Skip to main content

Advertisement

Log in

Long-Acting Injectable Aqueous Suspensions—Summary From an AAPS Workshop

  • Review Article
  • Perspectives on clinical drug development of Long-Acting Injectables
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Through many years of clinical application of long-acting injectables, there is clear proof that this type of formulation does not just provide the patient with convenience, but more importantly a more effective treatment of the medication provided. The formulation approach therefore contains huge untapped potential to improve the quality of life of many patients with a variety of different diseases. This review provides a summary of some of the central talks provided at the workshop with focus on aqueous suspensions and their use as a long-acting injectable. Elements as formulation, manufacturing, in vitro dissolution methods, in vitro and in vivo correlation, in silico modelling provide an insight into some of the current understandings, learnings, and not least gaps in the field.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Burgess DJ, Wright JC. An introduction to long acting injections and implants. In: In Burgess DJ, Wright JC, editors. long acting injections and implants. Springer; 2012. p. 1–9.

    Google Scholar 

  2. Kipp JE. The role of solid nanoparticle technology in the parenteral delivery of poorly water-soluble drugs. Int J Pharm. 2004;284:109–22.

    PubMed  CAS  Google Scholar 

  3. Rhee YS, Park CW, Deluca PP, Mansour HM. Sustained-release injectable drug delivery: a review of current and future systems. PharmTechnol. 2010;s6:8–13.

    Google Scholar 

  4. Maresova P, Javanmardi E, Barakovic S, BarakovicHusic J, Tomsone S, Krejcar O, Kuca K. Consequences of chronic diseases and other limitations associated with old age - a scoping review. BMC Public Health. 2019;19:1431.

    PubMed  PubMed Central  Google Scholar 

  5. Brissos S, Veguilla MR, Taylor D, Balanzá-Martinez V. The role of long-acting injectable antipsychotics in schizophrenia: a critical appraisal. Ther Adv Psychopharmacol. 2014;4:198–219.

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Remenar JF. Making the leap from daily oral dosing to long-acting injectables: lessons from the antipsychotics. Mol Pharm. 2014;11:1739–49.

    PubMed  CAS  Google Scholar 

  7. Rubio JM, Schoretsanitis G, John M, Tiihonen J, Taipale H, Guinart D, Malhotra AK, Correll CU, Kane JM. Psychosis relapse during treatment with long-acting injectable antipsychotics in individuals with schizophrenia-spectrum disorders: an individual participant data meta-analysis. Lancet Psychiatry. 2020;7:749–61.

    PubMed  Google Scholar 

  8. Morris MT, Tarpada SP. Long-acting injectable paliperidone palmitate: A review of efficacy and safety. Psychopharmacol Bull. 2017;47:42–52.

    PubMed  PubMed Central  Google Scholar 

  9. Owen A, Rannard S. Strengths, weaknesses, opportunities and challenges for long acting injectable therapies: Insights for applications in HIV therapy. Adv Drug Deliv Rev. 2016;103:144–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  10. Rabinow BE. Nanosuspensions in drug delivery. Nat Rev Drug Discov. 2004;3:785–96.

    PubMed  CAS  Google Scholar 

  11. Claxton AJ, Cramer J, Pierce C. A systematic review of the associations between dose regimens and medication compliance. Clin Therapeut. 2001;23:1296–310.

    CAS  Google Scholar 

  12. Coleman CI, Limone B, Sobieraj DM, Lee S, Roberts MS, Kaur R, Alam T. Dosing frequency and medication adherence in chronic disease. J Manag Care Pharm. 2012;18:527–39.

    PubMed  Google Scholar 

  13. Coleman CI, Roberts MS, Sobieraj DM, Lee S, Alam T, Kaur R. Effect of dosing frequency on chronic cardiovascular disease medication adherence. Curr Med Res Opin. 2012;28:669–80.

    PubMed  CAS  Google Scholar 

  14. Saini SD, Schoenfeld P, Kaulback K, Dubinsky MC. Effect of medication dosing frequency on adherence in chronic diseases. Am J Manag Care. 2009;15:e22-33.

    PubMed  Google Scholar 

  15. Leenen FH, Wilson TW, Bolli P, Larochelle P, Myers M, Handa SP, Boileau G, Tanner J. Patterns of compliance with once versus twice daily antihypertensive drug therapy in primary care: a randomized clinical trial using electronic monitoring. Can J Cardiol. 1997;13:914–20.

