Skip to main content
Log in

Pharmacokinetics of Long-Acting Aqueous Nano-/Microsuspensions After Intramuscular Administration in Different Animal Species and Humans—a Review

  • Review Article
  • Perspectives on clinical drug development of Long-Acting Injectables
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Formulating aqueous suspensions is an attractive strategy to incorporate poorly water-soluble drugs, where the drug release can be tailored to maintain desired release profiles of several weeks to months after parenteral (i.e., intramuscular or subcutaneous) administration. A sustained drug release can be desirable to combat chronic diseases by overcoming pill fatigue of a daily oral intake, hence, improving patient compliance. Although the marketed aqueous suspensions for intramuscular injection efficiently relieve the daily pill burden in chronic diseases, the exact drug release mechanisms remain to be fully unraveled. The in vivo drug release and subsequent absorption to the systemic circulation are influenced by a plethora of variables, resulting in a complex in vivo behavior of aqueous suspensions after intramuscular administration. A better understanding of the factors influencing the in vivo performance of aqueous suspensions could advance their drug development. An overview of the potential influential variables on the drug release after intramuscular injection of aqueous suspensions is provided with, where possible, available pharmacokinetic parameters in humans or other species derived from literature, patents, and clinical trials. These variables can be categorized into drug substance and formulation properties, administration site properties, and the host response towards drug particles. Based on the findings, the most critical factors are particle size, dose level, stabilizing excipient, drug lipophilicity, gender, body mass index, and host response.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APZ:

Aripiprazole

AUC:

Area under the curve

AUC :

Area under the curve from time zero to infinity

AUClast :

Area under the curve from time zero to time of last measurement

AUCtau :

Area under the curve during one dosing interval

ARV:

Antiretrovirals

BDQ:

Bedaquiline

BMI:

Body mass index

CAB:

Cabotegravir

C max :

Peak plasma concentration

CI:

Confidence interval

DTG:

Dolutegravir

D V50 :

Volume median diameter of particle size distribution

D V90 :

90% Volume diameter of particle size distribution

E2-Cyp:

Estradiol cypionate

EV:

Entecavir

EV-P:

Entecavir-3-palmitate

F:

Female

FDA:

Food and Drug Administration

IM:

Intramuscular

LAI:

Long-acting injectable

λZ :

Terminal rate constant

LB:

Levonorgestrel butanoate

LogP:

Partition coefficient

M:

Male

M3RPV:

Myristoyl rilpivirine

MDTG:

Myristoyl dolutegravir

ME:

Mestranol

MENT:

7α-Methyl-19-nortestosterone

MP acetate:

Methylprednisolone acetate

MPA:

Medroxyprogesterone acetate

MW:

Molecular weight

Na-CMC:

Sodium carboxymethyl cellulose

NET:

Norethindrone

NCAB:

Nanoformulated cabotegravir

NM2CAB:

Nanoformulated stearoyl cabotegravir

NMCAB:

Nanoformulated myristoyl cabotegravir

NRPV:

Nanoformulated rilpivirine

OLZ:

Olanzapine

P188:

Poloxamer 188

P338:

Poloxamer 338

P407:

Poloxamer 407

PAL:

Paliperidone

PBS:

Phosphate buffered saline

PEG:

Polyethylene glycol

PK:

Pharmacokinetics

PP:

Paliperidone palmitate

PP1M:

Paliperidone palmitate 1 month

PP3M:

Paliperidone palmitate 3 months

PP6M:

Paliperidone palmitate 6 months

PS20:

Polysorbate 20

PS80:

Polysorbate 80

RPV:

Rilpivirine

SC:

Subcutaneous

SD:

Standard deviation

Span 20:

Sorbitan monolaurate

Span 40:

Sorbitan monopalmitate

t 1/2 :

Half-life

T max :

Time of maximum concentration observed

TPGS:

D-alpha-tocopheryl polyethylene glycol 1000 succinate

TU:

Testosterone undecanoate

References

  1. Owen A, Rannard S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: insights for applications in HIV therapy. Adv Drug Deliv Rev. 2016;103:144–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Junghanns J-UAH, Müller RH. Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine. 2008;3(3):295–309.

  3. Shegokar R, Müller RH. Nanocrystals: industrially feasible multifunctional formulation technology for poorly soluble actives. Int J Pharm. 2010;399(1):129–39.

    Article  CAS  PubMed  Google Scholar 

  4. O’Brien MN, Jiang W, Wang Y, Loffredo DM. Challenges and opportunities in the development of complex generic long-acting injectable drug products. J Control Release. 2021 Jun.

  5. Remenar JF. Making the leap from daily oral dosing to long-acting injectables: lessons from the antipsychotics. Mol Pharm. 2014;11(6):1739–49.

    Article  CAS  PubMed  Google Scholar 

  6. Chaudhary K, Patel MM, Mehta PJ. Long-acting injectables: current perspectives and future promise. Crit Rev Ther Drug Carr Syst. 2019;36(2):137–81.

    Article  Google Scholar 

  7. Bao Q, Zou Y, Wang Y, Choi S, Burgess DJ. Impact of formulation parameters on in vitro release from long-acting injectable suspensions. AAPS J. 2021 Mar 1;23(2).

  8. Senior J. Insoluble salt forms and drug complexes. In: Senior J, Radomsky M, editors. Sustained-Release Injectable Products. Taylor & Francis Group; 2000. p. 41–68.

  9. Shah JC. Problems addressable by prodrugs - controlled release - small molecules. In: Stella VJ, Borchardt RT, Hageman MJ, Oliyai R, Maag H, Tilley JW, editors. Prodrugs: Challenges and Rewards. Springer; 2006. p. 358–73.

  10. Janssen-Cilag International NV. Summary of product characteristics - Rekambys.

  11. Summary of product characteristics - Vocabria: EPAR - Product Information (EMEA/H/C/004976 - II/0012). https://www.ema.europa.eu/en/medicines/human/EPAR/vocabria.

  12. ViiV Healthcare ULC. Product monograph - Vocarbia and Cabenuva. 2020.

  13. Steven K. MacLeod, Portage, MI (US); Lloyd E. Fox, Richland, MI (US); Neal S. Adams, Kalamazoo, MI (US); David J. Salvat, Marcellus M (US). Stabilized injectable suspension of a steroidal drug. US 2003/0114430 A1, 2003. p. 1–13.

