Skip to main content

Advertisement

Log in

Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The purpose of this study was to explore the use of molecular bio-imaging systems and biomechanical dynamics to elucidate the fate of a nanocomposite hydrogel system prepared by merging FITC-labeled nanolipobubbles within a cross-linked hydrogel network. The nanocomposite hydrogel system was characterized by size distribution analysis and zeta potential as well as shears thinning behavior, elastic modulus (G’), viscous loss moduli (G”), TEM, and FTIR. In addition, molecular bio-imaging via Vevo ultrasound and Cell-viZio techniques evaluated the stability and distribution of the nanolipobubbles within the cross-linked hydrogel. FITC-labeled and functionalized nanolipobubbles had particle sizes between 135 and 158 nm (PdI = 0.129 and 0.190) and a zeta potential of −34 mV. TEM and ultrasound imaging revealed the uniformity and dimensional stability of the functionalized nanolipobubbles pre- and post-embedment into the cross-linked hydrogel. Biomechanical characterization of the hydrogel by shear thinning behavior was governed by the polymer concentration and the cross-linker, glutaraldehyde. Ultrasound analysis and Cell-viZio bio-imaging were highly suitable to visualize the fluorescent image-guided nanolipobubbles and their morphology post-embedment into the hydrogel to form the NanoComposite system. Since the nanocomposite is intended for targeted treatment of neurodegenerative disorders, the distribution of the functionalized nanolipobubbles into PC12 neuronal cells was also ascertained via confocal microscopy. Results demonstrated effective release and localization of the nanolipobubbles within PC12 neuronal cells. The molecular structure of the synthetic surface peptide remained intact for an extended period to ensure potency for targeted delivery from the hydrogel ex vivo. These findings provide further insight into the properties of nanocomposite hydrogels for specialized drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Deligkaris K, Tadele TS, Olthuis W, van der Berg A. Hydrogel-based systems for biomedical applications. Sensor Actuat B. 2010;147(2):765–74.

    Article  CAS  Google Scholar 

  2. Yu L, Chang GT, Zhang H, Ding JD. Injectable block copolymer hydrogels for sustained release of a PEGylated Drug. Int J Pharm. 2008;348(1–2):95–106.

    Article  CAS  PubMed  Google Scholar 

  3. Mangesh Kulkarni M, Udo Greiser U, Timothy O’Brien T, Pandit A. Liposomal gene delivery mediated by tissue-engineered scaffolds. Trends Biotechnol. 2010;28(1):28–36.

    Article  PubMed  Google Scholar 

  4. Ying X, Wen HE, Lu WL, Du J, Guo J, Tian W, et al. Dual-targeting daunorubicin liposomes improve the therapeutic efficacy of brain glioma in animals. J Control Rel. 2010;141(2):183–92.

    Article  CAS  Google Scholar 

  5. du toit LC, Govender T, Pillay V, Choonara YE, Kodama T. Investigating the effect of polymeric approaches on circulation time and physical properties of nanobubbles. Pharm Res. 2011;28:494–504.

    Article  CAS  PubMed  Google Scholar 

  6. Mufamadi MS, Pillay V, Choonara YE, du Toit LC, Modi G, Naidoo D, et al. A review on composite liposomal technologies for specialized drug delivery. J Drug Deliv. 2011. doi:10.1155/2011/939851.

    PubMed  PubMed Central  Google Scholar 

  7. Epstein-Barash H, Orbey G, Polat BE, Ewoldt RH, Feshitan J, Langer R, et al. A microcomposite hydrogel for repeated on-demand ultrasound-triggered drug delivery. Biomaterials. 2010;31:5208–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Schexnailder P, Schmidt G. NanoComposite polymer hydrogels. Colloid Polym Sci. 2009;287:1–11.

    Article  CAS  Google Scholar 

  9. Martina M, Fortin J, Fournier L, Ménager C, Gazeau F, Clément O, et al. Magnetic targeting of rhodamine-labeled superparamagnetic liposomes to solid tumors: in vivo tracking by fibered confocal fluorescence microscopy. Mol Imaging. 2007;6(2):140–6.

    CAS  PubMed  Google Scholar 

  10. Van Raaij ME, Lindvere L, Adrienne Dorr A, He J, Sahota B, Foster FS, et al. Functional micro-ultrasound imaging of rodent cerebral hemodynamics. NeuroImage. 2010;58:100–8.

    Article  Google Scholar 

  11. Soppirnath KS, Aminabhavi TM. Water transport and drug release study from crosslinked polyacrylamide grafted guar gum hydrogel microspheres for the controlled release application. Eur J Pharm Biopharm. 2002;53:87–98.

    Article  CAS  PubMed  Google Scholar 

  12. Hennik WE, van Nostrum CF. Novel crosslinking methods to design hydrogels. Adv Drug Deliv Rev. 2002;54:13–36.

    Article  Google Scholar 

  13. Hartwell R, Leung V, Chavez-Munoz C, Nabai L, Yang H, Ko F, et al. A novel hydrogel-collagen composite improves functionality of an injectable extracellular matrix. Acta Biomater. 2011;7:3060–9.

