Skip to main content

Advertisement

Log in

Influence of the Freeze-Drying Process on the Physicochemical and Biological Properties of Pre-heated Amphotericin B Micellar Systems

  • Research Article
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

Abstract

The moderate heat treatment of amphotericin B (AmB) in its micellar form (M-AmB) results in superaggregates (H-AmB) that present a substantially lower toxicity and similar activity. The aim of this work was to evaluate the H-AmB behavior after a freeze-drying process. H-AmB and M-AmB micelles were evaluated before and after freeze-drying concerning their physicochemical and biological properties by spectrophotometry and activity/toxicity assay, respectively. Four concentrations of M-AmB and H-AmB were studied aiming to correlate their aggregation state and the respective biological behavior: 50 mg L−1, 5 mg L−1, 0.5 mg L−1, and 0.05 mg L−1. Then, potassium leakage and hemoglobin leakage from red blood cells were used to evaluate the acute and chronic toxicity, respectively. The efficacy of M-AmB and H-AmB formulations was assessed by potassium leakage from Candida albicans and by the broth microdilution method. After heating, in addition to an evident turbidity, a slight blueshift from 327 to 323 nm was also observed at the concentrations of 50 and 5 mg L−1 for H-AmB. Additionally, an increase in the absorbance at 323 nm at the concentration of 0.5 mg L−1 was detected. Concerning the toxicity, H-AmB caused significantly lower hemoglobin leakage than M-AmB. These results were observed for H-AmB before and after freeze-drying. However, there was no difference between H-AmB and M-AmB concerning their activity. Accordingly, the freeze-drying cycle did not show any influence on the behavior of heated formulations, highlighting the suitability of such a method to produce a new AmB product with a long shelf life and with both greater efficiency and less toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Neoh CF, Liew D, Slavin MA, Marriott D, Chen SCA, Morrissey O, et al. Economic evaluation of micafungin vs. liposomal amphotericin B (LAmB) for the treatment of candidaemia and invasive candidiasis (IC). Mycoses. 2013;5:532–42.

    Article  Google Scholar 

  2. Kleinberg M. What is the current and future status of conventional amphotericin B? Int J Antimicrob Agents. 2006;27:12–6.

    Article  PubMed  Google Scholar 

  3. Selvam S, Mishra AK. Disaggregation of amphotericin B by sodium deoxycholate micellar aggregates. J Photochem Photobiol. 2008;93(2):66–70.

    Article  CAS  Google Scholar 

  4. Egito EST, Araujo IB, Damasceno BPGL, Price JC. Amphotericin B/emulsion admixture interactions: An approach concerning the reduction of amphotericin B toxicity. J Pharm Sci. 2002;91(11):2354–66.

    Article  CAS  PubMed  Google Scholar 

  5. Adams ML, Kwon GS. Relative aggregation state and hemolytic activity of amphotericin B encapsulated by poly(ethylene oxide)-block-poly(N-hexyl-l-aspartamide)-acyl conjugate micelles: effects of acyl chain length. J Control Release. 2003;87(1–3):23–32.

    Article  CAS  PubMed  Google Scholar 

  6. Stoodley R, Wasan KA, Bizzotto D. Fluorescence of amphotericin B-deoxycholate (Fungizone) monomers and aggregates and the effect of heat-treatment. Langmuir. 2007;23(17):8718–25.

    Article  CAS  PubMed  Google Scholar 

  7. Darole PS, Hegde DD, Nair HA. Formulation and evaluation of microemulsion based delivery system for amphotericin B. AAPS Pharm Sci Technol. 2008;9(1):122–8.

    Article  CAS  Google Scholar 

  8. Chabot GG, Pazdur R, Valeriote FA, Baker LHH. Pharmacokinetics and toxicity of continuous infusion of amphotericin B in cancer patients. J Pharm Sci. 1989;78:307–10.

    Article  CAS  PubMed  Google Scholar 

  9. Chavanet P, Joly V, Rigaud D, Bolard J, Carbon C, Yeni P. Influence of diet on experimental toxicity of amphotericin-B deoxycholate. Antimicrob Agents Chemother. 1994;38(5):963–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Meyer RD. Current role of therapy with amphotericin-B. Clin Infect Dis. 1992;14:S154–60.

