Skip to main content
Log in

Quantification of Inkjet-Printed Pharmaceuticals on Porous Substrates Using Raman Spectroscopy and Near-Infrared Spectroscopy

  • Research Article
  • Theme: Advances in PAT, QbD, and Material Characterization
  • Published:
AAPS PharmSciTech Aims and scope Submit manuscript

A Correction to this article was published on 26 June 2019

This article has been updated

Abstract

The use of inkjet printing for pharmaceutical manufacturing is gaining interest for production of personalized dosage forms tailored to specific patients. As part of the manufacturing, it is imperative to ensure that the correct dose is printed. The aim of this study was to use inkjet printing for manufacturing of personalized dosage forms combined with the use of near-infrared (NIR) and Raman spectroscopy as complementary analytical techniques for active pharmaceutical ingredient (API) quantification of the inkjet-printed dosage forms. Three APIs, propranolol (0.5–4.1 mg), montelukast (2.1–12.1 mg), and haloperidol (0.6–4.1 mg) were inkjet printed in 1 cm2 areas on a porous substrate. The printed doses were non-destructively analyzed by transmission NIR and Raman spectroscopy (both transmission and backscatter). X-ray computed microtomography (μ-CT) analysis was undertaken for porosity measurements of the substrate. The API content was confirmed using high-performance liquid chromatography (HPLC), and the content in the dosage forms was modeled from the NIR and Raman spectra using partial least squares regression (PLS). HPLC analysis revealed a linear correlation of the number of layers printed to the API content. The resulting PLS models for both NIR and Raman had R2 values between 0.95 and 0.99. The best predictive model was obtained using NIR, followed by Raman spectroscopy. μ-CT revealed the substrate to be highly porous and optimal for inkjet printing. In conclusion, NIR and Raman spectroscopic techniques could be used complementary as fast API quantification tools for inkjet-printed medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

  • 26 June 2019

    Mohammed Al-Sharabi’s affiliation was incorrect at the time of publishing. The updated affiliation appears below.

References

  1. Daly R, Harrington TS, Martin GD, Hutchings IM. Inkjet printing for pharmaceutics—a review of research and manufacturing. Int J Pharm. 2015;494(2):554–67. https://doi.org/10.1016/j.ijpharm.2015.03.017.

    Article  CAS  PubMed  Google Scholar 

  2. Scoutaris N, Ross S, Douroumis D. Current trends on medical and pharmaceutical applications of inkjet printing technology. Pharm Res. 2016;33(8):1799–816. https://doi.org/10.1007/s11095-016-1931-3.

    Article  CAS  Google Scholar 

  3. Alomari M, Mohamed FH, Basit AW, Gaisford S. Personalised dosing: printing a dose of one’s own medicine. Int J Pharm. 2015;494(2):568–77. https://doi.org/10.1016/j.ijpharm.2014.12.006.

    Article  CAS  PubMed  Google Scholar 

  4. Kolakovic R, Viitala T, Ihalainen P, Genina N, Peltonen J, Sandler N. Printing technologies in fabrication of drug delivery systems. Exp Opin Drug Deliv. 2013;10(12):1711–23. https://doi.org/10.1517/17425247.2013.859134.

    Article  CAS  Google Scholar 

  5. Edinger M, Jacobsen J, Bar-Shalom D, Rantanen J, Genina N. Analytical aspects of printed oral dosage forms. Int J Pharm. 2018;553(1):97–108. https://doi.org/10.1016/j.ijpharm.2018.10.030.

    Article  CAS  PubMed  Google Scholar 

  6. Lind J, Kälvemark Sporrong S, Kaae S, Rantanen J, Genina N. Social aspects in additive manufacturing of pharmaceutical products. Exp Opin Drug Deliv. 2017;14(8):927–36. https://doi.org/10.1080/17425247.2017.1266336.

    Article  CAS  Google Scholar 

  7. Thabet Y, Lunter D, Breitkreutz J. Continuous manufacturing and analytical characterization of fixed-dose, multilayer orodispersible films. Eur J Pharm Sci. 2018;117:236–44. https://doi.org/10.1016/j.ejps.2018.02.030.

