Skip to main content

Advertisement

Log in

Microemulsion systems: from the design and architecture to the building of a new delivery system for multiple-route drug delivery

  • Original Article
  • Published:
Drug Delivery and Translational Research Aims and scope Submit manuscript

Abstract

Poorly soluble active pharmaceutical ingredients (APIs) create major problems in drug dosage form formulation resulting in significant delays in drug pharmaceutical screening, impairing the drug dosage form production. Aiming to minimize the use of excipients for increasing drug apparent solubility and, as a result, its bioavailability, exploration of innovative approaches is an earnest need. Microemulsion is an alternative drug delivery system that emerged as a valuable tool to achieve safe formulations for insoluble compounds and to improve their biopharmaceutical properties and pharmacokinetics. This review aims to present the state of the art of microemulsion systems, bringing an overview about their origin and how they can be properly produced and thoroughly characterized by different approaches. Furthermore, comments on regulatory issues regarding stability assessment and toxicity evaluation are discussed. The review concludes with a current opinion on microemulsion systems. The overall objective of this work was to describe all the potentialities of microemulsion systems as a drug carrier for therapeutic purposes, highlighting the unique features of this nanotechnological platform.

Graphical abstract

Display Image

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Heimbach T, Fleisher D, Kaddoumi A. Overcoming poor aqueous solubility of drugs for oral delivery. Prodrugs. New York: Springer; 2007. p. 157–215.

  2. Nagarwal RC, Kumar R, Dhanawat M, Das N, Pandit JK. Nanocrystal technology in the delivery of poorly soluble drugs: an overview. Curr Drug Deliv. 2011;8(4):398–406.

    Article  CAS  PubMed  Google Scholar 

  3. Joshi K, Chandra A, Jain K, Talegaonkar S. Nanocrystalization: an emerging technology to enhance the bioavailability of poorly soluble drugs. Pharm Nanotechnol. 2019;7(4):259–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bhatt V, Shete G, Bansal AK. Mechanism of generation of drug nanocrystals in celecoxib: mannitol nanocrystalline solid dispersion. Int J Pharm. 2015;495(1):132–9.

    Article  CAS  PubMed  Google Scholar 

  5. Uekama K. Design and evaluation of cyclodextrin-based drug formulation. Chem Pharm Bull. 2004;52(8):900–15.

    Article  CAS  Google Scholar 

  6. Alam MA, Al-Jenoobi FI, Al-mohizea AM. Commercially bioavailable proprietary technologies and their marketed products. Drug Discov Today. 2013;18(19–20):936–49.

    Article  PubMed  Google Scholar 

  7. Lawrence MJ, Rees GD. Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev. 2000;45(1):89–121.

    Article  CAS  PubMed  Google Scholar 

  8. Hoar TP, Schulman JH. Transparent water-in-oil dispersions: the oleopathic hydro-micelle. Nature. 1943;152(3847):102–3.

    Article  CAS  Google Scholar 

  9. Schulman JH, Stoeckenius W, Prince LM. Mechanism of formation and structure of micro emulsions by electron microscopy. J Phys Chem. 1959;63(10):1677–80.

    Article  CAS  Google Scholar 

  10. Danielsson I, Lindman B. The definition of microemulsion. Colloids Surf. 1981;3:391–2.

    Article  CAS  Google Scholar 

  11. Shinoda K, Lindman B. Organized surfactant systems: microemulsions. Langmuir. 1987;3(2):135–49.

    Article  CAS  Google Scholar 

  12. Acharya DP, Hartley PG. Progress in microemulsion characterization. Curr Opin Colloid Interface Sci. 2012;17(5):274–80.

    Article  CAS  Google Scholar 

  13. Bordi F, Cametti C, Sennato S, Diociaiuti M. Direct evidence of multicompartment aggregates in polyelectrolyte-charged liposome complexes. Biophys J. 2006;91(4):1513–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. McClements DJ. Encapsulation, protection, and release of hydrophilic active components: potential and limitations of colloidal delivery systems. Adv Colloid Interface Sci. 2015;219:27–53.

