Skip to main content

Advertisement

Log in

Pharmacokinetic and Pharmacodynamic Analysis of Hyperthermic Intraperitoneal Oxaliplatin-Induced Neutropenia in Subjects with Peritoneal Carcinomatosis

  • Research Article
  • Published:
The AAPS Journal Aims and scope Submit manuscript

An Erratum to this article was published on 26 February 2011

Abstract

The objective of this study was to characterize the pharmacokinetics and the time course of the neutropenia-induced by hyperthermic intraperitoneal oxaliplatin (HIO) after cytoreductive surgery in cancer patients with peritoneal carcinomatosis. Data from 30 patients who received 360 mg/m2 of HIO following cytoreductive surgery were used for pharmacokinetic–pharmacodynamic (PK/PD) analysis. The oxaliplatin plasma concentrations were characterized by an open two-compartment pharmacokinetic model after first-order absorption from peritoneum to plasma. An oxaliplatin-sensitive progenitor cell compartment was used to describe the absolute neutrophil counts in blood. The reduction of the proliferation rate of the progenitor cells was modeled by a linear function of the oxaliplatin plasma concentrations. The typical values of oxaliplatin absorption and terminal half-lives were estimated to be 2.2 and 40 h, with moderate interindividual variability. Oxaliplatin reduced the proliferation rate of the progenitor cells by 18.2% per mg/L. No patient’s covariates were related to oxaliplatin PK/PD parameters. Bootstrap and visual predictive check evidenced the model was deemed appropriate to describe oxaliplatin pharmacokinetics and the incidence and severity of neutropenia. A peritoneum oxaliplatin exposure of 65 and 120 mg·L/h was associated with a 20% and 33% incidence of neutropenia grade 4. The time course of neutropenia following HIO administration was well described by the semiphysiological PK/PD model. The maximum tolerated peritoneum oxaliplatin exposure is 120 mg L/h and higher exposures should be avoided in future studies. We suggest the prophylactic use of granulocyte colony stimulating factor for patients treated with HIO exposure higher than 65 mg L/h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

REFERENCES

  1. Koga A, Watanabe K, Fukuyama T, et al. Diagnosis and operative indications for polypoid lesions of the gallbladder. Ann Surg. 1988;123:26–9.

    CAS  Google Scholar 

  2. Fujimoto S, Shrestha RD, Kokubun M, et al. Positive results of combined therapy of surgery and intraperitoneal hyperthermic perfusion for far-advanced gastric cancer. Ann Surg. 1990;212:592–6.

    Article  PubMed  CAS  Google Scholar 

  3. Fujimura T, Yonemura Y, Muraoka K, et al. Continuous hyperthermic peritoneal perfusion for the prevention of peritoneal recurrence of gastric cancer: randomized controlled study. World J Surg. 1994;18:150–5.

    Article  PubMed  CAS  Google Scholar 

  4. Alexander HR, Hanna N, Pingpank JF. Clinical results of cytoreduction and HIPEC for malignant peritoneal mesothelioma. Cancer Treat Res. 2007;134:343–55.

    PubMed  CAS  Google Scholar 

  5. Witkamp AJ, de Bree E, Kaag MM, et al. Extensive cytoreductive surgery followed by intra-operative hyperthermic intraperitoneal chemotherapy with mitomycin-C in patients with peritoneal carcinomatosis of colorectal origin. Eur J Cancer. 2001;37:979–84.

    Article  PubMed  CAS  Google Scholar 

  6. Lentz SS, Miller BE, Kucera GL, Levine EA. Intraperitoneal hyperthermic chemotherapy using carboplatin: a phase I analysis in ovarian carcinoma. Gynecol Oncol. 2007;106:207–10.

    Article  PubMed  CAS  Google Scholar 

  7. Sugarbaker PH. Intraperitoneal chemotherapy and cytoreductive surgery for the prevention and treatment of peritoneal carcinomatosis and sarcomatosis. Semin Surg Oncol. 1998;14:254–61.

