Skip to main content

Advertisement

Log in

Design and Evaluation of Continentalic Acid Encapsulated Transfersomal Gel and Profiling of its Anti-arthritis Activity

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

Rheumatoid arthritis restricts the physical ability of patients and increases the disease burden; therefore, research has always been focused on evaluating better therapeutic options. The present research aimed to design Continentalic acid (CA)–loaded transfersomes (CA-TF) embedded in Carbopol gel containing permeation enhancer (PE) for the treatment of rheumatoid arthritis. CA-TF was developed via a modified thin film hydration method and incorporated into Carbopol 934 gel containing Eucalyptus oil (EO) as PE. The fabricated CA-TF showed particle size of < 140 nm with spherical geometry, optimal encapsulation efficiency (EE), and sustained drug release pattern. CA-TF-gel along with PE (CA-TF-PE-gel) showed better ex vivo skin penetration than plain CA gel and CA-TF-gel without PE. In vivo evaluation supported improved therapeutic outcomes of CA-TF-PE-gel in terms of behavioral findings, arthritic index, and histological findings whereas biochemical assays and pro-inflammatory cytokines (TNF-α and IL-1β) showed a significant decrease in their levels. Furthermore, immunohistochemistry assay for Nrf2 and HO-1 signaling pathways showed significant improvement in the expression of the Nrf2, and HO-1 proteins to depict improvement in arthritic condition in the animal model. CA-TF-PE-gel significantly delivered CA to the diseased target site via a topical route with promising therapeutic outcomes displayed in the CFA-induced arthritic model.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All the data generated and analyzed in the study is included in this article.

References

  1. McInnes IB, Schett G. Pathogenetic insights from the treatment of rheumatoid arthritis. Lancet. 2017;389(10086):2328–37.

    Article  CAS  PubMed  Google Scholar 

  2. ElSherbiny DA. Frequency and predictors of extra-articular manifestations in patients with rheumatoid arthritis. Egypt J Hosp Med. 2019;76(5):4062–7.

    Article  Google Scholar 

  3. Aletaha D, Smolen JS. Diagnosis and management of rheumatoid arthritis: a review. JAMA. 2018;320(13):1360–72.

    Article  PubMed  Google Scholar 

  4. Chuang S-Y, Lin C-H, Huang T-H, Fang J-Y. Lipid-based nanoparticles as a potential delivery approach in the treatment of rheumatoid arthritis. Nanomaterials. 2018;8(1):42.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Choy EHS, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 2001;344(12):907–16.

    Article  CAS  PubMed  Google Scholar 

  6. Boissier M-C, Semerano L, Challal S, Saidenberg-Kermanac’h N, Falgarone G. Rheumatoid arthritis: from autoimmunity to synovitis and joint destruction. J Autoimmun. 2012;39(3):222–8.

    Article  CAS  PubMed  Google Scholar 

  7. Darwish SF, El-Bakly WM, Arafa HM, El-Demerdash E. Targeting TNF-α and NF-κB activation by bee venom: role in suppressing adjuvant induced arthritis and methotrexate hepatotoxicity in rats. PLoS ONE. 2013;8(11): e79284.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zwerina J, Redlich K, Schett G, Smolen JS. Pathogenesis of rheumatoid arthritis: targeting cytokines. Ann N Y Acad Sci. 2005;1051(1):716–29.

    Article  CAS  PubMed  Google Scholar 

  9. Combe B, Landewe R, Daien CI, Hua C, Aletaha D, Álvaro-Gracia JM, et al. 2016 update of the EULAR recommendations for the management of early arthritis. Ann Rheum Dis. 2017;76(6):948–59.

    Article  PubMed  Google Scholar 

  10. Genovese MC, Durez P, Richards HB, Supronik J, Dokoupilova E, Mazurov V, et al. Efficacy and safety of secukinumab in patients with rheumatoid arthritis: a phase II, dose-finding, double-blind, randomised, placebo controlled study. Ann Rheum Dis. 2013;72(6):863–9.

    Article  CAS  PubMed  Google Scholar 

  11. Bullock J, Rizvi SA, Saleh AM, Ahmed SS, Do DP, Ansari RA, et al. Rheumatoid arthritis: a brief overview of the treatment. Med Princ Pract. 2018;27(6):501–7.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nikolova M, Slavchov R, Nikolova G. Nanotechnology in medicine. Drug discovery and evaluation: methods in clinical pharmacology. 2020:533–46.

  13. Sala M, Diab R, Elaissari A, Fessi H. Lipid nanocarriers as skin drug delivery systems: properties, mechanisms of skin interactions and medical applications. Int J Pharm. 2018;535(1–2):1–17.

