Skip to main content
Log in

Transdermal co-delivery of glucosamine sulfate and diacerein for the induction of chondroprotection in experimental osteoarthritis

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

The aim of this work was to develop a transdermal delivery system consisting of a glucosamine sulfate–laden xanthan hydrogel containing a nanoemulsion-loaded diacerein. The system was intended to prevent cartilage degradation typical of osteoarthritis. The nanoemulsion, made of soybean oil as the oil phase; soybean lecithin, Tween 80, and poloxamer 407 as surfactants; and propylene glycol as cosurfactant, was formed within the hydrogel. The hydrodynamic diameter of the nanoemulsion globules was 81.95 ± 0.256 nm with 0.285 ± 0.036 of PDI value and the zeta potential value of the formulation was 39.33 ± 0.812 mV. CryoSEM and TEM studies revealed the uniform morphology of the vehicle. A rheological study exposed the nanoemulsion-loaded hydrogel as a thixotropic system. Satisfactory storage stability under ICH conditions was established by the zeta potential and rheological studies. Furthermore, skin biocompatibility of the hydrogel was ascertained on the basis of skin irritation study. Additionally, the diffusion of the drugs across rat skin followed a controlled non-Fickian anomalous steady mechanism. Following in vivo administration in experimental osteoarthritis, the transdermal hydrogel showed a reduction in tumor necrosis factor-alpha, C-reactive protein, high mobility group box protein, and monocyte chemoattractant protein-1. Finally, histopathological analysis of the animals showed satisfactory chondroprotection in the in vivo study. In conclusion, the developed transdermal systems showed a potential against the progression of experimental osteoarthritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, Wijnen AJV, et al. A current review of molecular mechanisms regarding osteoarthritis and pain. Gene. 2013;527:440–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Steinecker-Frohnwieser B, Weigl L, Kullich W, Lohberger B. The disease modifying osteoarthritis drug diacerein is able to antagonize pro inflammatory state of chondrocytes under mild mechanical stimuli. Osteoarthr Cartil. 2014;22:1044–52.

    CAS  PubMed  Google Scholar 

  3. Jain A, Singh SK, Singh Y, Singh S. Development of lipid nanoparticles of diacerein, an antiosteoarthritic drug for enhancement in bioavailability and reduction in its side effects. J Biomed Nanotechnol. 2013;9:891–900.

    CAS  PubMed  Google Scholar 

  4. Jain A, Mishra SK, Vuddanda PR, Singh SK, Singh R, Singh S. Targeting of diacerein loaded lipid nanoparticles to intra-articular cartilage using chondroitin sulfate as homing carrier for treatment of osteoarthritis in rats. Nanomedicine. 2014;10:1031–40.

    CAS  PubMed  Google Scholar 

  5. Reginster JY, Bruyere O, Neuprez A. Current role of glucosamine in the treatment of osteoarthritis. Rheumatology (Oxford). 2007;46:731–5.

    CAS  Google Scholar 

  6. Qu CJ, Karjalainen HM, Helminen HJ, Lammi MJ. The lack of effect of glucosamine sulphate on aggrecan mRNA expression and 35S-sulphate incorporation in bovine primary chondrocytes. Biochim Biophys Acta. 2006;1762:453–9.

    CAS  PubMed  Google Scholar 

  7. Hathcock JN, Shao A. Risk assessment for glucosamine and chondroitin sulfate. Regul Toxicol Pharmacol. 2007;47:78–83.

    CAS  PubMed  Google Scholar 

  8. Sobal G, Menzel J, Sinzinger H. Optimal Te-99m radiolabeling and uptake of glucosamine sulfate by cartilage. A potential tracer for scintigraphic detection of osteoarthritis. Bioconjug Chem. 2009;20:1547–52.

    CAS  PubMed  Google Scholar 

  9. Akarasereenont P, Chatsiricharoenkul S, Pongnarin P. Bioequivalence study of 1,500 mg glucosamine sulfate in Thai healthy volunteers. J Bioequiv Availab. 2012;4(6):91–5.

    CAS  Google Scholar 

  10. Shahine EM, Elhadidi AS. Efficacy of glucosamine sulfate in lowering serum level of interleukin-1b in symptomatic primary knee osteoarthritis: clinical and laboratory study. Alex J Med. 2014;50:159–63.

    Google Scholar 

  11. Nagaoka I, Igarashi M, Hua J, Ju Y, Yomogida S, Sakamoto K. Recent aspects of the anti-inflammatory actions of glucosamine. Carbohydr Polym. 2011;84:825–30.

    CAS  Google Scholar 

  12. Zhu YB, Zou JJ, Xiao DW, Fan HW, Yu CX, Zhang JJ, et al. Bioequivalence of two formulations of glucosamine sulfate 500-mg capsules in healthy male Chinese volunteers: an open-label, randomized-sequence, single-dose, fasting, two-way crossover study. Clin Ther. 2009;31(7):1551–8.