  14. Pharmacia & Upjohn company. Depo-Provera CI - Prescribing information.

  15. Antal EJ, Dick CF, Eugene Wright C, Welshrnan IR, Block EM. Comparative bioavailability of two medroxyprogesterone acetate suspensions. Int J Pharm. 1989;54:33–9.

    Article  CAS  Google Scholar 

  16. Sun R, Guo Y, Yin N, Yin J, Yin T, He H, et al. Preparation of sterile long-acting injectable medroxyprogesterone acetate microcrystals based on anti-solvent precipitation and crystal habit control. Expert Opin Drug Deliv. 2019;16(10):1133–44.

    Article  CAS  PubMed  Google Scholar 

  17. Guo-Wei S. Pharmacodynamic effects of once-a-month combined injectable contraceptives. Contraception. 1994;49:361–85.

    Article  Google Scholar 

  18. Pharmacia & Upjohn company. LUNELLETM Monthly Contraceptive Injection.

  19. Benzon HT, Chew T-L, Mccarthy RJ, Benzon HA, Walega DR. Comparison of the particle sizes of different steroids and the effect of dilution a review of the relative neurotoxicities of the steroids. Anesthesiology. 2007;106:331–9.

    Article  CAS  PubMed  Google Scholar 

  20. ULC PC. Product monograph: Depo-Medrol. p. 1–30.

  21. Alam MA, Ahuja A, Baboota S, Gidwani SK, Ali J. Formulation and evaluation of pharmaceutically equivalent parenteral depot suspension of methyl prednisolone acetate. Indian J Pharm Sci. 2009;71(1):30–4.

    Article  CAS  PubMed  Google Scholar 

  22. Darville N, Van Heerden M, Vynckier A, De Meulder M, Sterkens P, Annaert P, et al. Intramuscular administration of paliperidone palmitate extended-release injectable microsuspension induces a subclinical inflammatory reaction modulating the pharmacokinetics in rats. J Pharm Sci. 2014;103(7):2072–87.

    Article  CAS  PubMed  Google Scholar 

  23. MALHOTRA G, SINGH S, AN-SARI K. Paliperidone Palmitate particles and compositions thereof. WO2016199170A2, 2016. p. 1–35.

  24. JANSSEN PHARMACEUTICALS, INC., Titusville N (US). Dosing regimen for missed doses for long-acting injectable paliperidone esters. US 10,143,693 B2, 2018.

  25. Janssen Inc. Product monograph - Invega Sustenna.

  26. Invega Sustenna - prescribing information.

  27. Invega Trinzia - prescribing information.

  28. Invega Hafyera - prescribing information.

  29. Byannli - summary of product characteristics.

  30. European Medicines Agency. Assessment report: Zypadhera. 2008.

  31. Eli Lilly and Company. Zyprexa Relprevv - prescribing information.

  32. Kostanski JW, Matsuda T, Nerurkar M, Naringrekar VH. Controlled release sterile injectable aripiprazole formulation and method. US8030313B2, 2011.

  33. Otsuka Pharmaceutical Co. Product monograph - Abilify Maintena. 2015.

  34. Otsuka Pharmaceutical Co. ABILIFY MAINTENA - prescribing information.

  35. Otsuka Pharmaceutical Co. Material safety data sheet - aripiprazole monohydrate. 1995.

  36. Alkermes. Aristada - prescribing information.

  37. Hickey, Magali B, Perry, Jason M, Deaver, Daniel R, Remenar, Julius F. Injectable pharmaceutical compositions comprising a water-insoluble anti-psychotic, sorbitan laurate and polysorbate 20. Toxicology and Applied Pharmacology. WO 2012/129156, 2014.

  38. Jain R, Meyer J, Wehr A, Rege B, Von Moltke L, Weiden PJ. Size matters: The importance of particle size in a newly developed injectable formulation for the treatment of schizophrenia. CNS Spectr. 2020;25(3):323–30.

    Article  PubMed  Google Scholar 

  39. Williams PE, Crauwels HM, Basstanie ED. Formulation and pharmacology of long-acting rilpivirine. Curr Opin HIV AIDS. 2015;10(4).

  40. European Medicines Agency. Assessment report - Rekambys. 2020.

  41. Baert L, van ’t Klooster G, Dries W, François M, Wouters A, Basstanie E, et al. Development of a long-acting injectable formulation with nanoparticles of rilpivirine (TMC278) for HIV treatment. Eur J Pharm Biopharm. 2009 Aug;72(3):502–8.

  42. GlaxoSmithKline. Cabenuva - prescribing information.

  43. European Medicines Agency. Assessment report - Vocabria. 2021.

  44. Trezza C, Ford SL, Spreen W, Pan R, Piscitelli S. Formulation and pharmacology of long-acting cabotegravir. Vol. 10, Current Opinion in HIV and AIDS. Lippincott Williams and Wilkins; 2015. p. 239–45.

  45. Cattaneo D, Gervasoni C. Pharmacokinetics and pharmacodynamics of cabotegravir, a long-acting hiv integrase strand transfer inhibitor. Vol. 44, European Journal of Drug Metabolism and Pharmacokinetics. Springer-Verlag France; 2019. p. 319–27.

  46. APRETUDE - prescribing information. 2021.

  47. Nyaku AN, Kelly SG, Taiwo BO. Long-acting antiretrovirals: where are we now? Curr HIV/AIDS Rep. 2017;14(2):63–71.

    Article  PubMed  Google Scholar 

  48. Landovitz RJ, Kofron R, McCauley M. The promise and pitfalls of long-acting injectable agents for HIV prevention. Curr Opin HIV AIDS. 2016;11(1):122–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mallikaarjun S, Kane JM, Bricmont P, McQuade R, Carson W, Sanchez R, et al. Pharmacokinetics, tolerability and safety of aripiprazole once-monthly in adult schizophrenia: An open-label, parallel-arm, multiple-dose study. Schizophr Res. 2013;150(1):281–8.

    Article  PubMed  Google Scholar 

  50. Raoufinia A, Baker RA, Eramo A, Nylander AG, Landsberg W, Kostic D, et al. Initiation of aripiprazole once-monthly in patients with schizophrenia. Vol. 31, Current Medical Research and Opinion. Informa Healthcare; 2015. p. 583–92.