    Article  PubMed  Google Scholar 

  11. Rothon DA, Mathias RG, Schechter MT. Prevalence of HIV-Infection in provincial prisons in British-Columbia. CMAJ. 1994;151(6):781–7.

    CAS  PubMed Central  PubMed  Google Scholar 

  12. Damasceno BPGL, Dominici VA, Urbano IA, Silva JA, Araujo IB, Santos-Magalhaes NS, et al. Amphotericin B microemulsion reduces toxicity and maintains the efficacy as an antifungal product. J Biomed Nanotechnol. 2012;2:290–300.

    Article  Google Scholar 

  13. Uehara RP, Sá VHL, Koshimura ET, Prudente FVB, Tucunduva LTCM, Gonçalves MS, et al. Continuous infusion of amphotericin B: preliminary experience at Faculdade de Medicina da Fundação ABC. Sao Paulo Med J. 2005;123:219–22.

    Article  PubMed  Google Scholar 

  14. Mohamed-Ahmed AHA, Les KA, Croft SL, Brocchini S. Preparation and characterisation of amphotericin B-copolymer complex for the treatment of leishmaniasis. Polym Chem. 2013;4(3):584–91.

    Article  CAS  Google Scholar 

  15. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH. Amphotericin B: time for a new “gold standard”. Clin Infect Dis. 2003;37(3):415–25.

    Article  CAS  PubMed  Google Scholar 

  16. Dorlo TPC, Balasegaram M, Beijnen JH, de Vries PJ. Miltefosine: a review of its pharmacology and therapeutic efficacy in the treatment of leishmaniasis. J Antimicrob Chemother. 2012;67(11):2576–97.

    Article  CAS  PubMed  Google Scholar 

  17. Sorrell TC, Chen SCA. Antifungal agents. MJA. 2007;187(7):404–9.

    PubMed  Google Scholar 

  18. Petit C, Yardley V, Gaboriau F, Bolard J, Croft SL. Activity of a heat-induced reformulation of amphotericin B deoxycholate (Fungizone) against Leishmania donovani. Antimicrob Agents Chemother. 1999;43(2):390–2.

    CAS  PubMed Central  PubMed  Google Scholar 

  19. Gaboriau F, Cheron M, Leroy L, Bolard J. Physico-chemical properties of the heat-induced ‘superaggregates’ of amphotericin B. Biophys Chem. 1997;66(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  20. Gaboriau F, Cheron M, Petit C, Bolard J. Heat-induced superaggregation of amphotericin B reduces its in vitro toxicity: a new way to improve its therapeutic index. Antimicrob Agents Chemother. 1997;41(11):2345–51.

    CAS  PubMed Central  PubMed  Google Scholar 

  21. van Etten EW, Stearne-Cullen LE, ten Kate M, Bakker-Woudenberg IA. Efficacy of liposomal amphotericin B with prolonged circulation in blood in treatment of severe pulmonary aspergillosis in leukopenic rats. Antimicrob Agents Chemother. 2000;44(3):540–5.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Silva-Filho MA, Siqueira SDVS, Freire LB, Araujo I, Silva KGH, Medeiros AC, et al. How can micelle systems be rebuilt by a heating process? Int J Nanomed. 2012;7:141–50.

    Google Scholar 

  23. Trissel LA. Handbook on Injectable Drugs. 15th ed. Bethesda: Maryland: American Society of Health-System Pharmacists; 2009.

    Google Scholar 

  24. Aulton ME. Pharmaceutics: the science of dosage form design. 2nd ed. United Kingdom: Leicester; 2002.

    Google Scholar 

  25. Moretton MA, Chiappetta DA, Sosnik A. Cryoprotection-lyophilization and physical stabilization of rifampicin-loaded flower-like polymeric micelles. J R Soc Interface. 2012;9(68):487–502.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Huh KM, Lee SC, Cho YW, Lee JW, Jeong JH, Park K. Hydrotropic polymer micelle system for delivery of paclitaxel. J Control Release. 2005;101(1–3):59–68.

    Article  CAS  PubMed  Google Scholar 

  27. Franks F. Freeze-drying of bioproducts: putting principles into practice. Eur J Pharm Biopharm. 1998;45:221–9.

    Article  CAS  PubMed  Google Scholar 

  28. Araujo IB, Brito CRN, Urbano IA, Dominici VA, Silva Filho MA, Silveira WLL, et al. Similarity between the in vitro activity and toxicity of two different Fungizone®/Lipofundin® admixtures. Acta Cir Bras. 2005;20(1):129–33.