    Article  PubMed  CAS  Google Scholar 

  8. Los G, Mutsaers PH, van der Vijgh WJ, et al. Direct diffusion of cisplatinum in intraperitoneal rat tumors after intraperitoneal chemotherapy: a comparison with systemic chemotherapy. Cancer Res. 1989;48:3380–4.

    Google Scholar 

  9. Elias D, Ouellet JF. Intraperitoneal chemohyperthermia. Rationale, technique, indications and results. Surg Oncol Clin N Am. 2001;10:915–33.

    PubMed  CAS  Google Scholar 

  10. Verwaal V, van Ruth S, de Bree E, et al. Randomized trial of cytoreduction and hyperthermic intraperitoneal chemotherapy versus systemic chemotherapy and palliative surgery in patients with peritoneal carcinomatosis of colorectal cancer. J Clin Oncol. 2003;21:3737–43.

    Article  PubMed  Google Scholar 

  11. Verwaal V, van Ruth S, Witkamp A, et al. Long term survival of peritoneal carcinomatosis of colorectal origin. Ann Surg Oncol. 2005;12:65–71.

    Article  PubMed  Google Scholar 

  12. Dedrick RL, Flessner MF. Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. J Natl Cancer Inst. 1997;89:480–7.

    Article  PubMed  CAS  Google Scholar 

  13. Cho HK, Lush RM, Bartlett DL, et al. Pharmacokinetics of cisplatin administered by continuous hyperthermic peritoneal perfusion to patients with peritoneal carcinomatosis. J Clin Pharmacol. 1999;39:1–8.

    Google Scholar 

  14. Fujimoto S, Takahashi M, Mutou T, et al. Survival time and prevention of side effects of intraperitoneal hyperthermic perfusion with mitomycin C combined with surgery for patients with advanced gastric cancer. Cancer Treat Res. 1996;81:169–76.

    PubMed  CAS  Google Scholar 

  15. Steller MA, Egorin MJ, Trimble EL, et al. A pilot phase I trial of continuous hyperthermic peritoneal perfusion with high-dose carboplatin as primary treatment of patients with small-volume residual ovarian cancer. Cancer Chemother Pharmacol. 1999;43:106–14.

    Article  PubMed  CAS  Google Scholar 

  16. de Bree E, Rosing H, Filis D, et al. Cytoreductive surgery and intraoperative hyperthermic intraperitoneal chemotherapy with paclitaxel: a clinical and pharmacokinetic study. Ann Surg Oncol. 2008;15:1183–92.

    Article  PubMed  Google Scholar 

  17. Elias D, Goere D, Blot F, et al. Optimization of hyperthermic intraperitoneal chemotherapy with oxaliplatin plus irinotecan at 43 degrees C after compete cytoreductive surgery: mortality and morbidity in 106 consecutive patients. Ann Surg Oncol. 2007;14:1818–24.

    Article  PubMed  Google Scholar 

  18. Elias D, Pocard M, Goere D. HIPEC with oxaliplatin in the treatment of peritoneal carcinomatosis of colorectal origin. Cancer Treat Res. 2007;134:303–18.

    PubMed  CAS  Google Scholar 

  19. Elias D, Lefevre JH, Chevalier J, et al. Complete cytoreductive surgery plus intraperitoneal chemohyperthermia with oxaliplatin for peritoneal carcinomatosis of colorectal origin. J Clin Oncol. 2009;27:681–5.

    Article  PubMed  Google Scholar 

  20. Urano M, Ling CC. Thermal enhancement of melphalan and oxaliplatin cytotoxicity in vitro. Int J Hyperthermia. 2002;18:307–15.

    Article  PubMed  CAS  Google Scholar 

  21. Atallah D, Marsaud V, Radanyi C, et al. Thermal enhancement of oxaliplatin-induced inhibition of cell proliferation and cell cycle progression in human carcinoma cell lines. Int J Hyperthermia. 2004;20:405–19.

    Article  PubMed  CAS  Google Scholar 

  22. Elias D, Bonnay M, Puizillou JM, et al. Heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13:267–72.

    Article  PubMed  CAS  Google Scholar 

  23. Culy CR, Clemett D, Wiseman LR. Oxaliplatin. A review of its pharmacological properties and clinical efficacy in metastasic colorectal cancer and its potential in other malignancies. Drugs. 2000;60:895–924.