    CAS  PubMed  Google Scholar 

  13. Bartels EM, Bliddaly H, Schøndorff PK, Altmank RD, Zhang W, Christensen R. Symptomatic efficacy and safety of diacerein in the treatment of osteoarthritis: a meta-analysis of randomized placebo-controlled trials. Osteoarthr Cartil. 2010;18:289–96.

    CAS  PubMed  Google Scholar 

  14. Pavelka K, Trč T, Karpaš K, Vítek P, Sedláčková M, Vlasáková V, et al. The efficacy and safety of diacerein in the treatment of painful osteoarthritis of the knee: a randomized, multicenter,double-blind, placebo-controlled study with primary end points at two months after the end of a three-month treatment period. Arthritis Rheumatol. 2007;56:4055–64.

    CAS  Google Scholar 

  15. Kaur D, Kaur J, Kamal SS. Diacerein, its beneficial impact on chondrocytes and notable new clinical applications. Braz J Pharm Sci. 2019;54(4):e17534.

    Google Scholar 

  16. Kong M, Hashim KB, Lin P, Coestesquis G, Xu A, Lebes F, et al. Penetration of topical glucosamine sulfate into the synovial fluid of patients with knee osteoarthritis: a nonrandomized, open-label, single dose, bioavailability study. J Biosci Med. 2019;7(11):76–90.

    CAS  Google Scholar 

  17. Chattopadhyay H, Auddy B, Sur T, Sana S, Datta S. Accentuated transdermal application of glucosamine sulphate attenuates experimental osteoarthritis induced by monosodiumiodoacetate. J Mater Chem B. 2016;4:4470–81.

    CAS  PubMed  Google Scholar 

  18. Aziza DE, Abdelbary AA, Elassasy AI. Fabrication of novel elastosomes for boosting the transdermal delivery of diacerein: statistical optimization, ex-vivo permeation, in-vivo skin deposition and pharmacokinetic assessment compared to oral formulation. Drug Deliv. 2018;25(1):815–26.

    Google Scholar 

  19. Gao Y, Cheng X, Wang Z, Wang J, Gao T, Li P, et al. Transdermal delivery of 10,11-methylenedioxycamptothecin by hyaluronic acid based nanoemulsion for inhibition of keloid fibroblast. Carbohydr Polym. 2014;112:376–86.

    CAS  PubMed  Google Scholar 

  20. Kong M, Park HJ. Stability investigation of hyaluronic acid based nanoemulsion and its potential as transdermal carrier. Carbohydr Polym. 2011;83:1303–10.

    CAS  Google Scholar 

  21. Solans C, Esquena J, Forgiarini A, Morales D, Uśon N, Izquierdo P. Nanoemulsions: formation and properties. In: Shah D, Moudgil B, Mittal KL, editors. Surfactants in solution: fundamentals and applications, Surfactant Science Series. New York: Marcel Dekker; 2002. p. 525–54.

    Google Scholar 

  22. Sznitowska M, Janicki S, Dabrowska E, Zurowska-Pryczkowska K. Submicron emulsions as drug carriers: studies on destabilization potential of various drugs. European J Pharm Sci. 2001;12:175–9.

    CAS  Google Scholar 

  23. Mou D, Chen H, Du D, Mao C, Wan J, Xu H, et al. Hydrogel-thickened nanoemulsion system for topical delivery of lipophilic drugs. Int J Pharm. 2008;353:270–6.

    CAS  PubMed  Google Scholar 

  24. Han G, Wang G, Zhu X, Shao H, Liu F, Yang P, et al. Preparation of xanthan gum injection and its protective effect on articular cartilage in the development of osteoarthritis. Carbohydr Polym. 2012;87:1837–42.

    CAS  Google Scholar 

  25. Yaron M, Shirazi I, Yaron I. Anti-interleukin-1 effects of diacerein and rhein in human osteoarthritic synovial tissue and cartilage cultures. Osteoarthr Cartil. 1999;7:272–80.

    CAS  PubMed  Google Scholar 

  26. Toegel S, Wu SQ, Piana C, Unger FM, Wirth M, Goldring MB, et al. Comparison between chondroprotective effects of glucosamine, curcumin, and diacerein in IL-1beta-stimulated C-28/I2 chondrocytes. Osteoarthr Cartil. 2008;16:1205–12.

    CAS  PubMed  Google Scholar 

  27. Kou L, Xiao S, Sun R, Bao S, Yao Q, Chen R. Biomaterial-engineered intra-articular drug delivery systems for osteoarthritis therapy. Drug Deliv. 2019;26(1):870–85.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Seok SH, Lee SA, Park ES. Formulation of a microemulsion-based hydrogel containing celecoxib. J Drug Deliv Sci Technol. 2018;43:409–14.