    PubMed  CAS  Google Scholar 

  16. Eberlin M, Otto G, Krämer I. Increased medication compliance of liver transplant patients switched from a twice-daily to a once-daily tacrolimus-based immunosuppressive regimen. Transplant Proc. 2013;45:2314–20.

    PubMed  CAS  Google Scholar 

  17. Weiden PJ, Kozma C, Grogg A, Locklear J. Partial compliance and risk of rehospitalization among California Medicaid patients with schizophrenia. Psychiatr Serv. 2004;55:886–91.

    PubMed  Google Scholar 

  18. Ascher-Svanum H, Faries DE, Zhu B, Ernst FR, Swartz MS, Swanson JW. Medication adherence and long-term functional outcomes in the treatment of schizophrenia in usual care. J Clin Psychiatry. 2006;67:453–60.

    PubMed  Google Scholar 

  19. Sajatovic M, Levin J, Ramirez LF, Hahn DY, Tatsuoka C, Bialko CS, Cassidy KA, Fuentes-Casiano E, Williams TD. Prospective trial of customized adherence enhancement plus long-acting injectable antipsychotic medication in homeless or recently homeless individuals with schizophrenia or schizoaffective disorder. J Clin Psychiatry. 2013;74:1249–55.

    PubMed  PubMed Central  Google Scholar 

  20. Morrissette DA, Stahl SM. Optimizing outcomes in schizophrenia: long-acting depots and long-term treatment. CNS Spectr. 2012;17(Suppl 1):10–21.

    PubMed  Google Scholar 

  21. Okoli CTC, Kappi A, Wang T, Makowski A, Cooley AT. The effect of long-acting injectable antipsychotic medications compared with oral antipsychotic medications among people with schizophrenia: A systematic review and meta-analysis. Int J Ment Health Nurs. 2022;31:469–535.

    PubMed  Google Scholar 

  22. Hirsch SR, Gaind R, Rohde PD, Stevens BC, Wing JK. Outpatient maintenance of chronic schizophrenic patients with long-acting fluphenazine: double-blind placebo trial. Report to the Medical Research Council Committee on Clinical Trials in Psychiatry. Br Med J. 1973;1:633–7.

    PubMed  PubMed Central  CAS  Google Scholar 

  23. Kaunitz AM. Injectable long-acting contraceptives. Clin Obstet Gynecol. 2001;44:73–91.

    PubMed  CAS  Google Scholar 

  24. Swindells S, Siccardi M, Barrett SE, Olsen DB, Grobler JA, Podany AT, Nuermberger E, Kim P, Barry CE, Owen A, Hazuda D, Flexner C. Long-acting formulations for the treatment of latent tuberculous infection: opportunities and challenges. Int J Tuberc Lung Dis. 2018;22:125–32.

    PubMed  CAS  Google Scholar 

  25. FDA. 2023; https://www.fda.gov/drugs/human-immunodeficiency-virus-hiv/fda-approves-cabenuva-and-vocabria-treatment-hiv-1-infection. accessed 13-Feb-2023.

  26. Giliad. 2023; https://www.gilead.com/news-and-press/press-room/press-releases/2021/3/gilead-and-merck-announce-agreement-to-jointly-develop-and-commercialize-longacting-investigational-treatment-combinations-of-lenacapavir-and-islatr. accessed 13-Feb-2023.

  27. Liversidge GG, Cundy KC, Bishop JF, Czekai DA. Surface Modified Drug Nanoparticles. United States Patent. 1992;5:145684.

    Google Scholar 

  28. Shi J, Wang D, Tian Y, Wang Z, Gao J, Liu N, Gao X, Zheng A, Zhang H, Xiang M. Comparison of paliperidone palmitate from different crystallization processes and effect on formulations in vitro and in vivo. Pharmaceutics. 2022;14:1094.

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Kalepu S, Nekkanti V. Insoluble drug delivery strategies: review of recent advances and business prospects. Acta Pharm Sin B. 2015;5:442–53.

    PubMed  PubMed Central  Google Scholar 

  30. Wu L, Zhang J, Watanabe W. Physical and chemical stability of drug nanoparticles. Adv Drug Deliv Rev. 2011;63:456–69.

    PubMed  CAS  Google Scholar 

  31. Kesisoglou F, Panmai S, Wu Y. Nanosizing–oral formulation development and biopharmaceutical evaluation. Adv Drug Deliv Rev. 2007;59:631–44.