  51. McGowan I, Dezzutti CS, Siegel A, Engstrom J, Nikiforov A, Duffill K, et al. Long-acting rilpivirine as potential pre-exposure prophylaxis for HIV-1 prevention (the MWRI-01 study): an open-label, phase 1, compartmental, pharmacokinetic and pharmacodynamic assessment. Lancet HIV. 2016;3(12):e569–78.

    Article  PubMed  Google Scholar 

  52. Yee KL, Mittal S, Fan L, Triantafyllou I, Dockendorf MF, Fackler PH, et al. Pharmacokinetics, safety and tolerability of long-acting parenteral intramuscular injection formulations of doravirine. J Clin Pharm Ther. 2020;45(5):1098–105.

    Article  CAS  PubMed  Google Scholar 

  53. Dokoumetzidis A, Macheras P. A century of dissolution research: from Noyes and Whitney to the biopharmaceutics classification system. Int J Pharm. 2006;321(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  54. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;1(3):785.

    Article  Google Scholar 

  55. Cleton A, Rossenu S, Crauwels H, Berwaerts J, Hough D, Gopal S, et al. A single-dose, open-label, parallel, randomized, dose-proportionality study of paliperidone after intramuscular injections of paliperidone palmitate in the deltoid or gluteal muscle in patients with schizophrenia. J Clin Pharmacol. 2014;54(9):1048–57.

    Article  CAS  PubMed  Google Scholar 

  56. Rossenu S, Cleton A, Hough D, Crauwels H, Vandebosch A, Berwaerts J, et al. Pharmacokinetic profile after multiple deltoid or gluteal intramuscular injections of paliperidone palmitate in patients with schizophrenia. Clin Pharmacol Drug Dev. 2015;4(4):270–8.

    Article  CAS  PubMed  Google Scholar 

  57. Ravenstijn P, Remmerie B, Savitz A, Samtani MN, Nuamah I, Chang CT, et al. Pharmacokinetics, safety, and tolerability of paliperidone palmitate 3-month formulation in patients with schizophrenia: a phase-1, single-dose, randomized, open-label study. J Clin Pharmacol. 2016;56(3):330–9.

    Article  CAS  PubMed  Google Scholar 

  58. Najarian D, Sanga P, Wang S, Lim P, Singh A, Robertson MJ, et al. A Randomized, double-blind, multicenter, noninferiority study comparing paliperidone palmitate 6-month versus the 3-month long-acting injectable in patients with schizophrenia. Int J Neuropsychopharmacol. 2021;1–14.

  59. Hilaire JR, Bade AN, Sillman B, Gautam N, Herskovitz J, Dyavar Shetty BL, et al. Creation of a long-acting rilpivirine prodrug nanoformulation. J Control Release. 2019;1(311–312):201–11.

    Article  Google Scholar 

  60. Rohde M, MØrk N, Håkansson AE, Jensen KG, Pedersen H, Dige T, et al. Biological conversion ofaripiprazole lauroxil - an N-acyloxymethyl aripiprazole prodrug. Results Pharma Sci. 2014;4(1):19–25.

  61. Turncliff R, Hard M, Du Y, Risinger R, Ehrich EW. Relative bioavailability and safety of aripiprazole lauroxil, a novel once-monthly, long-acting injectable atypical antipsychotic, following deltoid and gluteal administration in adult subjects with schizophrenia. Schizophr Res. 2014;159(2–3):404–10.

    Article  PubMed  Google Scholar 

  62. Heres S, Kraemer S, Bergstrom RF, Detke HC. Pharmacokinetics of olanzapine long-acting injection: the clinical perspective. Vol. 29, International Clinical Psychopharmacology. Lippincott Williams and Wilkins; 2014. p. 299–312.

  63. Di Lorenzo R, Brogli A. Profile of olanzapine long-acting injection for the maintenance treatment of adult patients with schizophrenia. Neuropsychiatr Dis Treat. 2010;6(1):573–81.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Detke HC, Mcdonnell DP, Brunner E, Zhao F, Sorsaburu S, Stefaniak VJ, et al. Post-injection delirium/sedation syndrome in patients with schizophrenia treated with olanzapine long-acting injection, I: analysis of cases. BMC Psychiatry. 2010;10:43.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Mittal S, Kazakevich I, Bhattacharjee H, Bakker P, Schenck L, Goldfarb, David J, et al. Formulation for parenteral administration. WO 2018/175271 Al, 2018. p. 1–20.

  66. Nguyen V, Bevernage J, Darville N, Tistaert C, Van Bocxlaer J, Rossenu S, et al. Linking In vitro intrinsic dissolution rate and thermodynamic solubility with pharmacokinetic profiles of bedaquiline long-acting aqueous microsuspensions in rats. Mol Pharm. 2021 Jan 5;

  67. Kulkarni TA, Bade AN, Sillman B, Shetty BLD, Wojtkiewicz MS, Gautam N, et al. A year-long extended release nanoformulated cabotegravir prodrug. Nat Mater. 2020;19(8):910–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Edelman AB, Cherala G, Li H, Pau F, Blithe DL, Jensen JT. Levonorgestrel butanoate intramuscular injection does not reliably suppress ovulation for 90 days in obese and normal-BMI women: a pilot study. Contraception. 2017;95(1):55–8.

    Article  CAS  PubMed  Google Scholar 

  69. Garza-Flores J, Jimenez-Thomas S, Salomon-Andonie J, Diaz-Sanchez V. Assessment of a new low-dose once-a-month injectable contraceptive. Contraception. 1988;37(5):471–81.

    Article  CAS  PubMed  Google Scholar 

  70. Diaz-Sanchez V, Garza-Flores J, Jimenez-Thomas S, Rudel HW. Development of a low-dose monthly injectable contraceptive system - II. Pharmacokinetic and pharmacodynamic studies Contraception. 1987;35(1):57–68.

    CAS  PubMed  Google Scholar 

  71. Mccormick, Timothy J, Doncel GF, Clark, Meredith R, Schwartz J. An improved formulation of long-acting levonorgestrel butanoate injectable depot suspension. WO 2017/147274 Al, 2017. p. 1–22.

  72. European Medicines Agency. Assessment report - Pifeltro. 2018.

  73. European Medicines Agency. Assessment report - Tivicay. 2020.

  74. Sillman B, Bade AN, Dash PK, Bhargavan B, Kocher T, Mathews S, et al. Creation of a long-acting nanoformulated dolutegravir. Nat Commun. 2018 Dec 1;9(1).