    Article  CAS  PubMed  Google Scholar 

  14. Ozpolat B, Sood AK, Lopez-Berestein G. Liposomal siRNA nanocarriers for cancer therapy. Adv Drug Deliv Rev. 2014;66:110–6.

    Article  CAS  PubMed  Google Scholar 

  15. Patidar A, Thakur DS, Kumar P, Verma J. A review on novel lipid based nanocarriers. Int J Pharm Pharm Sci. 2010;2(4):30–5.

    CAS  Google Scholar 

  16. Janakiraman K, Krishnaswami V, Sethuraman V, Rajendran V, Kandasamy R. Development of methotrexate-loaded cubosomes with improved skin permeation for the topical treatment of rheumatoid arthritis. Appl Nanosci. 2019;9(8):1781–96.

    Article  CAS  Google Scholar 

  17. Duangjit S, Obata Y, Sano H, Onuki Y, Opanasopit P, Ngawhirunpat T, et al. Comparative study of novel ultradeformable liposomes: menthosomes, transfersomes and liposomes for enhancing skin permeation of meloxicam. Biol Pharm Bull. 2014;37(2):239–47.

    Article  CAS  PubMed  Google Scholar 

  18. Cevc G. Transfersomes, liposomes and other lipid suspensions on the skin: permeation enhancement, vesicle penetration, and transdermal drug delivery. Critical reviews™ in therapeutic drug carrier systems. 1996;13(3–4).

  19. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Formulation and characterization of novel soft nanovesicles for enhanced transdermal delivery of eprosartan mesylate. Saudi Pharm J. 2017;25(7):1040–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. El-Gizawy SA, Nouh A, Saber S, Kira AY. Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J Drug Deliv Sci Technol. 2020;58: 101732.

    Article  CAS  Google Scholar 

  21. Mahmood S, Chatterjee B, Mandal UK. Pharmacokinetic evaluation of the synergistic effect of raloxifene loaded transfersomes for transdermal delivery. J Drug Deliv Sci Technol. 2021;63: 102545.

    Article  CAS  Google Scholar 

  22. Castangia I, Caddeo C, Manca ML, Casu L, Latorre AC, Díez-Sales O, et al. Delivery of liquorice extract by liposomes and hyalurosomes to protect the skin against oxidative stress injuries. Carbohyd Polym. 2015;134:657–63.

    Article  CAS  Google Scholar 

  23. Kang O-H, Chae H-S, Choi J-G, Oh Y-C, Lee Y-S, Kim J-H, et al. ent-pimara-8 (14), 15-dien-19-oic acid isolated from the roots of Aralia cordata inhibits induction of inflammatory mediators by blocking NF-κB activation and mitogen-activated protein kinase pathways. Eur J Pharmacol. 2008;601(1–3):179–85.

    Article  CAS  PubMed  Google Scholar 

  24. Hong R, Kim KS, Choi GM, Yeom M, Lee B, Lee S, et al. Continentalic acid rather than kaurenoic acid is responsible for the anti-arthritic activity of Manchurian Spikenard in vitro and in vivo. Int J Mol Sci. 2019;20(21):5488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hong R, Sur B, Yeom M, Lee B, Kim KS, Rodriguez JP, et al. Anti-inflammatory and anti-arthritic effects of the ethanolic extract of Aralia continentalis Kitag. in IL-1β-stimulated human fibroblast-like synoviocytes and rodent models of polyarthritis and nociception. Phytomedicine. 2018;38:45–56.

    Article  CAS  PubMed  Google Scholar 

  26. Rajan R, Vasudevan DT. Effect of permeation enhancers on the penetration mechanism of transfersomal gel of ketoconazole. J Adv Pharm Technol Res. 2012;3(2):112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Biruss B, Kählig H, Valenta C. Evaluation of an eucalyptus oil containing topical drug delivery system for selected steroid hormones. Int J Pharm. 2007;328(2):142–51.

    Article  CAS  PubMed  Google Scholar 

  28. El Zaafarany GM, Awad GA, Holayel SM, Mortada ND. Role of edge activators and surface charge in developing ultradeformable vesicles with enhanced skin delivery. Int J Pharm. 2010;397(1–2):164–72.

    Article  PubMed  Google Scholar 

  29. Sana E, Zeeshan M, Ain QU, Khan AU, Hussain I, Khan S, et al. Topical delivery of curcumin-loaded transfersomes gel ameliorated rheumatoid arthritis by inhibiting NF-κβ pathway. Nanomedicine. 2021;16(10):819–37.

    Article  CAS  PubMed  Google Scholar 

  30. Mazhar D, Haq NU, Zeeshan M, Ain QU, Ali H, Khan S, et al. Preparation, characterization, and pharmacokinetic assessment of metformin HCl loaded transfersomes co-equipped with permeation enhancer to improve drug bioavailability via transdermal route. J Drug Deliv Sci Technol. 2023;84: 104448.

