Skip to main content
Log in

Comparison of Nonlinear Mixed Effects Models and Noncompartmental Approaches in Detecting Pharmacogenetic Covariates

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

Abstract

Genetic data is now collected in many clinical trials, especially in population pharmacokinetic studies. There is no consensus on methods to test the association between pharmacokinetics and genetic covariates. We performed a simulation study inspired by real clinical trials, using the pharmacokinetics (PK) of a compound under development having a nonlinear bioavailability along with genotypes for 176 single nucleotide polymorphisms (SNPs). Scenarios included 78 subjects extensively sampled (16 observations per subject) to simulate a phase I study, or 384 subjects with the same rich design. Under the alternative hypothesis (H1), six SNPs were drawn randomly to affect the log-clearance under an additive linear model. For each scenario, 200 PK data sets were simulated under the null hypothesis (no gene effect) and H1. We compared 16 combinations of four association tests, a stepwise procedure and three penalised regressions (ridge regression, Lasso, HyperLasso), applied to four pharmacokinetic phenotypes, two observed concentrations, area under the curve estimated by noncompartmental analysis and model-based clearance. The different combinations were compared in terms of true and false positives and probability to detect the genetic effects. In presence of nonlinearity and/or variability in bioavailability, model-based phenotype allowed a higher probability to detect the SNPs than other phenotypes. In a realistic setting with a limited number of subjects, all methods showed a low ability to detect genetic effects. Ridge regression had the best probability to detect SNPs, but also a higher number of false positives. No association test showed a much higher power than the others.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

FWER:

Family wise error rate

LOQ:

Limit of quantification

NCA:

Noncompartmental analysis

NLMEM:

Nonlinear mixed effects model

PK:

Pharmacokinetics

SNP:

Single nucleotide polymorphism

α:

Type I error

β:

Effect size coefficient

λ, γ, ξ:

Penalisation parameters

References

  1. Aarons L. Population pharmacokinetics: theory and practice. Br J Clin Pharmacol. 1991;32(6):669–70.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Motulsky AG. Drugs and genes. Ann Intern Med. 1969;70(6):1269–72.

    Article  CAS  PubMed  Google Scholar 

  3. Motulsky AG, Qi M. Pharmacogenetics, pharmacogenomics and ecogenetics. J Zhejiang Univ Sci B. 2006;7(2):169–70.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Rowland M, Tozer T. Clinical pharmacokinetics: concepts and applications. Baltimore: Lippincott Williams & Wilkins; 1995.

    Google Scholar 

  5. Gabrielson J, Weiner D. Pharmacokinetic and pharmacodynamic data analysis, concepts and applications. 4th ed. Sweden: Swedish Pharmaceutical Press; 2007.

    Google Scholar 

  6. Sheiner LB, Rosenberg B, Melmon KL. Modelling of individual pharmacokinetics for computer-aided drug dosage. Comput Biomed Res Int J. 1972;5(5):411–59.

    Article  CAS  Google Scholar 

  7. Sheiner LB, Steimer JL. Pharmacokinetic/pharmacodynamic modeling in drug development. Annu Rev Pharmacol Toxicol. 2000;40:67–95.

    Article  CAS  PubMed  Google Scholar 

  8. Shalon D, Smith SJ, Brown PO. A DNA microarray system for analyzing complex DNA samples using two-color fluorescent probe hybridization. Genome Res. 1996;6(7):639–45.

    Article  CAS  PubMed  Google Scholar 

  9. Daly MJ, Rioux JD, Schaffner SF, Hudson TJ, Lander ES. High-resolution haplotype structure in the human genome. Nat Genet. 2001;29(2):229–32.

    Article  CAS  PubMed  Google Scholar 

  10. EMA. Guideline on the use of pharmacogenetic methodologies in the pharmacokinetic evaluation of medicinal products. 2012. Report No.: EMA/CHMP/37646/2009.

