2008;60(15):1650–62.

    Article  CAS  PubMed  Google Scholar 

  39. Suh J-KF, Matthew HW. Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials. 2000;21(24):2589–98.

    Article  CAS  PubMed  Google Scholar 

  40. El Abbassi A, Khalid N, Zbakh H, Ahmad A. Physicochemical characteristics, nutritional properties, and health benefits of argan oil: a review. Crit Rev Food Sci Nutr. 2014;54(11):1401–14.

    Article  PubMed  Google Scholar 

  41. Villareal MO, Kume S, Bourhim T, Bakhtaoui FZ, Kashiwagi K, Han J, et al. Activation of MITF by argan oil leads to the inhibition of the tyrosinase and dopachrome tautomerase expressions in B16 murine melanoma cells. Evid Based Complement Alternat Med. 2013;2013:1–9.

    Article  Google Scholar 

  42. Avsar U, Halici Z, Akpinar E, Yayla M, Harun U, Hasan TA, et al. The effects of argan oil in second-degree burn wound healing in rats. Ostomy Wound Manage. 2016;62(3):26–34.

    PubMed  Google Scholar 

  43. Khallouki F, Younos C, Soulimani R, Oster T, Charrouf Z, Spiegelhalder B, et al. Consumption of argan oil (Morocco) with its unique profile of fatty acids, tocopherols, squalene, sterols and phenolic compounds should confer valuable cancer chemopreventive effects. Eur J Cancer Prev. 2003;12(1):67–75.

    Article  CAS  PubMed  Google Scholar 

  44. Guillaume D, Charrouf Z. Argan oil and other argan products: use in dermocosmetology. Eur J Lipid Sci Technol. 2011;113(4):403–8.

    Article  CAS  Google Scholar 

  45. Jardim KV, Joanitti GA, Azevedo RB, Parize AL. Physico-chemical characterization and cytotoxicity evaluation of curcumin loaded in chitosan/chondroitin sulfate nanoparticles. Mater Sci Eng C. 2015;56:294–304.

    Article  CAS  Google Scholar 

  46. Santo VE, Gomes ME, Mano JF, Reis RL. Chitosan–chondroitin sulphate nanoparticles for controlled delivery of platelet lysates in bone regenerative medicine. J Tissue Eng Regen Med. 2012;6(S3):s47–59.

    Article  PubMed  Google Scholar 

  47. Tsai HY, Chiu CC, Lin PC, Chen SH, Huang SJ, Wang LF. Antitumor efficacy of doxorubicin released from crosslinked nanoparticulate chondroitin sulfate/chitosan polyelectrolyte complexes. Macromol Biosci. 2011;11(5):680–8.

    Article  CAS  PubMed  Google Scholar 

  48. Elkomy MH, Elmenshawe SF, Eid HM, Ali AM. Topical ketoprofen nanogel: artificial neural network optimization, clustered bootstrap validation, and in vivo activity evaluation based on longitudinal dose response modeling. Drug Deliv. 2016:1–13.

  49. Ramasamy T, Tran TH, Cho HJ, Kim JH, Kim YI, Jeon JY, et al. Chitosan-based polyelectrolyte complexes as potential nanoparticulate carriers: physicochemical and biological characterization. Pharm Res. 2014;31(5):1302–14.

    Article  CAS  PubMed  Google Scholar 

  50. Müller M. Sizing, shaping and pharmaceutical applications of polyelectrolyte complex nanoparticles. Polyelectrolyte complexes in the dispersed and solid state II: Springer; 2012. p. 197–260.

    Google Scholar 

  51. Abdullah TA, Ibrahim NJ, Warsi MH. Chondroitin sulfate-chitosan nanoparticles for ocular delivery of bromfenac sodium: improved permeation, retention, and penetration. Int J Pharm Investig. 2016;6(2):96–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. M-k Y, K-m C, C-s H, Y-c H, J-j Y. Novel protein-loaded chondroitin sulfate–chitosan nanoparticles: preparation and characterization. Acta Biomater. 2011;7(10):3804–12.

    Article  Google Scholar 

  53. Van der Gucht J, Spruijt E, Lemmers M, Stuart MAC. Polyelectrolyte complexes: bulk phases and colloidal systems. J Colloid Interface Sci. 2011;361(2):407–22.

    Article  PubMed  Google Scholar 

  54. Maravajhala V, Dasari N, Sepuri A, Joginapalli S. Design and evaluation of niacin microspheres. Indian J Pharm Sci. 2009;71(6):663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Sugita P, Ambarsari L. Optimization of ketoprofen-loaded chitosan nanoparticle ultrasonication process. Procedia Chem. 2015;16:673–80.

    Article  CAS  Google Scholar 

  56. Sugita P, Ambarsari L, Sari Y, Nugraha Y. Ketoprofen encapsulation optimization with chitosan-alginate cross-linked with sodium tripolyphosphate and its release mechanism determination using in vitro dissolution. Int J Res Rev Appl Sci. 2013;14(1):141–9.

    CAS  Google Scholar 

  57. Shah PP, Desai PR, Singh M. Effect of oleic acid modified polymeric bilayered nanoparticles on percutaneous delivery of spantide II and ketoprofen. J Control Release. 2012;158(2):336–45.

    Article  CAS  PubMed  Google Scholar 

  58. Cirri M, Bragagni M, Mennini N, Mura P. Development of a new delivery system consisting in “drug–in cyclodextrin–in nanostructured lipid carriers” for ketoprofen topical delivery. Eur J Pharm Biopharm. 2012;80(1):46–53.

    Article  CAS  PubMed  Google Scholar 

  59. Umerska A, Corrigan OI, Tajber L. Design of chondroitin sulfate-based polyelectrolyte nanoplexes: formation of nanocarriers with chitosan and a case study of salmon calcitonin. Carbohydr Polym. 2017;156:276–84.

    Article  CAS  PubMed  Google Scholar 

  60. Maculotti K, Tira EM, Sonaggere M, Perugini P, Conti B, Modena T, et al. In vitro evaluation of chondroitin sulphate-chitosan microspheres as carrier for the delivery of proteins. J Microencapsul. 2009;26(6):535–43.

    Article  CAS  PubMed  Google Scholar 

  61. Piai JF, Lopes LC, Fajardo AR, Rubira AF, Muniz EC. Kinetic study of chondroitin sulphate release from chondroitin Sulphate/chitosan complex hydrogel. J Mol Liq. 2010;156(1):28–32.

    Article  CAS  Google Scholar 

  62. Charrouf Z, Guillaume D. Argan oil: occurrence, composition and impact on human health. Eur J Lipid Sci Technol. 2008;110(7):632–6.

    Article  CAS  Google Scholar 

  63. He W, Guo X, Xiao L, Feng M. Study on the mechanisms of chitosan and its derivatives used as transdermal penetration enhancers. Int J Pharm. 2009;382(1):234–43.

    Article  CAS  PubMed  Google Scholar 

  64. Gul R, Ahmed N, Shah KU, Khan GM, Rehman A. Functionalised nanostructures for transdermal delivery of drug cargos. J Drug Target. 2018;26(2):110–22.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim.ur. Rehman.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gul, R., Ahmed, N., Ullah, N. et al. Biodegradable Ingredient-Based Emulgel Loaded with Ketoprofen Nanoparticles. AAPS PharmSciTech 19, 1869–1881 (2018). https://doi.org/10.1208/s12249-018-0997-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-018-0997-0

Key words

Navigation