    Article  CAS  PubMed  Google Scholar 

  15. Levine DH, Ghoroghchian PP, Freudenberg J, Zhang G, Therien MJ, Greene MI, et al. Polymersomes: a new multi-functional tool for cancer diagnosis and therapy. Methods. 2008;46(1):25–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hu M, Shen Y, Zhang L, Qiu L. Polymersomes via self-assembly of amphiphilic β-cyclodextrin-centered triarm star polymers for enhanced oral bioavailability of water-soluble chemotherapeutics. Biomacromol. 2016;17(3):1026–39.

    Article  CAS  Google Scholar 

  17. Singh S, Vijayakumar MR, Dewangan HK. Lipid based aqueous core nanocapsules (ACNs) for encapsulating hydrophillic vinorelbine bitartrate: preparation, optimization, characterization and in vitro safety assessment for intravenous administration. Curr Drug Deliv. 2018;15(9):1284–93.

    Article  PubMed  CAS  Google Scholar 

  18. Watnasirichaikul S, Davies NM, Rades T, Tucker IG. Preparation of biodegradable insulin nanocapsules from biocompatible microemulsions. Pharm Res. 2000;17(6):684–9.

    Article  CAS  PubMed  Google Scholar 

  19. McClements DJ. Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter. 2012;8(6):1719–29.

    Article  CAS  Google Scholar 

  20. Bagwe RP, Kanicky JR, Palla BJ, Patanjali PK, Shah DO. Improved drug delivery using microemulsions: rationale, recent progress, and new horizons. Crit Rev Ther Drug Carrier Syst. 2001;18(1):77–140.

    CAS  PubMed  Google Scholar 

  21. Schwuger M-J, Stickdorn K, Schomaecker R. Microemulsions in technical processes. Chem Rev. 1995;95(4):849–64.

    Article  CAS  Google Scholar 

  22. Kahlweit M, Strey R, Busse G. Microemulsions: a qualitative thermodynamic approach. J Phys Chem. 1990;94(10):3881–94.

    Article  CAS  Google Scholar 

  23. Zhu X, Wei H, Hou M, Wang Q, You X, Li L. Thermodynamic behavior and flotation kinetics of an ionic liquid microemulsion collector for coal flotation. Fuel. 2020;262:116627.

    Article  CAS  Google Scholar 

  24. Winsor P. Hydrotropy, solubilisation and related emulsification processes. Phys Chem Chem Phys. 1948;44:376–98.

    CAS  Google Scholar 

  25. Gillberg G, Lehtinen H, Friberg S. NMR and IR investigation of the conditions determining the stability of microemulsions. J Colloid Interf Sci. 1970;33(1):40–53.

    Article  CAS  Google Scholar 

  26. Shinoda K, Friberg SJ. Microemulsions: colloidal aspects. Adv Colloid Interface Sci. 1975;4(4):281–300.

    Article  CAS  Google Scholar 

  27. Rosen MJ, Wang H, Shen P, Zhu Y. Ultralow interfacial tension for enhanced oil recovery at very low surfactant concentrations. Langmuir. 2005;21(9):3749–56.

    Article  CAS  PubMed  Google Scholar 

  28. Xavier-Junior FH, Vauthier C, Morais AR, Alencar EN, Egito ES. Microemulsion systems containing bioactive natural oils: an overview on the state of the art. Drug Dev Ind Pharm. 2017;43(5):700–14.

    Article  CAS  PubMed  Google Scholar 

  29. Prince L. Microemulsions theory and practice. Elsevier; 2012.

  30. AIA Mohamed AS Sultan IA Hussein GA Al-Muntasheri 2017 Influence of surfactant structure on the stability of water-in-oil emulsions under high-temperature high-salinity conditions J Chem-NY 1 11

  31. Leung R, Shah DO. Solubilization and phase equilibria of water-in-oil microemulsions: I. Effects of spontaneous curvature and elasticity of interfacial films. J Colloid Interf Sci. 1987;120(2):320–9.

    Article  Google Scholar 

  32. Israelachvili JN, Mitchell DJ, Ninham BW. Theory of self-assembly of hydrocarbon amphiphiles into micelles and bilayers. J Chem Soc Faraday Trans 2: Molecular Physics C. 1976;72:1525–68.

