Skip to main content

Detecting Pharmacokinetic and Pharmacodynamic Covariates from High-Dimensional Data

  • Chapter
  • First Online:
Systems Pharmacology and Pharmacodynamics

Part of the book series: AAPS Advances in the Pharmaceutical Sciences Series ((AAPS,volume 23))

  • 2510 Accesses

Abstract

With the rapid evolution of technologies capable of generating high-dimensional data sets such as those from the ‘omic’ platforms commonly encountered during pharmacogenetic/genomic clinical trials, there is need for computationally efficient methodologies capable of integrating that information into the drug development pipeline; however, the computational cost of identifying covariates and interactions through traditional parametric statistical approaches has impeded their utilization for these large data sets. Within the context of population pharmacokinetic/pharmacodynamic modeling, the potential for detecting interactions on such data sets is of great interest: Specifically, the applications of interactions in this context would be the creation of more comprehensive and biologically sound covariate models, leading to better prediction of individual values for PK/PD parameters of interest, and moving one step closer to the goal of personalized medicine. However, there are currently no commercially available software packages, or computational approaches, that can handle covariate interaction detection or model synthesis at a genome scale. Thus, the most immediate and tractable benefit from such interaction analyses at this scale would be the identification of the most informative subset of predictors that could be used for ‘formal’ covariate model synthesis. This chapter will provide a discussion on the following topics of interest in this area: A general discussion on covariates and interactions; specific challenges and opportunities that arise when large datasets are considered; search metrics that are applicable on high-dimensional data sets ; and a justification for the need to distinguish between covariate detection and formal covariate model synthesis in this context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bauer RJ, Guzy S, Ng C (2007) A survey of population analysis methods and software for complex pharmacokinetic and pharmacodynamic models with examples. AAPS J 9:E60–E83

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellman R (1961) Adaptive control processes: a guided tour. Princeton University Press, Princeton

    Book  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bush WS, Dudek SM, Ritchie MD (2006) Parallel multifactor dimensionality reduction: a tool for the large-scale analysis of gene-gene interactions. Bioinformatics 22:2173–2174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda P, Zhang A, Brazeau D, Sucheston L, Freudenheim JL, Ambrosone C, Ramanathan M (2007) Information-theoretic metrics for visualizing gene-environment interactions. Am J Hum Genet 81:939–963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chanda P, Sucheston L, Zhang A, Brazeau D, Freudenheim JL, Ambrosone C, Ramanathan M (2008) AMBIENCE: a novel approach and efficient algorithm for identifying informative genetic and environmental associations with complex phenotypes. Genetics 180:1191–1210

    Article  PubMed  PubMed Central  Google Scholar 

  • Chanda P, Sucheston L, Liu S, Zhang A, Ramanathan M (2009) Information-theoretic gene-gene and gene-environment interaction analysis of quantitative traits. BMC Genom 10:509

    Article  Google Scholar 

  • Chanda P, Zhang A, Ramanathan M (2011) Modeling of environmental and genetic interactions with AMBROSIA, an information-theoretic model synthesis method. Heredity 107:320–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordell HJ (2002) Epistasis: what it means, what it doesn’t mean, and statistical methods to detect it in humans. Hum Mol Genet 11:2463–2468

    Article  CAS  PubMed  Google Scholar 

  • Cordell HJ (2009) Detecting gene–gene interactions that underlie human diseases. Nat Rev Genet 10:392–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cosgun E, Limdi NA, Duarte CW (2011) High-dimensional pharmacogenetic prediction of a continuous trait using machine learning techniques with application to warfarin dose prediction in African Americans. Bioinformatics 27:1384–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cover T, Thomas J (1991) Elements of information theory. Wiley, New York

    Book  Google Scholar 

  • Culverhouse R (2007) The use of the restricted partition method with case-control data. Hum Hered 63:93–100

    Article  CAS  PubMed  Google Scholar 

  • Culverhouse RC (2012) A comparison of methods sensitive to interactions with small main effects. Genet Epidemiol 36:303–311