    CAS  Google Scholar 

  29. Manosroi A, Jantrawuta P, Manosroi J. Anti-inflammatory activity of gel containing novel elastic niosomes entrapped with diclofenac diethylammonium. Int J Pharm. 2008;360:156–63.

    CAS  PubMed  Google Scholar 

  30. Jana S, Manna S, Nayak AK, Sen KK, Basu SK. Carbopol gel containing chitosan-egg albumin nanoparticles for transdermal aceclofenac delivery. Colloids Surf B Biointerfaces. 2014;114:36–44.

    CAS  PubMed  Google Scholar 

  31. Sreejith KR, Premalatha K. Novel spectrophotometric methods for estimation of diacerein from formulations. IJRPBS. 2011;2:992–9.

    Google Scholar 

  32. Wu Y, Hussain M, Fassihi R. Development of a simple analytical methodology for determination of glucosamine release from modified release matrix tablets. J Pharmaceut Biomed. 2005;38:263–9.

    CAS  Google Scholar 

  33. Ahmed MS, Mamdouh MG, Shadeed GS, Eman AM. Formulation and evaluation of different transdermal drug delivery systems of ketoprofen. Int J Pharm Pharm Sci. 2013;5:600–7.

    Google Scholar 

  34. Patel J, Patel B, Banwait HS, Parmar K. Formulation and evaluation of topical aceclofenac gel using different gelling agent. Int J Drug Dev Res. 2011;3:156–64.

    CAS  Google Scholar 

  35. Shah PP, Desai PR, Patel AR, Singh MS. Skin permeating nanogel for the cutaneous co-delivery of two anti-inflammatory drugs. Biomaterials. 2012;33:1607–17.

    CAS  PubMed  Google Scholar 

  36. Lee HS, Morrison E, Frethem C, Zasadzinski J, McCormick A. Cryogenic electron microscopy study of nanoemulsion formation from microemulsions. Langmuir. 2014;30:10826–33.

    CAS  PubMed  Google Scholar 

  37. Malakar J, Sen SO, Nayak AK, Sen KK. Formulation, optimization and evaluation of transferosomal gel for transdermal insulin delivery. Saudi Pharm J. 2012;20:355–63.

    PubMed  PubMed Central  Google Scholar 

  38. Lee YM, Son E, Kim SH, Kim OS, Kim DS. Anti-inflammatory and anti-osteoarthritis effect of Mollugo pentaphylla extract. Pharm Biol. 2019;57(1):74–81.

    PubMed  Google Scholar 

  39. Yamada EF, Salgueiro AF, Goulart ADS, Mendes VP, Anjos BL, Folmer V, et al. Evaluation of monosodium iodoacetate dosage to induce knee osteoarthritis: relation with oxidative stress and pain. Int J Rheum Dis. 2019;22(3):399–410.

    CAS  PubMed  Google Scholar 

  40. Wen ZH, Tang CC, Chang YC, Huang SY, Hsieh SP, Lee CH, et al. Glucosamine sulphate reduces experimental osteoarthritis and nociception in rats: association with changes of mitogen-activated protein kinase in chondrocytes. Osteoarthr Cartil. 2010;18:1192–202.

    PubMed  Google Scholar 

  41. Al-Saffar FJ, Ganabadi S, Yaakub H, Fakurazi S. Collagenase and sodium iodoacetate- induced experimental osteoarthritis model in Sprague Dawley rats. Asian J Sci Res. 2009;2:167–79.

    CAS  Google Scholar 

  42. Ahmed AS, Li J, Erlandsson-Harris H, Stark A, Bakalkin G, Ahmed M. Suppression of pain and joint destruction by inhibition of the proteasome system in experimental osteoarthritis. Pain. 2012;153:18–26.

    CAS  PubMed  Google Scholar 

  43. Kuroda R, Usas A, Kubo S, Corsi K, Peng H, Rose T, et al. Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum. 2006;54:433–42.

    CAS  PubMed  Google Scholar 

  44. Daghestani HN, Kraus VB. Inflammatory biomarkers in osteoarthritis. Osteoarthr Cartil. 2015;23:1890–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Ley C, Ekman S, Ronéus B, Eloranta ML. Interleukin-6 and high mobility group box protein-1 in synovial membranes and osteochondral fragments in equine osteoarthritis. Res Vet Sci. 2009;86:490–7.

    CAS  PubMed  Google Scholar 

  46. Miller RE, Miller RJ, Malfait AM. Osteoarthritis joint pain: the cytokine connection. Cytokine. 2014;70:185–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Pearle AD, Scanzello CR, George SS, Mandl L, DiCarlo EF, Crow MK, et al. Elevated C-reactive protein levels in osteoarthritis are associated with local joint inflammation. Arthritis Res Ther. 2004;6(Suppl3):56.S23–4.