  75. Kaushik A, Ammerman NC, Tyagi S, Saini V, Vervoort I, Lachau-Durand S, et al. Activity of a long-acting injectable bedaquiline formulation in a paucibacillary mouse model of latent tuberculosis infection. Antimicrob Agents Chemother. 2019;63(4).

  76. Smyej I, De Jonghe S, Looszova A, Mannens G, Verhaeghe T, Thijssen S, et al. Dose- and time-dependency of the toxicity and pharmacokinetic profiles of bedaquiline and its n -desmethyl metabolite in dogs. Toxicol Pathol. 2017;45(5):663–75.

    Article  CAS  PubMed  Google Scholar 

  77. Suvisaari J, Sundaram K, Noé G, Kumar N, Aguillaume C, Tsong Y-Y, et al. Pharmacokinetics and pharmacodynamics of 7α-methyl-19-nortestosterone after intramuscular administration in healthy men. Hum Reprod. 1997;12(5):967–73.

    Article  CAS  PubMed  Google Scholar 

  78. Leng G, Zuo Y, Hu J, Yu F, Liu W. Liquid chromatography tandem mass spectrometry method for determination of fulvestrant in rat plasma and its application to pharmacokinetic studies of a novel fulvestrant microcrystal. Biomed Chromatogr. 2020 Oct 1;34(10).

  79. Evans JR, Grundy RU. Formulation. US 6,774,122 B2, 2004.

  80. Schoonus-Gerritsma GG. Stable formulations of testosterone undecanoate. WO 2015/193224 Al, 2015.

  81. Androgen. Product Monograph - Androgen. 2016.

  82. Jia L, Xiao J, Yang X, Gao J, Zhang H, Yu F, et al. Development and comparison of intramuscularly injected long-acting testosterone undecanoate nano-/microcrystal suspensions with three different particle size. Iran J Pharm Res. 2021;20(1):307–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Ho MJ, Jeong MY, Jeong HT, Kim MS, Park HJ, Kim DY, et al. Effect of particle size on in vivo performances of long-acting injectable drug suspension. J Control Release. 2022;341:533–47.

    Article  CAS  PubMed  Google Scholar 

  84. Ho MJ, Lee DR, Im SH, Yoon JA, Shin CY, Kim HJ, et al. Microsuspension of fatty acid esters of entecavir for parenteral sustained delivery. Int J Pharm. 2018;543:52–9.

    Article  CAS  PubMed  Google Scholar 

  85. Samtani MN, Vermeulen A, Stuyckens K. Population pharmacokinetics of intramuscular paliperidone palmitate in patients with schizophrenia a novel once-monthly, long-acting formulation of an atypical antipsychotic. Clin Pharmacokinet. 2009;48(9):585–600.

    Article  CAS  PubMed  Google Scholar 

  86. Magnusson MO, Samtani MN, Plan EL, Jonsson EN, Rossenu S, Vermeulen A, et al. Population pharmacokinetics of a novel once-every 3 months intramuscular formulation of paliperidone palmitate in patients with schizophrenia. Clin Pharmacokinet. 2017;56(4):421–33.

    Article  CAS  PubMed  Google Scholar 

  87. Hard ML, Mills RJ, Sadler BM, Turncliff RZ, Citrome L. Aripiprazole lauroxil: pharmacokinetic profile of this long-acting injectable antipsychotic in persons with schizophrenia. J Clin Psychopharmacol. 2017;37(3):289–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hard ML, Mills RJ, Sadler BM, Wehr AY, Weiden PJ, von Moltke L. Pharmacokinetic profile of a 2-month dose regimen of aripiprazole lauroxil: a phase I study and a population pharmacokinetic model. CNS Drugs. 2017;31(7):617–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Neyens M, Crauwels HM, Perez-Ruixo JJ, Rossenu S. Population pharmacokinetics of the rilpivirine long-acting formulation after intramuscular dosing in healthy subjects and people living with HIV. J Antimicrob Chemother. 2021;76(12):3255–62.

    Article  CAS  PubMed  Google Scholar 

  90. Procyshyn RM, Lamoure JW, Katzman MA, Skinner PL, Sherman SE. Need for bioequivalence standards that reflect the clinical importance of the complex pharmacokinetics of paliperidone palmitate long-acting injectable suspension. J Pharm Sci. 2019;22:548–66.

    CAS  Google Scholar 

  91. Zuidema J, Pieters FAJM, Duchateau GSMJE. Release and absorption rate aspects of intramuscularly injected pharmaceuticals. Int J Pharm. 1988;47:1–12.

  92. Darville N, van Heerden M, Vynckier A, De Meulder M, Sterkens P, Annaert P, et al. Intramuscular administration of paliperidone palmitate extended-release injectable microsuspension induces a subclinical inflammatory reaction modulating the pharmacokinetics in rats. J Pharm Sci. 2014;103(7):2072–87.

    Article  CAS  PubMed  Google Scholar 

  93. Darville N, van Heerden M, Erkens T, De Jonghe S, Vynckier A, De Meulder M, et al. Modeling the time course of the tissue responses to intramuscular long-acting paliperidone palmitate nano-/microcrystals and polystyrene microspheres in the rat. toxicol pathol. 2015 Dec 23;44(2):189–210.

  94. Jucker BM, Alsaid H, Rambo M, Lenhard SC, Hoang B, Xie F, et al. Multimodal imaging approach to examine biodistribution kinetics of cabotegravir (GSK1265744) long acting parenteral formulation in rat. J Control Release. 2017;268:102–12.

    Article  CAS  PubMed  Google Scholar 

  95. Groseclose MR, Castellino S. Intramuscular and subcutaneous drug depot characterization of a long-acting cabotegravir nanoformulation by MALDI IMS. Int J Mass Spectrom. 2019;1(437):92–8.

    Article  Google Scholar 

  96. Hirano K, Ichihashi T, Yamada H. Studies on the Absorption of practically water-insoluble drugs following injection. II. Intramuscular Absorption from Aqueous Suspensions in Rats. Chem Pharm Bull. 1981;29(3):817–27.

  97. Shah JC, Hong J. Model for Long acting injectables (depot formulation) based on pharmacokinetics and physical chemical properties. AAPS J. 2022;24(3):1–16.