    PubMed  CAS  Google Scholar 

  32. Malamatari M, Taylor KMG, Malamataris S, Douroumis D, Kachrimanis K. Pharmaceutical nanocrystals: production by wet milling and applications. Drug Discov Today. 2018;23:534–47.

    PubMed  CAS  Google Scholar 

  33. Li M, Azad M, Davé R, Bilgili E. Nanomilling of Drugs for Bioavailability Enhancement: A Holistic Formulation-Process Perspective. Pharmaceutics. 2016;8:17.

    PubMed  PubMed Central  Google Scholar 

  34. Verma S, Kumar S, Gokhale R, Burgess DJ. Physical stability of nanosuspensions: investigation of the role of stabilizers on Ostwald ripening. Int J Pharm. 2011;406:145–52.

    PubMed  CAS  Google Scholar 

  35. Thanh NT, Maclean N, Mahiddine S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev. 2014;114:7610–30.

    PubMed  CAS  Google Scholar 

  36. Nyqvist H, Wadsten T. Structure-related variation in epimer ratio and solvent content of bacampicillin hydrochloride. Acta Pharm Suec. 1985;22:215–28.

    PubMed  CAS  Google Scholar 

  37. De Cleyn E, Holm R, Van den Mooter G. Shedding a light on the physical stability of suspensions micronised with intensified vibratory milling; A trend observed with decreasing particle size as a function of time. Int J Pharm. 2021;603:120687.

    PubMed  Google Scholar 

  38. Joshi V, Dwivedi S, Ward GH. Increase in the specific surface area of budesonide during storage postmicronization. Pharm Res. 2002;19:7–12.

    PubMed  CAS  Google Scholar 

  39. Lee RW, Shaw JM, McShane J, Wood RW, Shenoy DB. Particle size reduction. In: Water-insoluble drug formulations, Liu R (editor), Interpharm Press, 2008, Second Edition, chapter 17, pp. 467–99.

  40. Kesteleyn B, Amssoms K, Schepens W, Hache G, Verschueren W, Van De Vreken W, Rombauts K, Meurs G, Sterkens P, Stoops B, Baert L, Austin N, Wegner J, Masungi C, Dierynck I, Lundgren S, Jönsson D, Parkes K, Kalayanov G, Wallberg H, Rosenquist A, Samuelsson B, Van Emelen K, Thuring JW. Design and synthesis of HIV-1 protease inhibitors for a long-acting injectable drug application. Bioorg Med Chem Lett. 2013;23:310–7.

    PubMed  CAS  Google Scholar 

  41. Netzsch. 2022. (https://grinding.netzsch.com/en/pharma-cosmetics/wet-grinding), accessed 10-Nov-2022.

  42. WAB. 2022. (https://www.wab-group.com/en/grinding-dispersing/agitator-bead-mills/) , accessed 10-Nov-2022.

  43. Lee RW. Case study: Development and scale-up of nanocrystal® particles. In: Injectable dispersed systems: formulation, processing and performance, Burgess DJ (editor), Boca Raton; Taylor & Francis, 2005, chapter 10, pp. 355–70.

  44. FDA document of Invega Sustanna. Url: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2009/022264s000clinpharmr.pdf., accessed 10-Nov-2022.

  45. Bao Q, Wang X, Zou Y, Wang Y, Burgess DJ. In vitro release testing method development for long-acting injectable suspensions. Int J Pharm. 2022;622:121840.

    PubMed  PubMed Central  CAS  Google Scholar 

  46. Bao Q, Jog R, Shen J, Newman B, Wang Y, Choi S, Burgess DJ. Physicochemical attributes and dissolution testing of ophthalmic ointments. Int J Pharm. 2017;523:310–9.

    PubMed  PubMed Central  CAS  Google Scholar 

  47. Xu X, Al-Ghabeish M, Rahman Z, Krishnaiah YS, Yerlikaya F, Yang Y, Manda P, Hunt RL, Khan MA. Formulation and process factors influencing product quality and in vitro performance of ophthalmic ointments. Int J Pharm. 2015;493:412–25.

    PubMed  CAS  Google Scholar 

  48. Bao Q, Shen J, Jog R, Zhang C, Newman B, Wang Y, Choi S, Burgess DJ. In vitro release testing method development for ophthalmic ointments. Int J Pharm. 2017;526:145–56.

    PubMed  PubMed Central  CAS  Google Scholar 

  49. Bao Q, Wang X, Zou Y, Wang Y, Burgess DJ. In vitro release testing method development for long-acting injectable suspensions. Int J Pharm. 2022;622:121840.