    Article  PubMed  CAS  Google Scholar 

  24. Elias D, Sideris L. Pharmacokinetics of heated introperative intreperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin N Am. 2003;12:755–69.

    Article  PubMed  Google Scholar 

  25. Elias D, Raynard B, Bonnay M, Pocard M. Heated intra-operative intraperitoneal oxaliplatin alone and in combination with intraperitoneal irinotecan: Pharmacologic studies. Eur J Surg Oncol. 2006;32:607–13.

    Article  PubMed  CAS  Google Scholar 

  26. Stewart JH, Shen P, Russell G, et al. A phase I trial of oxaliplatin for intraperitoneal hyperthermic chemoperfusion for the treatment of peritoneal surface dissemination from colorectal and appendiceal cancers. Ann Surg Oncol. 2008;15:2137–45.

    Article  PubMed  Google Scholar 

  27. Ferron G, Dattez S, Gladieff L, et al. Pharmacokinetics of heated intraperitoneal oxaliplatin. Cancer Chemother Pharmacol. 2008;62:679–83.

    Article  PubMed  CAS  Google Scholar 

  28. Mahteme H, Wallin I, Glimelius B, et al. Systemic exposure of the parent drug oxaliplatin during hyperthermic intraperitoneasl perfusion. Eur J Clin Pharmacol. 2008;64:907–11.

    Article  PubMed  CAS  Google Scholar 

  29. Mohamed F, Sugarbaker PH. Carrier solutions for intraperitoneal chemotherapy. Surg Oncol Clin N Am. 2003;12:813–24.

    Article  PubMed  Google Scholar 

  30. Friberg LE, Henningsson A, Maas H, et al. Model of chemotherapy-induced myelosuppression with parameter consistency across drugs. J Clin Oncol. 2002;20:4713–21.

    Article  PubMed  Google Scholar 

  31. Bretcha-Boix P, Farré-Alegre J, Sureda M, et al. Cytoreductive surgery and perioperative intraperitoneal chemotherapy in patients with peritoneal carcinomatosis of colonic origin: outcomes after 7 years’ experience of a new centre for peritoneal surface malignancies. Clin Transl Oncol. 2010;12:437–42.

    Article  PubMed  CAS  Google Scholar 

  32. Sugarbaker PH. Intraperitoneal chemotherapy and cytoreductive surgery for the prevention and treatment of peritoneal carcinomatosis and sarcomatosis. Sem Surg Oncol. 1998;14:254–61.

    Article  CAS  Google Scholar 

  33. Sugarbaker PH. Peritonectomy procedures. Ann Surg. 1995;221:29–42.

    Article  PubMed  CAS  Google Scholar 

  34. Jacquet P, Sugarbaker PH. Clinical research methodologies in diagnosis and staging of patients with peritoneal carcinomatosis. Cancer Treat Res. 1996;82:359–74.

    PubMed  CAS  Google Scholar 

  35. Sugarbaker PH, Jacquet P, Stephens AD, et al. Comparison of covered versus closed technique for heated intraoperative intraperitoneal chemotherapy for peritoneal carcinomatosis from gastrointestinal cancer. In: Abe O, Inokuchi K, Takasaki K, editors. Monduzzi Editore. Bologna: XXX World Congress of the International College of Surgeons; 1996. p. 389–93.

    Google Scholar 

  36. Giachetti S, Perpoint B, Zidani R, et al. Phase III multicenter randomized trial of oxaliplatin added to chronomoduled fluorouracil-leucovorin as first line treatment of metastasic colorectal cancer. J Clin Oncol. 2000;18:136–47.

    Google Scholar 

  37. Beal SL, Sheiner LB, Boeckman AJ (ed) NONMEM users guides. ICON Development Solutions, Ellicott City, 1989–2006.

  38. Sandström M, Lindman H, Nygren P, et al. Population analysis of the pharmacokinetics and the haematological toxicity of the fluorouracil-epirubicin-cyclophosphamide regimen in breast cancer patients. Cancer Chemother Pharmacol. 2006;58:143–56.