    Article  Google Scholar 

  98. Leng D, Chen H, Li G, Guo M, Zhu Z, Xu L, et al. Development and comparison of intramuscularly long-acting paliperidone palmitate nanosuspensions with different particle size. Int J Pharm. 2014;472(1–2):380–5.

    Article  CAS  PubMed  Google Scholar 

  99. Francois MKJ, Dries WMAC, Basstanie EDG. Aqueous suspensions of submicron 9-hydroxyrisperidone fatty acid esters. World Intellectual Property Organization. US 2012/0263795 A1, 1999. p. 1–6.

  100. Garza-Flores J, Hall PE, Perez-Palacios G. Long-acting hormonal contraceptives for women. J Steroid Biochem Molec Biol. 1991;40(6):697–704.

    Article  CAS  PubMed  Google Scholar 

  101. ViiV Healthcare. A single-center, randomized, open-label, study to assess the relative bioavailability of new formulations of GSK1265744 LAP in healthy adult subjects.

  102. Radzio J, Hanley K, Mitchell J, Ellis S, Deyounks F, Jenkins LT, et al. Physiologic doses of depot-medroxyprogesterone acetate do not increase acute plasma simian HIV viremia or mucosal virus shedding in pigtail macaques. AIDS. 2014;28(10):1431–9.

    Article  CAS  PubMed  Google Scholar 

  103. Patel H, Patel P, Modi N, Patel P, Wagh Y, George A, et al. Rats and rabbits as pharmacokinetic screening tools for long acting intramuscular depots: case study with paliperidone palmitate suspension. Xenobiotica. 2019;49(4):415–21.

    Article  CAS  PubMed  Google Scholar 

  104. Darville N, Van Heerden M, Mariën D, De Meulder M, Rossenu S, Vermeulen A, et al. The effect of macrophage and angiogenesis inhibition on the drug release and absorption from an intramuscular sustained-release paliperidone palmitate suspension. J Control Release. 2016;28(230):95–108.

    Article  Google Scholar 

  105. Van ’t Klooster G, Hoeben E, Borghys H, Looszova A, Bouche MP, Van Velsen F, et al. Pharmacokinetics and disposition of rilpivirine (TMC278) nanosuspension as a long-acting injectable antiretroviral formulation. Antimicrob Agents Chemother. 2010 May;54(5):2042–50.

  106. Fotherby K, Koetsawang S, Mathrubuthan M. Pharmacokinetic study of different doses of depo provera. Contraception. 1980;22(5):527–36.

    Article  CAS  PubMed  Google Scholar 

  107. Garza-Flores J, Rodriguez V, Perez-Palacios G, Virutamasen P, Tang-Keow P, Konsayreepong R, et al. A multicentred pharmacokinetic, pharmacodynamic study of once-a-month injectable contraceptives - I. Different doses of HRP112 and of Depo Provera. Contraception. 1987;36(4):441–57.

  108. Si T, Su Y, Liu Y, Zhang H, Li H, Rui Q, et al. Pharmacokinetics and tolerability of paliperidone palmitate injection in Chinese subjects. Hum Psychopharmacol. 2014;29(2):203–10.

    Article  CAS  PubMed  Google Scholar 

  109. Shimizu H, Neyens M, De Meulder M, Gopal S, Tsukamoto Y, Samtani MN, et al. Population pharmacokinetics of paliperidone palmitate (once-monthly formulation) in Japanese, Korean, and Taiwanese patients with schizophrenia. Clin Pharmacol Drug Dev. 2020;9(2):224–34.

    Article  CAS  PubMed  Google Scholar 

  110. Mitchell M, Kothare P, Bergstrom R, Zhao F, Jen KY, Walker D, et al. Single- and multiple-dose pharmacokinetic, safety, and tolerability profiles of olanzapine long-acting injection: an open-label, multicenter, nonrandomized study in patients with schizophrenia. Clin Ther. 2013;35(12):1890–908.

    Article  CAS  PubMed  Google Scholar 

  111. Weiden PJ, Du Y, von Moltke L, Wehr A, Hard M, Marandi M, et al. Pharmacokinetics, safety, and tolerability of a 2-month dose interval regimen of the long-acting injectable antipsychotic aripiprazole lauroxil: results from a 44-week phase I study. CNS Drugs. 2020;34(9):961–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Jackson AGA, Else LJ, Mesquita PMM, Egan D, Back DJ, Karolia Z, et al. A compartmental pharmacokinetic evaluation of long-acting rilpivirine in HIV-negative volunteers for pre-exposure prophylaxis. Clin Pharmacol Ther. 2014;96(3):314–23.

    Article  CAS  PubMed  Google Scholar 

  113. Verloes R, Deleu S, Niemeijer N, Crauwels H, Meyvisch P, Williams P. Safety, tolerability and pharmacokinetics of rilpivirine following administration of a long-acting formulation in healthy volunteers. HIV Med. 2015;16(8):477–84.

    Article  CAS  PubMed  Google Scholar 

  114. Spreen W, Ford SL, Chen S, Wilfret D, Margolis D, Gould E, et al. GSK1265744 pharmacokinetics in plasma and tissue after single-dose long-acting injectable administration in healthy subjects. J Acquir Immune Defic Syndr. 2014;67(5):481–6.

    Article  CAS  PubMed  Google Scholar 

  115. Patravale VB, Date AA, Kulkarni RM. Nanosuspensions: a promising drug delivery strategy. J Pharm Pharmacol. 2004;56(7):827–40.

    Article  CAS  PubMed  Google Scholar 

  116. Chin WWL, Parmentier J, Widzinski M, Tan ENH, Gokhale R. A brief literature and patent review of nanosuspensions to a final drug product. J Pharm Sci. 2014;103(10):2980–99.

    Article  CAS  PubMed  Google Scholar 

  117. Rudd ND, Helmy R, Dormer PG, Williamson RT, Wuelfing WP, Walsh PL, et al. Probing in vitro release kinetics of long-acting injectable nanosuspensions via flow-NMR spectroscopy. Mol Pharm. 2020;17(2):530–40.

    CAS  PubMed  Google Scholar 

  118. Rudd ND, Reibarkh M, Fang R, Mittal S, Walsh PL, Brunskill APJ, et al. Interpreting In vitro release performance from long-acting parenteral nanosuspensions using USP-4 dissolution and spectroscopic techniques. Mol Pharm. 2020;17(5):1734–47.