    Article  CAS  Google Scholar 

  31. Ramkanth S, Anitha P, Gayathri R, Mohan S, Babu D. Formulation and design optimization of nano-transferosomes using pioglitazone and eprosartan mesylate for concomitant therapy against diabetes and hypertension. Eur J Pharm Sci. 2021;162: 105811.

    Article  CAS  PubMed  Google Scholar 

  32. Shuwaili AHA, Rasool BKA, Abdulrasool AA. Optimization of elastic transfersomes formulations for transdermal delivery of pentoxifylline. Eur J Pharm Biopharm. 2016;102:101–14.

    Article  PubMed  Google Scholar 

  33. Dudhipala N, Phasha Mohammed R, Adel Ali Youssef A, Banala N. Effect of lipid and edge activator concentration on development of aceclofenac-loaded transfersomes gel for transdermal application: in vitro and ex vivo skin permeation. Drug Dev Ind Pharm. 2020;46(8):1334–44.

    Article  CAS  PubMed  Google Scholar 

  34. Zeb A, Qureshi OS, Yu C-H, Akram M, Kim H-S, Kim M-S, et al. Enhanced anti-rheumatic activity of methotrexate-entrapped ultradeformable liposomal gel in adjuvant-induced arthritis rat model. Int J Pharm. 2017;525(1):92–100.

    Article  CAS  PubMed  Google Scholar 

  35. Qindeel M, Khan D, Ahmed N, Khan S, Asim. ur R. Surfactant-free, self-assembled nanomicelles-based transdermal hydrogel for safe and targeted delivery of methotrexate against rheumatoid arthritis. ACS Nano. 2020;14(4):4662–81.

    Article  CAS  PubMed  Google Scholar 

  36. Prabhu P, Shetty R, Koland M, Vijayanarayana K, Vijayalakshmi KK, Nairy MH, et al. Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity. Int J Nanomed. 2012;7:177.

    Article  CAS  Google Scholar 

  37. Song H, Wen J, Li H, Meng Y, Zhang Y, Zhang N, et al. Enhanced transdermal permeability and drug deposition of rheumatoid arthritis via sinomenine hydrochloride-loaded antioxidant surface transethosome. Int J Nanomed. 2019;14:3177.

    Article  CAS  Google Scholar 

  38. Khan AM, Khan AU, Ali H, Islam SU, Seo EK, Khan S. Continentalic acid exhibited nephroprotective activity against the LPS and E coli-induced kidney injury through inhibition of the oxidative stress and inflammation. Int Immunopharmacol. 2020;80:106209.

    Article  CAS  PubMed  Google Scholar 

  39. Mahdi HJ, Khan NAK, Asmawi MZB, Mahmud R, Vikneswaran A, Murugaiyah L. In vivo anti-arthritic and anti-nociceptive effects of ethanol extract of Moringa oleifera leaves on complete Freund’s adjuvant (CFA)-induced arthritis in rats. Integr Med Res. 2018;7(1):85–94.

    Article  PubMed  Google Scholar 

  40. Jaleel GAA, Azab SS, El-Bakly WM, Hassan A. ’Methyl palmitate attenuates adjuvant induced arthritis in rats by decrease of CD68 synovial macrophages. Biomed Pharmacother. 2021;137: 111347.

    Article  PubMed  Google Scholar 

  41. Khan D, Qindeel M, Ahmed N, Khan AU, Khan S, Rehman AU. Development of novel pH-sensitive nanoparticle-based transdermal patch for management of rheumatoid arthritis. Nanomedicine. 2020;15(06):603–24.

    Article  CAS  PubMed  Google Scholar 

  42. Mossiat C, Laroche D, Prati C, Pozzo T, Demougeot C, Marie C. Association between arthritis score at the onset of the disease and long-term locomotor outcome in adjuvant-induced arthritis in rats. Arthritis Res Ther. 2015;17(1):1–12.

    Article  Google Scholar 

  43. Dewangan AK, Varkey S, Mazumder S. Synthesis of curcumin loaded CMCAB nanoparticles for treatment of rheumatoid arthritis. In International conference on chemical, environmental and biological sciences (CEBS). CEBS Dubai; 2015.

  44. Moron MS, Depierre JW, Mannervik B. Levels of glutathione, glutathione reductase and glutathione S-transferase activities in rat lung and liver. Biochim Biophys Acta (BBA)-Gen Subj. 1979;582(1):67–78.

    Article  CAS  Google Scholar 

  45. Singla S, Kumar NR, Kaur J. In vivo studies on the protective effect of propolis on doxorubicin-induced toxicity in liver of male rats. Toxicol Int. 2014;21(2):191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351–8.