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Li Y, Zhang S, Ye Z. Preparation and characterization of new foam adsorbents of poly(vinyl alcohol)/chitosan composites and their removal for dye and heavy metal from aqueous solution. Chem Eng J. 2012;183:88–97.

    Article  CAS  Google Scholar 

  15. Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62:83–99.

    Article  CAS  PubMed  Google Scholar 

  16. Ta HT, Dass CR, Dunstan DE. Injectable chitosan hydrogels for localised cancer therapy. J Control Release. 2008;126(3):205–16.

    Article  CAS  PubMed  Google Scholar 

  17. Hoare TR, Kohane DS. Hydrogels in drug delivery: progress and challenges. Polymer. 2008;49:1993–2007.

    Article  CAS  Google Scholar 

  18. Arguelles-Monal W, Goycoolea FM, Peniche C, Higuera-Ciapara I. Rheological study of the chitosan and glutaraldehyde chemical gel system. Polym Gel Network. 1998;6(6):429–40.

    Article  CAS  Google Scholar 

  19. Horn MM, Martins VCA, Plepis AMG. Effects of starch gelatinization and oxidation on the rheological behavior of chitosan and starch blends. Polym Int. 2011;60:920–3.

    Article  CAS  Google Scholar 

  20. Matricardi P, Cencetti C, Ria R, Alhaique F, Coviello T. Preparation and characterization of novel gellan gum hydrogels suitable for modified drug release. Molecules. 2009;14:3376–91.

    Article  CAS  PubMed  Google Scholar 

  21. Albu MG, Ghica MV, Popa L, Leca M, Trandafir V. Kinetic of invivo release of doxycycline hyclate from collagen hydrogels. Rev Roum Chim. 2009;54(3):373–9.

    CAS  Google Scholar 

  22. Weng L, Chen X, Chen W. Rheological characterization of in situ crosslinkable hydrogels formulated from oxidized dextran and N-carboxyethyl chitosan. Biomacromolecules. 2007;8(4):1109–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karazhiyan H, Razavi SMA, Phillips GO, Fang Y, Al-Assaf S, Nishinari K, et al. Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloid. 2009;23:2062–8.

    Article  CAS  Google Scholar 

  24. Armoškaitė V, Kristina Ramanauskienė K, Briedis V. Evaluation of base for optimal drug delivery for iontophoretic therapy: investigation of quality and stability. Afr J Pharm Pharmacol. 2012;6(23):1685–95.

    Google Scholar 

  25. Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34.

    Article  CAS  PubMed  Google Scholar 

  26. Pillai CKS, Paul W, Sharma CP. Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci. 2009;34(7):641–78.

    Article  CAS  Google Scholar 

  27. DeMerlis CC, Schoneker DR. Review of the oral toxicity of polyvinyl alcohol (PVA). Food Chem Toxicol. 2003;41(3):319–26.

    Article  CAS  PubMed  Google Scholar 

  28. de Souza C-JE, Pereira MM, Mansur HS. Properties and biocompatibility of chitosan films modified by blending with PVA and chemically crosslinked. J Mater Sci Mater Med. 2009;20:553–61.

    Article  Google Scholar 

  29. Mansur HS, Sadahira CM, Souza AN, Mansur AP. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde. Mater Sci Eng C. 2008;28:539–48.

    Article  CAS  Google Scholar 

  30. Jin J, Song M. Chitosan and chitosan-PEO blend membranes crosslinked by genipin for drug release. J Appl Polym Sci. 2006;102:436–44.

    Article  CAS  Google Scholar 

  31. Lehman K. Practical course in film coating of pharmaceutical dosage forms with eudragit. Darmstadt, Germany. Röhm Pharma Polym. 2001;8–10:144–7.

    Google Scholar 

  32. Ghaffari A, Oskoul M, Helali K, Bayati K, Rafiee-Tehrani M. Pectin/chitosan/Eudragit® RS mixed-film coating for bimodal drug delivery from theophylline pellets: preparation and evaluation. Acta Pharm. 2006;56:299–310.

    CAS  PubMed  Google Scholar 

  33. Wittaya-areekul S, Prahsarn C, Sungthongjeen S. Development and in vitro evaluation of chitosan-eudragit RS 30D composite wound dressings. AAPS PharmSciTech. 2006;7(1):E30.

    Article  PubMed  Google Scholar 

  34. Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by optically controlled microbubble cavitation. Nat Phys. 2005;1:107–10.

    Article  CAS  Google Scholar 

  35. Liu Y, Miyoshi H, Nakamura M. Encapsulated ultrasound microbubbles: therapeutic application in drug/gene delivery. J Control Rel. 2006;114:89–99.