    Article  PubMed  Google Scholar 

  39. Karlsson MO, Savic RM. Diagnosing model diagnostics. Clin Pharmacol Ther. 2007;82:17–20.

    Article  PubMed  CAS  Google Scholar 

  40. Efron B, Tibshirani R. An introduction to the bootstrap. New York: Chapman & Hall/CRC; 1993.

    Google Scholar 

  41. Yano Y, Beal SL, Sheiner LB. Evaluating pharmacokinetic/pharmacodynamic models using the posterior predictive check. J Pharmacokinet Pharmacodyn. 2001;28:171–92.

    Article  PubMed  CAS  Google Scholar 

  42. Massari C, Brienza S, Rotarski M, et al. Pharmacokinetics of oxaliplatin in patients with normal versus impaired renal function. Cancer Chemother Pharmacol. 2000;45:157–64.

    Article  PubMed  CAS  Google Scholar 

  43. Schmitt A, Gladieff L, Laffont CM, et al. Factors for hematopoietic toxicity of carboplatin: refining the targeting of carboplatin systemic exposure. J Clin Oncol. 2010;28:4568–74.

    Article  PubMed  CAS  Google Scholar 

  44. Léger F, Loos WJ, Bugat R, et al. Mechanism-based models for topotecan-induced neutropenia. Clin Pharmacol Ther. 2004;76:567–78.

    Article  PubMed  Google Scholar 

  45. Latz JE, Karlsson MO, Rusthoven JJ, et al. A semimechanistic-physiologic population pharmacokinetic/pharmacodynamic model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol. 2006;57:412–26.

    Article  PubMed  Google Scholar 

  46. Sandström M, Lindman H, Nygren P, et al. Model describing the relationship between pharmacokinetics and hematologic toxicity of the epirubicin-docetaxel regimen in breast cancer patients. J Clin Oncol. 2005;23:413–21.

    Article  PubMed  Google Scholar 

  47. Trocóniz IF, Garrido MJ, Segura C, et al. Phase I dose-finding study and a pharmacokinetic/pharmacodynamic analysis of the neutropenic response of intravenous diflomotecan in patients with advanced malignant tumors. Cancer Chemother Pharmacol. 2006;57:727–35.

    Article  PubMed  Google Scholar 

  48. Kathman SJ, Williams DH, Hodge JP, et al. A Bayesian population PK-PD model of ispinesib-induced myelosuppression. Clin Pharmacol Ther. 2007;81:88–94.

    Article  PubMed  CAS  Google Scholar 

  49. Hing J, Perez Ruixo JJ, Stuyckens K, et al. Mechanism-based pharmacokinetic/pharmacodynamic meta-analysis of trabectedin (ET-743, Yondelis) induced neutropenia. Clin Pharmacol Ther. 2008;83:130–43.

    Article  PubMed  CAS  Google Scholar 

  50. Aapro MS, Cameron DA, Pettengell R, et al. EORTC guidelines for the use of granulocyte-colony stimulating factor to reduce the incidence of chemotherapy-induced febrile neutropenia in adult patients with lymphomas and solid tumors. Eur J Cancer. 2006;42:2433–53.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank the patients, medical, nursing, and laboratory staff of the USP Hospital San Jaime who participated in the present study. The authors indicated no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Belén Valenzuela.

Additional information

Valenzuela B and Nalda-Molina R both deserve to be considered as first authors.

An erratum to this article can be found at http://dx.doi.org/10.1208/s12248-011-9262-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valenzuela, B., Nalda-Molina, R., Bretcha-Boix, P. et al. Pharmacokinetic and Pharmacodynamic Analysis of Hyperthermic Intraperitoneal Oxaliplatin-Induced Neutropenia in Subjects with Peritoneal Carcinomatosis. AAPS J 13, 72–82 (2011). https://doi.org/10.1208/s12248-010-9249-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1208/s12248-010-9249-2

KEY WORDS

Navigation