    Article  CAS  Google Scholar 

  33. Griffin WC. Classification of surface-active agents by “HLB.” J Soc Cosmet Chem. 1949;1:311–26.

    Google Scholar 

  34. Salager J. Quantifying the concept of physico-chemical formulation in surfactant-oil-water systems—state of the art. Trends in Colloid and Interface Science X. Springer; 1996. p. 137–42.

  35. Bancroft WD. The theory of emulsification. V J Phys Chem. 1913;17(6):501–19.

    Article  CAS  Google Scholar 

  36. Ruckenstein E. Microemulsions, macroemulsions, and the Bancroft rule. Langmuir. 1996;12(26):6351–3.

    Article  CAS  Google Scholar 

  37. Oliveira WN, Amaral-Machado L, Alencar EN, Marcelino HR, Genre J, Silva-Rocha WP, et al. Getting the jump on the development of bullfrog oil microemulsions: a nanocarrier for amphotericin B intended for antifungal treatment. AAPS Pharmscitech. 2018;19(6):2585–97.

    Article  CAS  PubMed  Google Scholar 

  38. Matsaridou I, Barmpalexis P, Salis A, Nikolakakis I. The influence of surfactant HLB and oil/surfactant ratio on the formation and properties of self-emulsifying pellets and microemulsion reconstitution. AAPS PharmSciTech. 2012;13(4):1319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Damasceno BPGL, Dominici VA, Urbano IA, Silva JA, Araújo IB, Santos-Magalhães NS, et al. Amphotericin B microemulsion reduces toxicity and maintains the efficacy as an antifungal product. J Biomed Nanotech. 2012;8(2):290–300.

    Article  CAS  Google Scholar 

  40. Kale S, Deore S. Emulsion micro emulsion and nano emulsion: a review. Sys Rev Pharm. 2017;8(1):39.

    Article  CAS  Google Scholar 

  41. Kang BK, Chon SK, Kim SH, Jeong SY, Kim MS, Cho SH, et al. Controlled release of paclitaxel from microemulsion containing PLGA and evaluation of anti-tumor activity in vitro and in vivo. Int J Pharm. 2004;286(1–2):147–56.

    Article  CAS  PubMed  Google Scholar 

  42. Karasulu HY, Karabulut B, Göker E, Güneri T, Gabor F. Controlled release of methotrexate from W/O microemulsion and its in vitro antitumor activity. J Drug Delivery. 2007;14(4):225–33.

    Article  CAS  Google Scholar 

  43. Kronberg B, Lindman B. Surfactants and polymers in aqueous solution. Chichester: John Wiley & Sons Ltd.; 2003.

    Google Scholar 

  44. Cooke Jr CE, Schulman JH. The effect of different hydrocarbons on the formation of microemulsions surface chemistry. Henry Krumb School of Mines, Stanley-Thompson Laboratories, Columbia University, New York 27, USA: Elsevier; 1965. p. 231–51.

  45. Schulman JH, Riley DP. X-ray investigation of the structure of transparent oil-water disperse systems. I J Colloid Sci. 1948;3(4):383–405.

    Article  CAS  PubMed  Google Scholar 

  46. Sears DF, Schulman JH. Influence of water structures on the surface pressure, surface potential, and area of soap monolayers of lithium, sodium, potassium, and calcium. J Phy Chem. 1964;68(12):3529–34.

    Article  CAS  Google Scholar 

  47. Stoeckenius W, Schulman JH, Prince LM. The structure of myelin figures and microemulsions as observed with the electron microscope. Kolloid-Zeitschrift. 1960;169(1–2):170–80.

    Article  CAS  Google Scholar 

  48. Schulman JH, Friend JA. Light scattering investigation of the structure of transparent oil-water disperse systems. II J Colloid Sci. 1949;4(5):497–509.

    Article  CAS  Google Scholar 

  49. Lindman B, Olsson U, Soderman O. Characterization of microemulsions by NMR. Handbook of microemulsion science and technology. New York: Marcel Dekker: Routledge; 2018. p. 309–56.

  50. Chen SJ, Evans DF, Ninham BW, Mitchell DJ, Blum FD, Pickup S. Curvature as a determinant of microstructure and microemulsions. J Phy Chem. 1986;90(5):842–7.

    Article  CAS  Google Scholar 

  51. Scriven LE. Equilibrium bicontinuous structures. Micellization, solubilization, and microemulsions. Plenum Press : New York: Springer; 1977. p. 877–93.