  11. FDA. Guidance for Industry and FDA Staff: Pharmacogenetic Tests and Genetic Tests for Heritable Markers. 2007.

  12. Omoyinmi E, Forabosco P, Hamaoui R, Bryant A, Hinks A, Ursu S, et al. Association of the IL-10 gene family locus on chromosome 1 with juvenile idiopathic arthritis (JIA). PLoS One. 2012;7(10):e47673.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Yao T-C, Du G, Han L, Sun Y, Hu D, Yang JJ, et al. Genome-wide association study of lung function phenotypes in a founder population. J Allergy Clin Immunol. 2014;133(1):248–55.e1-10.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Hoerl AE, Kennard RW. Ridge regression: biased estimation for nonorthogonal problems. Technometrics. 1970;12(1):55.

    Article  Google Scholar 

  15. Cule E, Vineis P, De Iorio M. Significance testing in ridge regression for genetic data. BMC Bioinformatics. 2011;12:372.

    Article  PubMed Central  PubMed  Google Scholar 

  16. Tibshirani R. Regression shrinkage and selection via the lasso. J R Stat Soc Ser B. 1994;58:267–88.

    Google Scholar 

  17. Hoggart CJ, Whittaker JC, De Iorio M, Balding DJ. Simultaneous analysis of all SNPs in genome-wide and re-sequencing association studies. PLoS Genet. 2008;4(7):e1000130.

    Article  PubMed Central  PubMed  Google Scholar 

  18. Jaki T, Wolfsegger MJ. Estimation of pharmacokinetic parameters with the R package PK. Pharm Stat. 2011;10(3):284–8.

    Article  Google Scholar 

  19. Dubois A, Bertrand J, Mentre F. Mathematical expressions of the pharmacokinetic and pharmacodynamic models implemented in the PFIM software. 2011. http://www.pfim.biostat.fr/.

  20. Duffull SB, Graham G, Mengersen K, Eccleston J. Evaluation of the pre-posterior distribution of optimized sampling times for the design of pharmacokinetic studies. J Biopharm Stat. 2012;22(1):16–29.

    Article  PubMed  Google Scholar 

  21. Cule E, De Iorio M. Ridge regression in prediction problems: automatic choice of the ridge parameter. Genet Epidemiol. 2013;37(7):704–14.

    Article  PubMed Central  PubMed  Google Scholar 

  22. Vignal CM, Bansal AT, Balding DJ. Using penalised logistic regression to fine map HLA variants for rheumatoid arthritis. Ann Hum Genet. 2011;75(6):655–64.

    Article  PubMed  Google Scholar 

  23. Gradshteyn I, Ryzik I. Tables of integrals, series and products: corrected and enlarged edition. New York: Academic; 1980.

    Google Scholar 

  24. Lehr T, Schaefer H-G, Staab A. Integration of high-throughput genotyping data into pharmacometric analyses using nonlinear mixed effects modeling. Pharmacogenet Genomics. 2010;20(7):442–50.

    CAS  PubMed  Google Scholar 

  25. Su Z, Marchini J, Donnelly P. HAPGEN2: simulation of multiple disease SNPs. Bioinforma Oxf Engl. 2011;27(16):2304–5.

    Article  CAS  Google Scholar 

  26. International HapMap Consortium. The International HapMap Project. Nature. 2003;426(6968):789–96.

    Article  Google Scholar 

  27. Lavielle M, Mesa H, Chatel K. The MONOLIX software. 2010. http://www.lixoft.eu/.

  28. Kuhn E, Lavielle M. Coupling a stochastic approximation version of EM with an MCMC procedure. ESAIM Probab Stat. 2004;8:115–31.

    Article  Google Scholar 

  29. Takeuchi F, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N, et al. A genome- wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet. 2009;5(3):e1000433.

    Article  PubMed Central  PubMed  Google Scholar 

  30. Cochran WG. The comparison of percentages in matched samples. Biometrika. 1950;37(3–4):256–66.

    Article  CAS  PubMed  Google Scholar 

  31. Bertrand J, Bading D, De Iorio M. Penalized regression implementation within the SAEM algorithm to advance high-throughput personalized drug therapy. 22th PAGE Meet Glasg Scotl. 2013;Abstract 2932.

  32. Zou H, Hastie T. Regularization and variable selection via the elastic net. J R Stat Soc Ser B Stat Methodol. 2005;67(2):301–20.