    Article  CAS  PubMed  Google Scholar 

  119. Chamanza R, Darville N, van Heerden M, De Jonghe S. Comparison of the local tolerability to 5 long-acting drug nanosuspensions with different stabilizing excipients, following a single intramuscular administration in the rat. Toxicol Pathol. 2017;46(1):85–100.

    Article  PubMed  Google Scholar 

  120. Zhou T, Su H, Dash P, Lin Z, Dyavar Shetty BL, Kocher T, et al. Creation of a nanoformulated cabotegravir prodrug with improved antiretroviral profiles. Biomaterials. 2018;1(151):53–65.

    Article  Google Scholar 

  121. Gautam N, McMillan JEM, Kumar D, Bade AN, Pan Q, Kulkarni TA, et al. Lipophilic nanocrystal prodrug-release defines the extended pharmacokinetic profiles of a year-long cabotegravir. Nat Commun. 2021 Dec 1;12(1).

  122. Zaybak A, Güneş ÜY, Tamsel S, Khorshid L, Eşer I. Does obesity prevent the needle from reaching muscle in intramuscular injections? J Adv Nurs. 2007;58(6):552–6.

    Article  PubMed  Google Scholar 

  123. Poland GA, Borrud A, Jacobson RM, Mcdermott K, Wollan PC, Brakke D, et al. Determination of deltoid fat pad thickness - implications for needle length in adult immunization. JAMA. 1997;277(21):1709–11.

    Article  CAS  PubMed  Google Scholar 

  124. Burbridge BE. Computed tomographic measurement of gluteal subcutaneous fat thickness in reference to failure of gluteal intramuscular injections. Can J Assoc Radiol. 2007;58(2):72–5.

    Google Scholar 

  125. Shaw F, Guess H, Roets J, Mohr F, Coleman P, Mandel E, et al. Effect of anatomic injection site, age and smoking on the immune response to hepatitis B vaccination. Vaccine. 1989;7:425–30.

    Article  PubMed  Google Scholar 

  126. Markowitz M, Frank I, Grant RM, Mayer KH, Elion R, Goldstein D, et al. Safety and tolerability of long-acting cabotegravir injections in HIV-uninfected men (ECLAIR): a multicentre, double-blind, randomised, placebo-controlled, phase 2a trial. Lancet HIV. 2017;4(8):e331–40.

    Article  PubMed  Google Scholar 

  127. Probst M, Kühn JP, Scheuch E, Seidlitz A, Hadlich S, Evert K, et al. Simultaneous magnetic resonance imaging and pharmacokinetic analysis of intramuscular depots. J Control Release. 2016;10(227):1–12.

    Article  Google Scholar 

  128. Schou J. Subcutaneous and intramuscular injection of drugs. In: Brodie BB, Gillette JR, editors. Handbook of Experimental Pharmacology - Concepts in biochemical pharmacology part 1. 1st ed. Springer: Berlin Heidelberg; 1971. p. 47–66.

    Chapter  Google Scholar 

  129. Jucker BM, Fuchs EJ, Lee S, Damian V, Galette P, Janiczek R, et al. Multiparametric magnetic resonance imaging to characterize cabotegravir long‐acting formulation depot kinetics in healthy adult volunteers. Br J Clin Pharmacol. 2021 Jul 31;

  130. Zuidema J, Kadir F, Titulaer HAC, Oussoren C. Release and absorption rates of intramuscularly and subcutaneously injected pharmaceuticals (II). Int J Pharm. 1994;105:189–207.

    Article  CAS  Google Scholar 

  131. Hirano K, Yamada H. Studies on the absorption of practically water-insoluble drugs following injection VI: subcutaneous absorption from aqueous suspensions in rats. J Pharm Sci. 1982;71(5):500–5.

    Article  CAS  PubMed  Google Scholar 

  132. Darville N, Van Heerden M, Erkens T, De Jonghe S, Vynckier A, De Meulder M, et al. Modeling the time course of the tissue responses to intramuscular long-acting paliperidone palmitate nano-/microcrystals and polystyrene microspheres in the rat. Toxicol Pathol. 2016;44(2):189–210.

    Article  CAS  PubMed  Google Scholar 

  133. Bjerregaard S, Pedersen H, Vedstesen H, Vermehren C, Sö Derberg BI, Frokjaer S. Parenteral water/oil emulsions containing hydrophilic compounds with enhanced in vivo retention: formulation, rheological characterisation and study of in vivo fate using whole body gamma-scintigraphy. Int J Pharm. 2001;215:13–27.

    Article  CAS  PubMed  Google Scholar 

  134. Howard JR, Hadgraft J. The clearance of oily vehicles following intramuscular and subcutaneous injections in rabbits. Int J Pharm. 1983;16:31–9.

    Article  CAS  Google Scholar 

  135. Ballard BE. Biopharmaceutical considerations in subcutaneous and intramuscular drug administration. J Pharm Sci. 1968;57(3):357–78.

    Article  CAS  PubMed  Google Scholar 

  136. Wagner JG. Biopharmaceutics: absorption aspects. J Pharm Sci. 1961;50(5):359–87.

    Article  CAS  PubMed  Google Scholar 

  137. Tortora GJ, Derrickson B. Principles of anatomy and physiology. 15th ed. John Wiley & Sons; 2017. 1–1107 p.

  138. Widmaier EP, Raff H, Strang KT, Shoepe TC. Vander’s human physiology : the mechanisms of body function. 15th ed. New York: McGraw-Hill Education; 2019. p. 1–706.

    Google Scholar 

  139. Block EH, Iberall AS. Toward a concept of the functional unit of mammalian skeletal muscle. Am Physiol Soc. 1982;242(11):411–20.

    Google Scholar 

  140. Levick JR. Flow through interstitium and other fibrous matrices. Q J Exp Phsyiology. 1987;72:409–38.

    Article  CAS  Google Scholar 

  141. Wiig H, Swartz MA. Interstitial fluid and lymph formation and transport: physiological regulation and roles in inflammation and cancer. Physiol Rev. 2012;92:1005–60.

    Article  CAS  PubMed  Google Scholar 

  142. Evans EF, Proctor JD, Fratkin MJ, Velandia J, Wasserman AJ, Richmond V. Blood flow in muscle groups and drug absorption.

  143. Cockshott PW, Thompson GT, Howlett LJ, Seeley ET. Intramuscular or intralipomatous injections? N Engl J Med. 1982;307(6):356–8.