  52. Zemb TN, Hyde ST, Derian PJ, Barnes IS, Ninham BW. Microstructure from x-ray scattering: the disordered open connected model of microemulsions. J Phy Chem. 1987;91(14):3814–20.

    Article  CAS  Google Scholar 

  53. Chen SJ, Evans DF, Ninham BW. Properties and structure of three-component ionic microemulsions. J Phy Chem. 1984;88(8):1631–4.

    Article  CAS  Google Scholar 

  54. Schubert KV, Strey R. Small-angle neutron scattering from microemulsions near the disorder line in water/formamide–octane-CiEj systems. J Chem Phys. 1991;95(11):8532–45.

    Article  CAS  Google Scholar 

  55. Resende KX, Corrêa MA, Oliveira AG, Scarpa MJ. Effect of cosurfactant on the supramolecular structure and physicochemical properties of non-ionic biocompatible microemulsions. Braz J Pharm Sci. 2008;44(1):35–42.

    CAS  Google Scholar 

  56. Bourell M, Shechter RS. Microemulsions and related systems: formulations, solvency and physical properties. Surfactant Science Series: Marcel Dekker New York; 1988.

    Google Scholar 

  57. Rosen M, Joy TK. Surfactants and interfacial phenomena. New Jersey: John Wiley & Sons; 2004.

    Book  Google Scholar 

  58. Formariz TP, Chiavacci LA, Sarmento VHV, Franzini CM, Silva- AA Jr, Scarpa MV, et al. Structural changes of biocompatible neutral microemulsions stabilized by mixed surfactant containing soya phosphatidylcholine and their relationship with doxorubicin release. Colloids Surf B Biointerfaces. 2008;63:287295.

    Article  CAS  Google Scholar 

  59. Correa MA, Scarpa MV, Oliveira AG. On the incorporation of the non-steroidal anti-inflammatory naproxen into cationic O/W microemulsions. Colloids Surf B. 2005;43(1):108–14.

    Article  CAS  Google Scholar 

  60. Brinon L, Geiger S, Alard V, Doucet J, Tranchant JF, Courraze G. Percutaneous absorption of sunscreens from liquid crystalline phases. J Control Release. 1999;60(1):67–76.

    Article  CAS  PubMed  Google Scholar 

  61. Dalmora MEA, Dalmora SL, Oliveira AG. Inclusion complex of piroxicam with β-cyclodextrin and incorporation in cationic microemulsion In vitro drug release and in vivo topical anti-inflammatory effect. Int J Pharm. 2001;222(1):45–55.

    Article  CAS  PubMed  Google Scholar 

  62. Dalmora MEA, Oliveira AG. Inclusion complex of piroxicam with β-cyclodextrin and incorporation in hexadecyltrimethylammonium bromide based microemulsion. Int J Pharm. 1999;184(2):157–64.

    Article  CAS  PubMed  Google Scholar 

  63. Formariz TP, Chiavacci LA, Sarmento VHV, Santilli CV, Egito EST, Oliveira AG. Relationship between structural features and in vitro release of doxorubicin from biocompatible anionic microemulsion. Colloids Surf B Int. 2007;60(1):28–35.

    Article  CAS  Google Scholar 

  64. Shinoda K. The correlation between the dissolution state of nonionic surfactant and the type of dispersion stabilized with the surfactant. J Col Interface Sci. 1967;24(1):4–9.

    Article  CAS  Google Scholar 

  65. Shinoda K, Kunieda H. Encyclopedia of emulsion technology. Marcel Dekker: New York: Becher; 1983.

  66. Shinoda K, Saito H. The Stability of O/W type emulsions as functions of temperature and the HLB of emulsifiers: the emulsification by PIT-method. J Col Interface Sci. 1969;30(2):258–63.

    Article  CAS  Google Scholar 

  67. Kizling J, Stenius P. Microemulsions formed by water, aliphatic hydrocarbons, and pentaethylene glycol dodecyl ether: the temperature dependence of aggregate size. J Colloid Interf Sci. 1987;118(2):482–92.

    Article  CAS  Google Scholar 

  68. Ravey JC, Buzier M. Structure of nonionic microemulsions by small angle neutron scattering. Surf Sol. 1984;III:1759–79.