    Article  PubMed  PubMed Central  Google Scholar 

  • Culverhouse R, Klein T, Shannon W (2004) Detecting epistatic interactions contributing to quantitative traits. Genet Epidemiol 27:141–152

    Article  PubMed  Google Scholar 

  • Fisher D, Shafer S (2007) Fisher/Shafer NONMEM workshop pharmacokinetic and pharmacodynamic analysis with NONMEM

    Google Scholar 

  • Games PA, Howell JF (1976) Pairwise multiple comparison procedures with unequal n’s and/or variances: a Monte Carlo study. J Educ Behav Stat 1:113–125

    Article  Google Scholar 

  • Garcia-Magarinos M, Lopez-de-Ullibarri I, Cao R, Salas A (2009) Evaluating the ability of tree-based methods and logistic regression for the detection of SNP–SNP interaction. Ann Hum Genet 73:360–369

    Article  PubMed  Google Scholar 

  • Gassó P, Mas S, Álvarez S, Trias G, Bioque M, Oliveira C, Bernardo M, Lafuente A (2010) Xenobiotic metabolizing and transporter genes: gene–gene interactions in schizophrenia and related disorders. Pharmacogenomics 11:1725–1731

    Article  PubMed  Google Scholar 

  • Gastonguay MR (2004) A full model estimation approach for covariate effects: inference based on clinical importance and estimation precision. AAPS J 6:W4354

    Google Scholar 

  • Goldstein B, Hubbard A, Cutler A, Barcellos L (2010) An application of random forests to a genome-wide association dataset: methodological considerations & new findings. BMC Genet 11:49

    Article  PubMed  PubMed Central  Google Scholar 

  • Grady BJ, Torstenson E, Dudek SM, Giles J, Sexton D, Ritchie MD (2010) Finding unique filter sets in PLATO: a precursor to efficient interaction analysis in GWAS data. In: Pacific Symposium on Biocomputing. World Scientific, pp 315–326

    Google Scholar 

  • Hahn LW, Moore JH (2004) Ideal discrimination of discrete clinical endpoints using multilocus genotypes. In Silico Biol 4:183–194

    CAS  PubMed  Google Scholar 

  • Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382

    Article  CAS  PubMed  Google Scholar 

  • Hair JF (1995) Multivariate data analysis with readings. Prentice Hall, Englewood Cliffs

    Google Scholar 

  • Han TS (1980) Multiple mutual informations and multiple interactions in frequency data. Inf Control 46:26–45

    Article  Google Scholar 

  • Jakulin A (2005) Machine learning based on attribute interactions. Univerza v Ljubljani

    Google Scholar 

  • Joerger M (2012) Covariate pharmacokinetic model building in oncology and its potential clinical relevance. AAPS J 14:119–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jonsson EN, Karlsson MO (1998) Automated covariate model building within NONMEM. Pharm Res 15:1463–1468

    Article  CAS  PubMed  Google Scholar 

  • Khandelwal A, Harling K, Jonsson EN, Hooker AC, Karlsson MO (2011) A fast method for testing covariates in population PK/PD models. AAPS J 13:464–472

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim Y, Wojciechowski R, Sung H, Mathias RA, Wang L, Klein AP, Lenroot RK, Malley J, Bailey-Wilson JE (2009) Evaluation of random forests performance for genome-wide association studies in the presence of interaction effects. BMC Proc 3(Suppl 7):S64

    Article  PubMed  PubMed Central  Google Scholar 

  • Knights J, Ramanathan M (2012) An information theory analysis of gene-environmental interactions in count/rate data. Hum Hered 73:123–138

    Article  PubMed  Google Scholar 

  • Knights J, Ramanathan M (2013) Genetic factors associated with gemcitabine pharmacokinetics, disposition, and toxicity. Submitted: Pharmacogenomics