    Article  Google Scholar 

  33. Lockhart R, Taylor J, Tibshirani RJ, Tibshirani R. A significance test for the lasso. Ann Stat. 2014;42(2):413–68.

    Article  PubMed Central  PubMed  Google Scholar 

  34. Knights J, Chanda P, Sato Y, Kaniwa N, Saito Y, Ueno H, et al. Vertical integration of pharmacogenetics in population PK/PD modeling: a novel information theoretic method. CPT Pharmacomet Syst Pharmacol. 2013;2(2):e25.

    Article  Google Scholar 

  35. O’Hara RB, Sillanpaa MJ. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal. 2009;4(1):85–117.

    Article  Google Scholar 

  36. Bertrand J, Comets E, Mentre F. Comparison of model-based tests and selection strategies to detect genetic polymorphisms influencing pharmacokinetic parameters. J Biopharm Stat. 2008;18(6):1084–102.

    Article  PubMed Central  PubMed  Google Scholar 

  37. Bertrand J, Comets E, Laffont CM, Chenel M, Mentre F. Pharmacogenetics and population pharmacokinetics: impact of the design on three tests using the SAEM algorithm. J Pharmacokinet Pharmacodyn. 2009;36(4):317–39.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Bertrand J, Comets E, Chenel M, Mentre F. Some alternatives to asymptotic tests for the analysis of pharmacogenetic data using nonlinear mixed effects models. Biometrics. 2012;68(1):146–55.

    Article  PubMed  Google Scholar 

  39. Bertrand J, Balding DJ. Multiple single nucleotide polymorphism analysis using penalized regression in nonlinear mixed-effect pharmacokinetic models. Pharmacogenet Genomics. 2013;23(3):167–74.

    Article  CAS  PubMed  Google Scholar 

  40. Ribbing J, Nyberg J, Caster O, Jonsson EN. The lasso—a novel method for predictive covariate model building in nonlinear mixed effects models. J Pharmacokinet Pharmacodyn. 2007;34(4):485–517.

    Article  PubMed  Google Scholar 

  41. Dubois A, Gsteiger S, Pigeolet E, Mentre F. Bioequivalence tests based on individual estimates using non-compartmental or model-based analyses: evaluation of estimates of sample means and type I error for different designs. Pharm Res. 2010;27(1):92–104.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Panhard X, Mentre F. Evaluation by simulation of tests based on non-linear mixed- effects models in pharmacokinetic interaction and bioequivalence cross-over trials. Stat Med. 2005;24(10):1509–24.

    Article  PubMed  Google Scholar 

  43. Humbert H, Cabiac MD, Barradas J, Gerbeau C. Evaluation of pharmacokinetic studies: is it useful to take into account concentrations below the limit of quantification? Pharm Res. 1996;13(6):839–45.

    Article  CAS  PubMed  Google Scholar 

  44. Ahn JE, Karlsson MO, Dunne A, Ludden TM. Likelihood based approaches to handling data below the quantification limit using NONMEM VI. J Pharmacokinet Pharmacodyn. 2008;35(4):401–21.

    Article  PubMed  Google Scholar 

  45. Savic RM, Karlsson MO. Importance of shrinkage in empirical bayes estimates for diagnostics: problems and solutions. AAPS J. 2009;11(3):558–69.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Adrien Tessier received funding from Institut de Recherches Internationales Servier. The authors thank Laurent Ripoll and Bernard Walther from Institut de Recherches Internationales Servier for their advices in pharmacogenetics. The authors would also like to thank Herve Le Nagard for the use of the computer cluster services hosted on the “Centre de Biomodélisation UMR1137”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Tessier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary materials

(PDF 373 kb)

Simulated polymorphisms informations

(PDF 656 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tessier, A., Bertrand, J., Chenel, M. et al. Comparison of Nonlinear Mixed Effects Models and Noncompartmental Approaches in Detecting Pharmacogenetic Covariates. AAPS J 17, 597–608 (2015). https://doi.org/10.1208/s12248-015-9726-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-015-9726-8

KEY WORDS

Navigation