    Google Scholar 

  69. Shinoda K, Sagitani H. Emulsifier selection in water/oil type emulsions by the hydrophile-lipophile balance-temperature system. J Colloid Interf Sci. 1978;64(1):68–71.

    Article  CAS  Google Scholar 

  70. Formariz TP, Sarmento VH, Silva-Junior AA, Scarpa MV, Santilli CV, Oliveira AG. Doxorubicin biocompatible O/W microemulsion stabilized by mixed surfactant containing soya phosphatidylcholine. Colloids Surf B Biointerfaces. 2006;51(1):54–61.

    Article  CAS  PubMed  Google Scholar 

  71. Pestana KC, Formariz TP, Franzini CM, Sarmento VHV, Chiavacci LA, Scarpa MV, et al. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Colloids Surf B. 2008;66:253–9.

    Article  CAS  Google Scholar 

  72. Chang MC, Bodmeier R. Binding of drugs to monoglyceride-based drug delivery systems. Int J Pharm. 1997;147:135–51.

    Article  CAS  Google Scholar 

  73. Hyde ST. Handbook of applied surface and colloid chemistry. New York: John Wiley & Sons; 1961.

    Google Scholar 

  74. Klug HP. X-ray Diffraction Procedures for polycrystalline and amorphous materials New York: John Wiley & Sons; 1954.

  75. Epand RM, Bach D, Borochov N, Wachtel E. Cholesterol crystalline polymorphism and the solubility of cholesterol in phosphatidylserine. Biophys J. 2000;78(2):866–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Epand RM, Bach D, Epand RF, Borochov N, Wachtel E. A new high-temperature transition of crystalline cholesterol in mixtures with phosphatidylserine. Biophys J. 2001;81(3):1511–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Loomis CR, Shipley GG, Small DM. The phase behavior of hydrated cholesterol. J Lipid Res. 1979;20:525–35.

    Article  CAS  PubMed  Google Scholar 

  78. Guinier A. Théorie et technique de la radiocristallographie. Paris: Dunod; 1964.

    Google Scholar 

  79. Ezrahi S, Aserin A, Garti N. Handkook of microemulsion science and technology. New York: Marcel Dekker; 1999.

    Google Scholar 

  80. Beaucage G. Approximations leading to a unified exponential/power-law approach to small-angle scattering. J Appl Crystallogr. 1995;28(6):717–28.

    Article  CAS  Google Scholar 

  81. Song M, Liu W, Wang Q, Wang J, Chai J. A surfactant-free microemulsion containing diethyl malonate, ethanol, and water: Microstructure, micropolarity and solubilizations. J Ind Eng Chem. 2020;83:81–9.

    Article  CAS  Google Scholar 

  82. Bolzinger-Thevenin MA, Grossiord JL, Poelman MC. Characterization of a sucrose ester microemulsion by freeze fracture electron micrograph and small angle neutron scattering experiments. Langmuir. 1999;15(7):2307–15.

    Article  CAS  Google Scholar 

  83. Clausse M, Peyrelasse J, Heil J, Boned C, Lagourette B. Bicontinuous structure zones in microemulsions. Nature. 1981;293(5834):636–8.

    Article  CAS  Google Scholar 

  84. Rodionov AN, Kalendarev RI, Tchikvaidze GV, Eiduss JA. A new phase in solid state arsenic. Nature. 1979;281(5726):60–60.

    Article  Google Scholar 

  85. Ansel HC, Loyd VA, Popovich NG. Pharmaceutical dosage forms and drug delivery systems. 7th ed. Philadelphia: Lippincott Williams & Wilkins; 2005.

    Google Scholar 

  86. Mori Cortés N, Califano AN, Lorenzo G. Physical and chemical stability under environmental stress of microemulsions formulated with fish oil. Food Res Int. 2019;119:283–90.

    Article  PubMed  CAS  Google Scholar 

  87. Date AA, Nagarsenker MS. Parenteral microemulsions: an overview. Int J Pharm. 2008;355(1–2):19–30.

    Article  CAS  PubMed  Google Scholar 

  88. Muthu MS, Feng S-S. Pharmaceutical stability aspects of nanomedicines. Nanomedicine. 2009;4(8):857–60.

    Article  CAS  PubMed  Google Scholar 

  89. ICH HTG, editor. Stability testing of new drug substances and products Q1A (R2). Proceedings of the International Conference on Harmonization, Geneva; 2003.