    Google Scholar 

  48. Feng Y, Fang W, Li C, Guo H, Li Y, Long X. The expression of high-mobility group box protein-1 in temporomandibular joint osteoarthritis with disc perforation. J Oral Pathol Med. 2016;45:148–52.

    CAS  PubMed  Google Scholar 

  49. Sun L, Wang X, Kaplan DL. A 3D cartilage - inflammatory cell culture system for the modeling of human osteoarthritis. Biomaterials. 2011;32:5581–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Xu YK, Ke Y, Wang B, Lin JH. The role of MCP-1-CCR2 ligand-receptor axis in chondrocyte degradation and disease progress in knee osteoarthritis. Biol Res. 2015;48:64–71.

    PubMed  PubMed Central  Google Scholar 

  51. Yilmaz E, Borchert HH. Effect of lipid-containing, positively charged nanoemulsions on skin hydration, elasticity and erythema—an in vivo study. Int J Pharm. 2006;307:232–8.

    CAS  PubMed  Google Scholar 

  52. Antunes FE, Coppola L, Rossi CO, Ranieri GA. Gelation of charged bio-nanocompartments induced by associative and non-associative polysaccharides. Colloids Surf B Biointerfaces. 2008;66:134–40.

    CAS  PubMed  Google Scholar 

  53. Liu W, Hu M, Liu W, Xue C, Xu H, Yang X. Investigation of the carbopol gel of solid lipid nanoparticles for the transdermal iontophoretic delivery of triamcinolone acetonide acetate. Int J Pharm. 2008;364:135–41.

    CAS  PubMed  Google Scholar 

  54. Peltola S, Saarinen-Savolainen P, Kiesvaara J, Suhonen TM, Urtti A. Microemulsions for topical delivery of estradiol. Int J Pharm. 2003;254:99–107.

    CAS  PubMed  Google Scholar 

  55. Hu XB, Kang RR, Tang TT, et al. Topical delivery of 3,5,4′-trimethoxy-trans-stilbene-loaded microemulsion-based hydrogel for the treatment of osteoarthritis in a rabbit model. Drug Deliv and Transl Res. 2019;9:357–65.

    CAS  Google Scholar 

  56. Kongtharvonskul J, Woratanarat P, McEvoy M, Attia J, Wongsak S, Kawinwonggowit V, et al. Efficacy of glucosamine plus diacerein versus monotherapy of glucosamine: a double-blind, parallel randomized clinical trial. Arthritis Res Ther. 2016;18:233,1–12.

    Google Scholar 

  57. Mirunalini R, Manimekalai K, Chandrasekaran M. Comparative evaluation of symptom relief and disease modifying effect of chondroitin with glucosamine sulfate and diacerein in osteoarthritis knee. SBV J Basic Clin Appl Health Sci. 2018;2(1):12–5.

    Google Scholar 

  58. Nganvongpanit K, Boonsri B, Sripratak T, Markmee P, Kongtawelert P. Clinical study on the effects of diacerein and diacerein combined with chondroitin sulfate on canine hip osteoarthritis. Kafkas Univ Vet Fak Derg. 2014;20(3):383–92.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to CRNN campus of University of Calcutta for carrying out the Cryo-SEM and TEM analyses.

Funding

This work has been funded by the DST INSPIRE fund (DST/ INSPIRE FELLOWSHIP/2012/575) and supported by the Department of Chemical Technology, C.U.

Author information

Authors and Affiliations

Authors

Contributions

H.C. and S.D. conceived and designed the research. H.C. performed the formulation work. H.C., S.D., B.A., and T.S. designed and performed the animal study. M.G. provided animal ethics approval and facilities for in vivo studies. H.C., S.D., B.A., and T.S. analyzed and interpreted the results. H.C. wrote the manuscript, and S.D. edited the manuscript. All authors discussed the results and commented on the manuscript. All authors have given approval to the final version of the manuscript.

Corresponding author

Correspondence to Sriparna Datta.

Ethics declarations

The protocol of the experimental design was approved by the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India, and by the Institutional Animal Ethics Committee (Registration no. 1180/ac/08/CPCSEA).

Conflict of interest

The authors declare that they have no conflict of interest

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 383 kb).

ESM 2

(DOCX 153 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chattopadhyay, H., Auddy, B., Sur, T. et al. Transdermal co-delivery of glucosamine sulfate and diacerein for the induction of chondroprotection in experimental osteoarthritis. Drug Deliv. and Transl. Res. 10, 1327–1340 (2020). https://doi.org/10.1007/s13346-019-00701-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-019-00701-7

Keywords

Navigation