    Article  CAS  PubMed  Google Scholar 

  144. Zener JC, Kerber RE, Spivack AP, Harrison DC. Blood lidocaine levels and kinetics following high-dose intramuscular administration. Circulation. 1973;47:984–8.

    Article  CAS  PubMed  Google Scholar 

  145. Vukovich RA, Brannick LJ, Sugerman AA, Neiss ES, Mead B. Sex differences in the intramuscular absorption and bioavailability of cephradine. Clin Pharmacol Ther. 1975;18(2):215–20.

    Article  CAS  PubMed  Google Scholar 

  146. Rahimy MH, Cromie MA, Hopkins NK, Tong DM. Lunelle™ monthly contraceptive injection (medroxyprogesterone acetate and estradiol cypionate injectable suspension): effects of body weight and injection sites on pharmacokinetics. Contraception. 1999;60:201–8.

    Article  CAS  PubMed  Google Scholar 

  147. Raoufinia A, Peters-Strickland T, Nylander AG, Baker RA, Eramo A, Jin N, et al. Aripiprazole once-monthly 400 mg: Comparison of pharmacokinetics, tolerability, and safety of deltoid versus gluteal administration. Int J Neuropsychopharmacol. 2017;20(4):295–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Aarons L, Hopkins K, Rowland M, Brossel S, Thiercelin J-F. Route of administration and sex differences in the pharmacokinetics of aspirin, administered as its lysine salt. Pharm Res. 1989;6(8):660–6.

    Article  CAS  PubMed  Google Scholar 

  149. Modderman ESM, Merkus FWHM, Zuidema J, Hilbers HW, Warndorff T, Modderman ESM, et al. Sex differences in the absorption of dapsone after intramuscular injection. Vol. 51, INTERNATIONAL JOURNAL OF LEPROSY.

  150. Tortora GJ, Derrickson B. Fluid, electrolyte, and acid-base homeostasis. In: Principles of anatomy and physiology. 15th ed. John Wiley & Sons; 2017.

  151. Brown RP, Delp MD, Lindstedt SL, Lorenz ;, Rhomberg R, Beliles RP. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol Ind Health. 1997;13(4):407–84.

  152. Andrews CD, Yueh YL, Spreen WR, St Bernard L, Boente-Carrera M, Rodriguez K, et al. A long-acting integrase inhibitor protects female macaques from repeated high-dose intravaginal SHIV challenge. Sci Transl Med. 2015 Jan 14;7(270).

  153. Landovitz RJ, Li S, Grinsztejn B, Dawood H, Liu AY, Magnus M, et al. Safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in low-risk HIV-uninfected individuals: HPTN 077, a phase 2a randomized controlled trial. PLoS Med. 2018 Nov 1;15(11).

  154. Landovitz RJ, Li S, Eron JJ, Grinsztejn B, Dawood H, Liu AY, et al. Tail-phase safety, tolerability, and pharmacokinetics of long-acting injectable cabotegravir in HIV-uninfected adults: a secondary analysis of the HPTN 077 trial. Lancet HIV. 2020;7(7):e472–81.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Shaik JS, Weld ED, Edick S, Fuchs E, Riddler S, Marzinke MA, et al. Multicompartmental pharmacokinetic evaluation of long‐acting cabotegravir in healthy adults for HIV preexposure prophylaxis. Br J Clin Pharmacol. 2021 Jul 29;

  156. Sakamaki S, Yasuhara Y, Motoki K, Takase K, Tanioka T, Locsin R. The relationship between body mass index, thickness of subcutaneous fat, and the gluteus muscle as the intramuscular injection site. Health (Irvine Calif). 2013;5(9):1443–8.

    Google Scholar 

  157. Rahimy MH, Ryan KK, Hopkins NK. Lunelle™ monthly contraceptive injection (medroxyprogesterone acetate and estradiol cypionate injectable suspension): steady-state pharmacokinetics of MPA and E2 in surgically sterile women. Contraception. 1999;60:209–14.

    Article  CAS  PubMed  Google Scholar 

  158. Zhou X-F, Shao Q-X, Han X-J, Weng L-J, Sang G-W. Pharmacokinetics of medroxyprogesterone acetate after single and multiple injection of cyclofem in Chinese women. Contraception. 1998;57:405–11.

    Article  CAS  PubMed  Google Scholar 

  159. Aedo A-R, Johannisson B-M, Diczfalusy E. Pharmacokinetic and pharmacodynamic investigations with monthly injectable contraceptive preparations. Contraception. 1985;31(5):453–69.

    Article  CAS  PubMed  Google Scholar 

  160. Sierra-Ramírez JA, Lara-Ricalde R, Lujan M, Velázquez-Ramírez N, Godínez-Victoria M, Hernádez-Munguía IA, et al. Comparative pharmacokinetics and pharmacodynamics after subcutaneous and intramuscular administration of medroxyprogesterone acetate (25 mg) and estradiol cypionate (5 mg). Contraception. 2011;84(6):565–70.

    Article  PubMed  Google Scholar 

  161. Han K, Wannamaker P, Lu H, Zhu B, Wang M, Paff M, et al. Safety, tolerability, pharmacokinetics, and acceptability of oral and long-acting cabotegravir in HIV-negative Chinese men. Antimicrob Agents Chemother. 2022;(February).

  162. Tortora GJ, Derrickson B. Muscular tissue. In: Principles of anatomy and physiology. 15th ed. John Wiley & Sons; 2017.

  163. Bønnelykke Sørensen V, Wroblewski H, Galatius S, Haunsø S, Kastrup J. Assessment of continuous skeletal muscle blood flow during exercise in humans. Microvasc Res. 2000;59(2):301–9.

    Article  PubMed  Google Scholar 

  164. Cheol Y, Park SS, Subieta AR, Brennan TJ. Changes in tissue pH and temperature after incision indicate acidosis may contribute to postoperative pain. Vol. 101, Anesthesiology. 2004.

  165. Sullivan MJ, Saltin B, Negro-Vilar R, Duscha BD, Charles HC, Saltin B. Skeletal muscle pH assessed by biochemical and 31P-MRS methods during exercise and recovery in men. Am Physiol Soc. 1994;2194–200.