  90. ICH HTG, editor. Photostability testing of new drug substances and products Q1B. Proceedings of the International Conference on Harmonization, Geneva; 1996.

  91. ICH HTG, editor. Stability Testing For New Dosage Forms Q1C. Proceedings of the International Conference on Harmonization, Geneva; 1996.

  92. ICH HTG, editor. Quality of Biotechnological Products: Stability Testing of Biotechnological/Biological Products Q5C. Proceedings of the International Conference on Harmonization; 1995.

  93. Administration FaD, editor. Liposome Drug Products - Guidance for Industry. Pharmaceutical Quality/CMC; 2018.

  94. Guidelines for evaluation of nanopharmaceuticals in India. New Delhi: Department of Biotechnology Government of India; 2019.

  95. Soares S, Sousa J, Pais A, Vitorino C. Nanomedicine: Principles, properties, and regulatory issues. Front Chem. 2018;6:360.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Amaral-Machado L, Oliveira WN, Alencar EN, Cruz AKM, Rocha HAO, Ebeid K, et al. Bullfrog oil (Rana catesbeiana Shaw) induces apoptosis, in A2058 human melanoma cells by mitochondrial dysfunction triggered by oxidative stress. Biomed & Pharmacot. 2019;117:109103.

    Article  CAS  Google Scholar 

  97. Wang P, Henning SM, Heber D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS ONE. 2010;5(4):e10202.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Huang KT, Chen YH, Walker AM. Inaccuracies in MTS assays: major distorting effects of medium, serum albumin, and fatty acids. Biotechniques. 2004;37(3):406–12.

    Article  CAS  PubMed  Google Scholar 

  99. Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Method. 1983;65(1–2):55–63.

    Article  CAS  Google Scholar 

  100. Laothaweerungsawat N, Neimkhum W, Anuchapreeda S, Sirithunyalug J, Chaiyana W. Transdermal delivery enhancement of carvacrol from Origanum vulgare L. essential oil by microemulsion. Int J Pharm. 2020;579:119052.

    Article  CAS  PubMed  Google Scholar 

  101. Tiwari N, Sivakumar A, Mukherjee A, Chandrasekaran N. Enhanced antifungal activity of ketoconazole using rose oil based novel microemulsion formulation. J Drug Deliv Sci Techol. 2018;47:434–44.

    Article  CAS  Google Scholar 

  102. Morais ARV, Silva AL, Cojean S, Balaraman K, Bories C, Pomel S, et al. In-vitro and in-vivo antileishmanial activity of inexpensive amphotericin B formulations: heated amphotericin B and amphotericin B-loaded microemulsion. Exp Parasitol. 2018;192:85–92.

    Article  CAS  Google Scholar 

  103. Silva AE, Barratt G, Chéron M, Egito EST. Development of oil-in-water microemulsions for the oral delivery of amphotericin B. Int J Pharm. 2013;454(2):641–8.

    Article  CAS  PubMed  Google Scholar 

  104. Longo-Sorbello GSA, Saydam G, Banerjee D, Bertino JR. Cytotoxicity and cell growth assays. Cell biology. Elsevier; 2006. p. 315–24.

  105. Bellamakondi PK, Godavarthi A, Ibrahim M, Kulkarni S, Naik RM, Maradam S. In vitro cytotoxicity of caralluma species by MTT and trypan blue dye exclusion. Asian J Pharm Clin Res. 2014;7(2):17–9.

    Google Scholar 

  106. Ribeiro S, Guilhermino L, Sousa JP, Soares AMVMJ. Novel bioassay based on acetylcholinesterase and lactate dehydrogenase activities to evaluate the toxicity of chemicals to soil isopods. Ecotoxi Environ Safe. 1999;44(3):287–93.

    Article  CAS  Google Scholar 

  107. Diamantino TC, Almeida E, Soares AMVMmM, Guilhermino L. Lactate dehydrogenase activity as an effect criterion in toxicity tests with Daphnia magna straus. J Chemosphere. 2001;45(4-5):553–60.