    Google Scholar 

  • Knights J, Chanda P, Sato Y, Kaniwa N, Saito Y, Ueno H, Zhang A, Ramanathan M (2013a) Vertical integration of pharmacogenetics in population PK/PD modeling: a novel information theoretic method. CPT Pharmacomet Syst Pharmacol 2:e25

    Article  Google Scholar 

  • Knights J, Yang J, Chanda P, Zhang A, Ramanathan M (2013b) SYMPHONY, an information-theoretic method for gene–gene and gene–environment interaction analysis of disease syndromes. Heredity

    Google Scholar 

  • Leary B, Dunlavey M, Chittenden J, Matzuka B, Guzy S. QRPEM—a new standard of accuracy, precision, and efficiency in NLME population PK/PD methods

    Google Scholar 

  • Li MD, Lou X-Y, Chen G, Ma JZ, Elston RC (2008) Gene–gene interactions among CHRNA4, CHRNB2, BDNF, and NTRK2 in nicotine dependence. Biol Psychiatry 64:951–957

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lombardo F, Obach RS, DiCapua FM, Bakken GA, Lu J, Potter DM, Gao F, Miller MD, Zhang Y (2006) A hybrid mixture discriminant analysis-random forest computational model for the prediction of volume of distribution of drugs in human. J Med Chem 49:2262–2267

    Article  CAS  PubMed  Google Scholar 

  • Lou XY, Chen GB, Yan L, Ma JZ, Zhu J, Elston RC, Li MD (2007) A generalized combinatorial approach for detecting gene-by-gene and gene-by-environment interactions with application to nicotine dependence. Am J Hum Genet 80:1125–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ludden TM, Beal SL, Sheiner LB (1994) Comparison of the akaike information criterion, the Schwarz criterion and the F test as guides to model selection. J Pharmacokinet Biopharm 22:431–445

    Article  CAS  PubMed  Google Scholar 

  • Mandema JW, Verotta D, Sheiner LB (1992) Building population pharmacokineticpharmacodynamic models. I. Models for covariate effects. J Pharmacokinet Biopharm 20:511–528

    Article  CAS  PubMed  Google Scholar 

  • Moore JH, Williams SM (2005) Traversing the conceptual divide between biological and statistical epistasis: systems biology and a more modern synthesis. BioEssays 27:637–646

    Article  CAS  PubMed  Google Scholar 

  • Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241:252–261

    Article  PubMed  Google Scholar 

  • Motsinger‐Reif AA (2012) Developments in analyses in pharmacogenetic datasets. Pharmacogenet Individ Ther, 415–435

    Google Scholar 

  • Nelson M, Kardia S, Ferrell R, Sing C (2001) A combinatorial partitioning method to identify multilocus genotypic partitions that predict quantitative trait variation. Genome Res 11:458–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nonyane BA, Foulkes AS (2008) Application of two machine learning algorithms to genetic association studies in the presence of covariates. BMC Genet 9:71

    Article  PubMed  PubMed Central  Google Scholar 

  • Olshen LBJFR, Stone CJ (1984) Classification and regression trees. Wadsworth International Group, Belmont

    Google Scholar 

  • Paine SW, Barton P, Bird J, Denton R, Menochet K, Smith A, Tomkinson NP, Chohan KK (2010) A rapid computational filter for predicting the rate of human renal clearance. J Mol Graph Model 29:529–537

    Article  CAS  PubMed  Google Scholar 

  • Patefield WM (1981) Algorithm AS 159: an efficient method of generating random R x C tables with given row and column totals. J R Stat Soc Ser C (Appl Stat) 30:91–97

    Google Scholar 

  • Peters BJ, Rodin AS, De Boer A, Maitland-van der Zee AH (2010) Methodological and statistical issues in pharmacogenomics. J Pharm Pharmacol 62:161–166

    Article  CAS  PubMed  Google Scholar 

  • Ribbing J (2007) Covariate model building in nonlinear mixed effects models. Uppsala University