    Article  CAS  Google Scholar 

  36. Suzuki R, Takizawa T, Negishi Y, Hagisawa K, Tanaka K, Sawamura K. Gene delivery by combination of novel liposomal bubbles with perfluoropropane and ultrasound. J Control Release. 2007;117:130–6.

    Article  CAS  PubMed  Google Scholar 

  37. Willmann JK, Kimura RH, Deshpande N, Lutz AM, Cochran JR, Gambhir SS. Targeted contrast-enhanced ultrasound imaging of tumor angiogenesis with contrast microbubbles conjugated to integrin-binding knottin peptides. J Nuclear Medic. 2010;51(3):433–40.

    Article  CAS  Google Scholar 

  38. Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev. 2008;60:1153–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Al-Gubory K, Houdebine L. In vivo imaging of green fluorescent protein-expressing cells in transgenic animals using fibred confocal fluorescence microscopy. Eur J Cell Biol. 2006;85(8):837–45.

    Article  CAS  PubMed  Google Scholar 

  40. Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, Ndesendo VM, et al. Surface-engineered nanoliposomes by chelating ligands for modulating the neurotoxicity associated with β-amyloid aggregates of Alzheimer’s disease. Pharm Res. 2012;29(11):3075–89.

    Article  CAS  PubMed  Google Scholar 

  41. Mufamadi MS, Choonara YE, Kumar P, Modi G, Naidoo D, van Vuuren S, et al. Ligand-functionalized nanoliposomes for targeted delivery of galantamine. Int J Pharm. 2013;448(1):267–81.

    Article  CAS  PubMed  Google Scholar 

  42. Foster FS, Hossack J, Adamson SL. Micro-ultrasound for preclinical imaging. Interface Focus. 2011;1:576–601.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Kong J, Yu S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin. 2007;39(8):549–59.

    Article  CAS  PubMed  Google Scholar 

  44. Yang JM, Su WY, Leu TL, Yang MC. Evaluation of chitosan/PVA blended hydrogel membranes. J Membrane Sci. 2004;236(1-2):39–51.

    Article  CAS  Google Scholar 

  45. Kim MS, Choi YJ, Noh I, Tae G. Synthesis and characterization of in situ chitosan-based hydrogel via grafting of carboxyethyl acrylate. J Biomed Mater Res A. 2007;83:674–82.

    Article  PubMed  Google Scholar 

  46. Ammar HO, Ghorab M, El-Nahhas S, Kamel R. Polymeric matrix system for prolonged delivery of tramadol hydrochloride, part I: physicochemical evaluation. AAPS PharmSciTech. 2009;10:7–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Reis EF, Campos FS, Lage AP, Leite RC, Heneine LG, Vasconcelos WL, et al. Synthesis and characterization of poly (vinyl alcohol) hydrogels and hybrids for rMPB70 protein adsorption. Mater Res. 2006;9(2):185–91.

    Article  Google Scholar 

  48. Agnihotri SA, Aminabhavi TM. Novel interpenetrating network chitosan-poly(ethylene oxide-g-acrylamide) hydrogel microspheres for the controlled release of capecitabine. Int J Pharm. 2006;324(2):103–15.

    Article  CAS  PubMed  Google Scholar 

  49. Mohamed MI. Optimization of chlorphenesin emulgel formulation. AAPS J. 2004;6(3):81–7.

    Article  PubMed Central  Google Scholar 

  50. Mancini M, Vergara E, Salvatore G, Greco A, Troncone G, Affuso A, et al. Morphological ultrasound microimaging of thyroid in living mice. Endocrinology. 2009;150(10):4810–5.

    Article  CAS  PubMed  Google Scholar 

  51. Tabakovi A, Kester M, Adair JH. Calcium phosphate-based composite nanoparticles in bio-imaging and therapeutic delivery applications. WIREs Nanomed Nanobiotechnol. 2012;4:96–112.

    Article  Google Scholar 

  52. Wanga Y, Li X, Zhouc Y, Huang P, Xu Y. Preparation of nanobubbles for ultrasound imaging and intracelluar drug delivery. Int J Pharm. 2010;384:148–53.

    Article  Google Scholar 

  53. Vargas G, Patrikeev I, Wei J, Bell B, Vincent K, Bourne N, et al. Quantitative assessment of microbicide-induced injury in the ovine vaginal epithelium using confocal microendoscopy. BMC Infect Dis. 2012;12:48.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Research Foundation (NRF) of South Africa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viness Pillay.

Ethics declarations

Conflict of Interest

The authors confirm that there are no conflicts of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 563 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mufamadi, M.S., Choonara, Y.E., Kumar, P. et al. Functionalized Nanolipobubbles Embedded Within a Nanocomposite Hydrogel: a Molecular Bio-imaging and Biomechanical Analysis of the System. AAPS PharmSciTech 18, 671–685 (2017). https://doi.org/10.1208/s12249-016-0541-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-016-0541-z

KEY WORDS

Navigation