    Article  CAS  PubMed  Google Scholar 

  47. Atiq A, Shal B, Naveed M, Khan A, Ali J, Zeeshan S, et al. Diadzein ameliorates 5-fluorouracil-induced intestinal mucositis by suppressing oxidative stress and inflammatory mediators in rodents. Eur J Pharmacol. 2019;843:292–306.

    Article  CAS  PubMed  Google Scholar 

  48. Surini S, Leonyza A, Suh CW. Formulation and in vitro penetration study of recombinant human epidermal growth factor-loaded transfersomal emulgel. Adv Pharm Bull. 2020;10(4):586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Danaei M, Dehghankhold M, Ataei S, Hasanzadeh Davarani F, Javanmard R, Dokhani A, et al. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics. 2018;10(2):57.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, et al. Pharmacodynamic study of eprosartan mesylate-loaded transfersomes Carbopol® gel under Dermaroller® on rats with methyl prednisolone acetate-induced hypertension. Biomed Pharmacother. 2017;89:177–84.

    Article  CAS  PubMed  Google Scholar 

  51. Moawad FA, Ali AA, Salem HF. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: preparation, in vitro and in vivo performance. Drug Deliv. 2017;24(1):252–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kaur N, Yadav K, Garg R, Saroha K, Yadav D. Formulation and in vitro characterization of ketoconazole span 80 based transfersomes gel, its comparison with liposomal gel and evaluation of antimicrobial activity. J Bionanosci. 2016;10(3):191–204.

    Article  CAS  Google Scholar 

  53. Gomes RP, Bressan E, Silva TMD, Gevaerd MDS, Tonussi CR, Domenech SC. Standardization of an experimental model suitable for studies on the effect of exercise on arthritis. Einstein (São Paulo). 2013;11:76–82.

    Article  PubMed  Google Scholar 

  54. Pinho-Ribeiro FA, Verri WA, Chiu IM. Nociceptor sensory neuron–immune interactions in pain and inflammation. Trends Immunol. 2017;38(1):5–19.

    Article  CAS  PubMed  Google Scholar 

  55. Zhao J, Zhao M, Yu C, Zhang X, Liu J, Cheng X, et al. Multifunctional folate receptor-targeting and pH-responsive nanocarriers loaded with methotrexate for treatment of rheumatoid arthritis. Int J Nanomed. 2017:6735–46.

  56. Qureshi AA, Tan X, Reis JC, Badr MZ, Papasian CJ, Morrison DC, et al. Suppression of nitric oxide induction and pro-inflammatory cytokines by novel proteasome inhibitors in various experimental models. Lipids Health Dis. 2011;10(1):1–25.

    Article  Google Scholar 

  57. Mititelu RR, Pădureanu R, Băcănoiu M, Pădureanu V, Docea AO, Calina D, et al. Inflammatory and oxidative stress markers—mirror tools in rheumatoid arthritis. Biomedicines. 2020;8(5):125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. García-Sánchez A, Miranda-Díaz AG, Cardona-Muñoz EG. The role of oxidative stress in physiopathology and pharmacological treatment with pro-and antioxidant properties in chronic diseases. Oxid Med Cell Longev. 2020. https://doi.org/10.1155/2020/2082145

  59. Vomhof-DeKrey EE, Picklo MJ Sr. The Nrf2-antioxidant response element pathway: a target for regulating energy metabolism. J Nutr Biochem. 2012;23(10):1201–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Higher Education Commission of Pakistan provided financial support for this work through the NRPU grant (No. 9272/Federal/NRPU/R&D/HEC/2017).

Author information

Authors and Affiliations

Authors

Contributions

Muhammad Waseem Akram: methodology, experimental work, visualization, data curation, writing original draft; Danish Mazhar: assisted in preparation, data curation, data arrangement, manuscript editing and review; Iqra Afzal: data curation, manuscript editing, review; Ahmad Zeb: investigation, assisted in animal studies and visualization; Qurat Ul Ain: validation, characterization, and manuscript editing; Salman Khan: validation, data curation, in vivo data designing; Hussain Ali: conceptualization, project administration, supervision, data curation, manuscript editing. All authors read and approved the manuscript.

Corresponding author

Correspondence to Hussain Ali.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Patent Declaration

An application with application no. 405/2022 and receipt No. 220345433 has been submitted for patent approval to IPO-Pakistan (Intellectual Property Organization of Pakistan).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2079 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akram, M.W., Mazhar, D., Afzal, I. et al. Design and Evaluation of Continentalic Acid Encapsulated Transfersomal Gel and Profiling of its Anti-arthritis Activity. AAPS PharmSciTech 24, 192 (2023). https://doi.org/10.1208/s12249-023-02648-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-023-02648-y

Keywords

Navigation