    Article  Google Scholar 

  29. Clinical and Laboratory Standards Institute. Reference method for broth dilution antifungal susceptibility testing of yeasts. Approved Standard, vol. M27-A3. 3rd ed. Wayne: CLSI; 2008.

    Google Scholar 

  30. Manosroi A, Kongkaneramit L, Manosroi J. Stability and transdermal absorption of topical amphotericin B liposome formulations. Int J Pharm. 2004;270(1–2):279–86.

    Article  CAS  PubMed  Google Scholar 

  31. Patel SM, Pikal MJ. Emerging Freeze-Drying Process Development and Scale-up Issues. AAPS Pharm Sci Technol. 2011;12(1):372–8.

    Article  Google Scholar 

  32. Hatley RHM, Franks F, Day H. The effect on the oxidation of ascorbic acid of freeze concentration and undercooling. Biophys Chem. 1986;24:187–92.

    Article  CAS  PubMed  Google Scholar 

  33. Schreier S, Lamy-Freund MT. Spectroscopic studies of aggregation and autoxidation properties of the polyene antibiotic amphotericin B. Quim Nova. 1993;16(4):343–9.

    CAS  Google Scholar 

  34. Lamy-Freund MT, Ferreira VFN, Faljonialario A, Schreier S. Effect of aggregation on the kinetics of autoxidation of the polyene antibiotic amphotericin-B. J Pharm Sci. 1993;82(2):162–6.

    Article  CAS  PubMed  Google Scholar 

  35. Melik DH, Fogler HS. Turbidimetric determination of particle-size distributions of colloidal systems. J Colloid Interface Sci. 1983;92(1):161–80.

    Article  CAS  Google Scholar 

  36. van Etten EW, van Vianen W, Roovers P, Frederik P. Mild heating of amphotericin B-desoxycholate: effects on ultrastructure, in vitro activity and toxicity, and therapeutic efficacy in severe candidiasis in leukopenic mice. Antimicrob Agents Chemother. 2000;44(6):1598–603.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Cheron M, Petit C, Bolard J, Gaboriau F. Heat-induced reformulation of amphotericin B-deoxycholate favours drug uptake by the macrophage-like cell line J774. J Antimicrob Chemother. 2003;52(6):904–10.

    Article  CAS  PubMed  Google Scholar 

  38. Baas B, Kindt K, Scott A, Scott J, Mikulecky P, Hartsel SC. Activity and kinetics of dissociation and transfer of amphotericin B from a novel delivery form. AAPS PharmSciTech. 1999;1(4):11–32.

    Google Scholar 

  39. Bolard J, Legrand P, Heitz F, Cybulska B. One-sided action of amphotericin-B on cholesterol-containing membranes is determined by its self-association in the medium. Biochemistry. 1991;30(23):5707–15.

    Article  CAS  PubMed  Google Scholar 

  40. Brajtburg J, Elberg S, Schwartz DR, Vertutcroquin A, Schlessinger D, Kobayashi GS, et al. Involvement of oxidative damage in erythrocyte lysis induced by amphotericin-B. Antimicrob Agents Chemother. 1985;27(2):172–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Leon C, Taylor R, Bartlett KH, Wasan KM. Effect of heat-treatment and the role of phospholipases on Fungizone((R))-induced cytotoxicity within human kidney proximal tubular (HK-2) cells and Aspergillus fumigatus. Int J Pharm. 2005;298(1):211–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to thank CAPES for the financial support and Cristália for the generous gift of Fungizone® samples. The authors are also grateful to Glenn Hawes, M.Ed. English from the University of Georgia, for editing this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sócrates T. Egito.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Siqueira, S.D.V.S., Silva-Filho, M.A., Silva, C.A. et al. Influence of the Freeze-Drying Process on the Physicochemical and Biological Properties of Pre-heated Amphotericin B Micellar Systems. AAPS PharmSciTech 15, 612–619 (2014). https://doi.org/10.1208/s12249-014-0085-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12249-014-0085-z

Keywords

Navigation