  166. Street D, Bangsbo J, Juel C. Interstitial pH in human skeletal muscle during and after dynamic graded exercise. J Physiol. 2001;537(3):993–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Germann D, Kurylo N, Han F. Risperidone. In: Brittain HG, editor. Profiles of Drug Substances, Excipients and Related Methodology. 1st ed. Academic Press; 2012. p. 313–61.

    Google Scholar 

  168. Ellmerer M, Schaupp L, Brunner GA, Sendlhofer G, Wutte A, Wach P, et al. Measurement of interstitial albumin in human skeletal muscle and adipose tissue by open-flow microperfusion. Am J Physiol Metab. 2000;278(2):E352–6.

    CAS  Google Scholar 

  169. Fogh-Andersen N, Altura BM, Altura BT, Siggaard-Andersen O. Composition of interstitial fluid. Clin Chem. 1995 Oct 1;41(10):1522 LP – 1525.

  170. Paul BJ, Fottrell Hert P. Tissue-specific and species-specific esterases. Arch Biochem Biophy8. 1961;78:418–24.

  171. Berry LM, Wollenberg L, Zhao Z. Esterase activities in the blood, liver and intestine of several preclinical species and humans. Drug Metab Lett. 2009;3:70–7.

    Article  CAS  PubMed  Google Scholar 

  172. Bahar FG, Ohura K, Ogihara T, Imai T. Species difference of esterase expression and hydrolase activity in plasma. J Pharm Sci. 2012;101(10):3979–88.

    Article  CAS  PubMed  Google Scholar 

  173. Prusakiewicz JJ, Ackermann C, Voorman R. Comparison of skin esterase activities from different species. Pharm Res. 2006;23(7):1517–24.

    Article  CAS  PubMed  Google Scholar 

  174. Bekker LG, Li S, Pathak S, Tolley EE, Marzinke MA, Justman JE, et al. Safety and tolerability of injectable Rilpivirine LA in HPTN 076: a phase 2 HIV pre-exposure prophylaxis study in women. EClinicalMedicine. 2020;1:21.

    Google Scholar 

  175. Chamanza R, Darville N, van Heerden M, De Jonghe S. Comparison of the local tolerability to 5 long-acting drug nanosuspensions with different stabilizing excipients, following a single intramuscular administration in the rat. Toxicol Pathol. 2018;46(1):85–100.

    Article  CAS  PubMed  Google Scholar 

  176. Paquette SM, Dawit H, Hickey MB, Merisko-Liversidge E, Almarsson Ö, Deaver DR. Long-acting atypical antipsychotics: characterization of the local tissue response. Pharm Res. 2014;31(8):2065–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Martinez-Skinner AL, Araínga MA, Puligujja P, Palandri DL, Baldridge HM, Edagwa BJ, et al. Cellular responses and tissue depots for nanoformulated antiretroviral therapy. PLoS One. 2015 Dec 1;10(12).

  178. Guo X, Zhang M, Guo Y, Liu H, Yang B, Gou J, et al. Impact of jet pulverization and wet milling techniques on properties of aripiprazole long-acting injection and absorption mechanism research in vivo. Int J Pharm. 2021;(612).

  179. Yue H, Wei W, Yue Z, Lv P, Wang L, Ma G, et al. Particle size affects the cellular response in macrophages. Eur J Pharm Sci. 2010;41:650–7.

    Article  CAS  PubMed  Google Scholar 

  180. Anderson JM. Host response to long acting injections and implants. In: Wright JC, Burgess DJ, editors. Long acting injections and implants. Springer; 2012. p. 25–55.

    Chapter  Google Scholar 

  181. Hillaireau H, Couvreur P. Nanocarriers’ entry into the cell: relevance to drug delivery. Cell Mol Life Sci. 2009;66(17):2873–96.

    Article  CAS  PubMed  Google Scholar 

  182. Doshi N, Mitragotri S. Macrophages recognize size and shape of their targets. PLoS One. 2010;5(4).

  183. Nowacek AS, Balkundi S, McMillan J, Roy U, Martinez-Skinner A, Mosley RL, et al. Analyses of nanoformulated antiretroviral drug charge, size, shape and content for uptake, drug release and antiviral activities in human monocyte-derived macrophages. J Control Release. 2011;150(2):204–11.

    Article  CAS  PubMed  Google Scholar 

  184. Roser M, Fischer D, Kissel T. Surface-modified biodegradable albumin nano-and microspheres. II: effect of surface charges on in vitro phagocytosis and biodistribution in rats. Eur J Pharm Biopharm. 1998;46:255–63.

  185. Tabata Y, Ikada Y. Phagocytosis of polymer microspheres by macrophages. Adv Polym Sci. 1990;94:107–41.

    Article  CAS  Google Scholar 

  186. Ahsan F, Rivas IP, Khan MA, Torres Suarez AI. Targeting to macrophages: role of physicochemical properties of particulate carriers-liposomes and microspheres-on the phagocytosis by macrophages. J Control Release. 2002;79:29–40.

    Article  CAS  PubMed  Google Scholar 

  187. Tabata Y, Ikada Y. Effect of the size and surface charge of polymer microspheres on their phagocytosis by macrophage. Biomaterials. 1988;9:356–62.

    Article  CAS  PubMed  Google Scholar 

  188. Owens DE, Peppas NA. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm. 2006;307(1):93–102.

    Article  CAS  PubMed  Google Scholar 

  189. Yang TJ, Gawlak SL. Lymphoid organ weights and organ: body weight ratios of growing beagles. Lab Anim. 1989;23:143–6.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Bram Schroyen for the input and advice.

Author information

Authors and Affiliations

Authors

Contributions

N.V. collected the information and data for the review and wrote the manuscript. D.N. and V.A. critically reviewed the manuscript.

Corresponding author

Correspondence to Vy Thi Thanh Nguyen.

Ethics declarations

Conflict of Interest

The authors declare they have no financial interests. N.V. is affiliated with Janssen Pharmaceutica NV. D.N. and V.A. are employees of Janssen Pharmaceutica NV.

Additional information

Communicated by Huybrecht T'jollyn and Oliver Ackaert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1536 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, V.T.T., Darville, N. & Vermeulen, A. Pharmacokinetics of Long-Acting Aqueous Nano-/Microsuspensions After Intramuscular Administration in Different Animal Species and Humans—a Review. AAPS J 25, 4 (2023). https://doi.org/10.1208/s12248-022-00771-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-022-00771-5

Keywords

Navigation