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Andhariya JV, Shen J, Choi S, Wang Y, Zou Y, Burgess DJ. Development of in vitro-in vivo correlation of parenteral naltrexone loaded polymeric microspheres. J Control Release. 2017;255:27–35.

    PubMed  CAS  Google Scholar 

  51. Wan B, Bao Q, Burgess DJ. In vitro-in vivo correlation of PLGA microspheres: Effect of polymer source variation and temperature. J Control Release. 2022;347:347–55.

    PubMed  CAS  Google Scholar 

  52. Wan B, Bao Q, Wang R, Burgess DJ. Polymer source affects in vitro-in vivo correlation of leuprolide acetate PLGA microspheres. Int J Pharm. 2022;625:122032.

    PubMed  CAS  Google Scholar 

  53. Shen J, Choi S, Qu W, Wang Y, Burgess DJ. In vitro-in vivo correlation of parenteral risperidone polymeric microspheres. J Control Release. 2015;218:2–12.

    PubMed  PubMed Central  CAS  Google Scholar 

  54. Bassand C, Villois A, Gianola L, Laue G, Ramazani F, Riebesehl B, Sanchez-Felix M, Sedo K, Ullrich T, Duvnjak RM. Smart design of patient-centric long-acting products: from preclinical to marketed pipeline trends and opportunities. Expert Opin Drug Deliv. 2022;19:1265–83.

    PubMed  CAS  Google Scholar 

  55. Dubbelboer IR, Sjögren E. Physiological based pharmacokinetic and biopharmaceutics modelling of subcutaneously administered compounds - An overview of in silico models. Int J Pharm. 2022;621:121808.

    PubMed  CAS  Google Scholar 

  56. Darville N, van Heerden M, Mariën D, DeMeulder M, Rossenu S, Vermeulen A, Vynckier A, De Jonghe S, Sterkens P, Annaert P, Van den Mooter G. The effect of macrophage and angiogenesis inhibition on the drug release and absorption from an intramuscular sustained-release paliperidone palmitate suspension. J Control Release. 2016;230:95–108.

    PubMed  CAS  Google Scholar 

  57. Utembe W, Clewell H, Sanabria N, Doganis P, Gulumian M. Current approaches and techniques in physiologically based pharmacokinetic (PBPK) modelling of nanomaterials. Nanomaterials. 2020;10:1267.

    PubMed  PubMed Central  CAS  Google Scholar 

  58. Jucker BM, Alsaid H, Rambo M, Lenhard SC, Hoang B, Xie F, Groseclose MR, Castellino S, Damian V, Bowers G, Gupta M. Multimodal imaging approach to examine biodistribution kinetics of cabotegravir (GSK1265744) long acting parenteral formulation in rat. J Control Release. 2017;268:102–12.

    PubMed  CAS  Google Scholar 

  59. Paquette SM, Dawit H, Hickey MB, Merisko-Liversidge E, Almarsson O, Deaver DR. Long-acting atypical antipsychotics: Characterization of the local tissue response. Pharm Res. 2014;31:2065–77.

    PubMed  PubMed Central  CAS  Google Scholar 

  60. Spreen W, Ford SL, Chen S, Wilfret D, Margolis D, Gould E, Piscitelli S. GSK1265744 pharmacokinetics in plasma and tissue after single-dose long-acting injectable administration in healthy subjects. J Acquir Immune Defic Syndr. 2014;67:481–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Mrs. Zahra Ghaemmaghamian for her help with formatting the figures.

Funding

Diane J. Burgess and Quanying Bao received a U.S. Food and Drug Administration grant (HHSF223201710135C).

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed to the conception of the work, each have drafted individual sections and commented all sections of the manuscript.

Corresponding author

Correspondence to René Holm.

Ethics declarations

Conflict of Interest

R,L., J.G., and N.D. are employees of Lubrizol Life Science, V.L. is an employee and holds stock of Simulations Plus and S.A. is an employee of GlaxoSmithKline. The authors report no other conflicts of interest in in this work.

Additional information

Communicated by Huybrecht T'jollyn and Oliver Ackaert.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 639 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holm, R., Lee, R.W., Glassco, J. et al. Long-Acting Injectable Aqueous Suspensions—Summary From an AAPS Workshop. AAPS J 25, 49 (2023). https://doi.org/10.1208/s12248-023-00811-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12248-023-00811-8

Keywords

Navigation