    Google Scholar 

  • Ribbing J, Nyberg J, Caster O, Jonsson EN (2007) The lasso—a novel method for predictive covariate model building in nonlinear mixed effects models. J Pharmacokinet Pharmacodyn 34:485–517

    Article  PubMed  Google Scholar 

  • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001a) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001b) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritchie MD, Hahn LW, Moore JH (2003) Power of multifactor dimensionality reduction for detecting gene-gene interactions in the presence of genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet Epidemiol 24:150–157

    Article  PubMed  Google Scholar 

  • Sabbagh A, Darlu P (2006) Data-mining methods as useful tools for predicting individual drug response: application to CYP2D6 data. Hum Hered 62:119–134

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh A, Darlu P (2009) Data mining methods as tools for predicting individual drug response. Pharm Data Min Approaches Appl Drug Discov 6:379

    Google Scholar 

  • Shannon CE, Weaver W (1948) A mathematical theory of communication: American Telephone and Telegraph Company

    Google Scholar 

  • Siemiatycki J, Thomas DC (1981) Biological models and statistical interactions: an example from multistage carcinogenesis. Int J Epidemiol 10:383–387

    Article  CAS  PubMed  Google Scholar 

  • Sucheston L, Chanda P, Zhang A, Tritchler D, Ramanathan M (2010) Comparison of information-theoretic to statistical methods for gene-gene interactions in the presence of genetic heterogeneity. BMC Genom 11:487

    Article  Google Scholar 

  • Sun YV, Cai Z, Desai K, Lawrance R, Leff R, Jawaid A, Kardia SL, Yang H (2007) Classification of rheumatoid arthritis status with candidate gene and genome-wide single-nucleotide polymorphisms using random forests. BMC Proc 1(Suppl 1):S62

    Article  PubMed  PubMed Central  Google Scholar 

  • Tabachnick BG, Fidell LS (2001) Using multivariate statistics. Allyn and Bacon, Boston

    Google Scholar 

  • Tritchler DL, Sucheston L, Chanda P, Ramanathan M (2011) Information metrics in genetic epidemiology. Stat Appl Genet Mol Biol 10:Article 12

    Google Scholar 

  • Velez DR, White BC, Motsinger AA, Bush WS, Ritchie MD, Williams SM, Moore JH (2007) A balanced accuracy function for epistasis modeling in imbalanced datasets using multifactor dimensionality reduction. Genet Epidemiol 31:306–315

    Article  PubMed  Google Scholar 

  • Wählby U (2002) Methodological studies on covariate model building in population pharmacokinetic–pharmacodynamic analysis. Uppsala University

    Google Scholar 

  • Wahlby U, Jonsson EN, Karlsson MO (2002) Comparison of stepwise covariate model building strategies in population pharmacokinetic-pharmacodynamic analysis. AAPS PharmSci 4:E27

    Article  PubMed  Google Scholar 

  • Wählby U, Jonsson EN, Karlsson MO (2001) Assessment of actual significance levels for covariate effects in NONMEM. J Pharmacokinet Pharmacodyn 28:231–252

    Article  PubMed  Google Scholar 

  • Wan X, Yang C, Yang Q, Xue H, Fan X, Tang NL, Yu W (2010) BOOST: a fast approach to detecting gene-gene interactions in genome-wide case-control studies. Am J Hum Genet 87:325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watanabe S (1960) Information theoretical analysis of multivariate correlation. IBM J Res Dev 4:66–82

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murali Ramanathan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 American Association of Pharmaceutical Scientists

About this chapter

Cite this chapter

Knights, J., Ramanathan, M. (2016). Detecting Pharmacokinetic and Pharmacodynamic Covariates from High-Dimensional Data. In: Mager, D., Kimko, H. (eds) Systems Pharmacology and Pharmacodynamics. AAPS Advances in the Pharmaceutical Sciences Series, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-44534-2_13

Download citation

Publish with us

Policies and ethics