    Article  CAS  Google Scholar 

  108. Decker T, Lohmann-Matthes ML. A quick and simple method for the quantitation of lactate dehydrogenase release in measurements of cellular cytotoxicity and tumor necrosis factor (TNF) activity. J Immunol Method. 1988;115(1):61–9.

    Article  CAS  Google Scholar 

  109. Zhang Q, Li J, Zhang W, An Q, Wen J, Wang A, et al. Acute and sub-chronic toxicity studies of honokiol microemulsion. J Regul Toxicol Pharm. 2015;71(3):428–36.

    Article  CAS  Google Scholar 

  110. Roohinejad S, Middendorf D, Burritt DJ, Bindrich U, Everett DW, Oey I. Capacity of natural β-carotene loaded microemulsion to protect Caco-2 cells from oxidative damage caused by exposure to H2O2. Food Research Int. 2014;66:469–77.

    Article  CAS  Google Scholar 

  111. Moreira-Oliveira SS, Amaral-Machado L, Oliveira WN, Alencar EN, Zatta KC, Souza LBFC, et al. Buccal Bullfrog (Rana catesbeiana Shaw) Oil emulsion: a mucoadhesive system intended for treatment of oral candidiasis. Pharmaceutics. 2018;10(4):257–73.

    Article  CAS  PubMed Central  Google Scholar 

  112. Zhang Q, Tian X, Cao X. Transferrin-functionalised microemulsion co-delivery of β-elemene and celastrol for enhanced anti-lung cancer treatment and reduced systemic toxicity. Drug Deliv Transl Res. 2019;9(3):667–78.

    Article  PubMed  CAS  Google Scholar 

  113. Halliwell B. Free radicals and antioxidants–quo vadis? Trend Pharmacol. 2011;32(3):125–30.

    Article  CAS  Google Scholar 

  114. Harini Chowdary V, Prasanna Raju Y, Basaveswara Rao MV, CR. S. Insights of microemulsions - A thermodynamic comprehension. Jordan J Pharm Sci. 2017;10(1):23–40.

  115. Midler O, editor. Microemulsions as drug delivery systems. Juan Le Pins: Virbac Symposium; 2003.

    Google Scholar 

  116. Gatto H, Rème C, Kennedy JF. Designing a new range of topical products: the Allermyl® story. VIRBAC Labo; 2005.

  117. van Doren H, Smits E, Pestman J, Engberts J, Kellogg R. Mesogenic sugars. From aldoses to liquid crystals and surfactants. Chem Soc Rev. 2000;29(3):183–99.

  118. Djekic L, Primorac M. The influence of cosurfactants and oils on the formation of pharmaceutical microemulsions based on PEG-8 caprylic/capric glycerides. Int J Pharm. 2008;352(1–2):231–9.

    Article  CAS  PubMed  Google Scholar 

  119. Szumała P. Structure of microemulsion formulated with monoacylglycerols in the presence of polyols and ethanol. J Surfactants Deterg. 2015;18(1):97–106.

    Article  PubMed  CAS  Google Scholar 

  120. Tang B, Cheng G, Gu J-C, Xu C-H. Development of solid self-emulsifying drug delivery systems: preparation techniques and dosage forms. Drug Discov Today. 2008;13(13–14):606–12.

    Article  CAS  PubMed  Google Scholar 

  121. Flanagan J, Kortegaard K, Pinder D, Rades T, Singh H. Solubilisation of soybean oil in microemulsions using various surfactants. Food Hydrocoll. 2006;20(2–3):253–60.

    Article  CAS  Google Scholar 

  122. Maag H. Fatty acid derivatives: important surfactants for household, cosmetic and industrial purposes. J Am Oil Chem Soc. 1984;61(2):259–67.

    Article  CAS  Google Scholar 

Download references

Funding

This study was funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001 and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPQ).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the manuscript drafting. Egito EST was the mentor of the manuscript concept.

Corresponding author

Correspondence to E. S. T. Egito.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Egito, E.S.T., Amaral-Machado, L., Alencar, E.N. et al. Microemulsion systems: from the design and architecture to the building of a new delivery system for multiple-route drug delivery. Drug Deliv. and Transl. Res. 11, 2108–2133 (2021). https://doi.org/10.1007/s13346-020-00872-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13346-020-00872-8

Keywords

Navigation