    Article  CAS  PubMed  Google Scholar 

  8. Thabet Y, Lunter D, Breitkreutz J. Continuous inkjet printing of enalapril maleate onto orodispersible film formulations. Int J Pharm. 2018;546(1):180–7. https://doi.org/10.1016/j.ijpharm.2018.04.064.

    Article  CAS  PubMed  Google Scholar 

  9. Council of Europe. European Pharmacopoeia. 9th ed. Strasbourg: 5.25—Process Analytical Technology. Council of Europe; 2019.

    Google Scholar 

  10. Vakili H, Kolakovic R, Genina N, Marmion M, Salo H, Ihalainen P, et al. Hyperspectral imaging in quality control of inkjet printed personalised dosage forms. Int J Pharm. 2015;483(1):244–9. https://doi.org/10.1016/j.ijpharm.2014.12.034.

    Article  CAS  PubMed  Google Scholar 

  11. Vakili H, Nyman JO, Genina N, Preis M, Sandler N. Application of a colorimetric technique in quality control for printed pediatric orodispersible drug delivery systems containing propranolol hydrochloride. Int J Pharm. 2016;511(1):606–18. https://doi.org/10.1016/j.ijpharm.2016.07.032.

    Article  CAS  PubMed  Google Scholar 

  12. Wickström H, Nyman JO, Indola M, Sundelin H, Kronberg L, Preis M, et al. Colorimetry as quality control tool for individual inkjet-printed pediatric formulations. AAPS PharmSciTech. 2017;18(2):293–302. https://doi.org/10.1208/s12249-016-0620-1.

    Article  CAS  PubMed  Google Scholar 

  13. Vakili H, Wickström H, Desai D, Preis M, Sandler N. Application of a handheld NIR spectrometer in prediction of drug content in inkjet printed orodispersible formulations containing prednisolone and levothyroxine. Int J Pharm. 2017;524(1):414–23. https://doi.org/10.1016/j.ijpharm.2017.04.014.

    Article  CAS  PubMed  Google Scholar 

  14. Palo M, Kogermann K, Genina N, Fors D, Peltonen J, Heinämäki J, et al. Quantification of caffeine and loperamide in printed formulations by infrared spectroscopy. J Drug Deliv Sci Technol. 2016;34:60–70. https://doi.org/10.1016/j.jddst.2016.02.007.

    Article  CAS  Google Scholar 

  15. Edinger M, Bar-Shalom D, Rantanen J, Genina N. Visualization and non-destructive quantification of inkjet-printed pharmaceuticals on different substrates using Raman spectroscopy and Raman chemical imaging. Pharm Res. 2017;34(5):1023–36. https://doi.org/10.1007/s11095-017-2126-2.

    Article  CAS  PubMed  Google Scholar 

  16. Meléndez PA, Kane KM, Ashvar CS, Albrecht M, Smith PA. Thermal inkjet application in the preparation of oral dosage forms: dispensing of prednisolone solutions and polymorphic characterization by solid-state spectroscopic techniques. J Pharm Sci. 2008;97(7):2619–36. https://doi.org/10.1002/jps.21189.

    Article  CAS  PubMed  Google Scholar 

  17. Scoutaris N, Malamatari M, Letellier A, Douroumis D. Jet dispensing of multi-layered films for the co-delivery of three antihypertensive agents. Drug Deliv Transl Res. 2018;8(1):32–42. https://doi.org/10.1007/s13346-017-0430-3.

    Article  CAS  PubMed  Google Scholar 

  18. Amigo JM. Practical issues of hyperspectral imaging analysis of solid dosage forms. Anal Bioanal Chem. 2010;398(1):93–109. https://doi.org/10.1007/s00216-010-3828-z.

    Article  CAS  PubMed  Google Scholar 

  19. Iftimi L-D, Edinger M, Bar-Shalom D, Rantanen J, Genina N. Edible solid foams as porous substrates for inkjet-printable pharmaceuticals. Eur J Pharm Biopharm. 2019;136:38–47. https://doi.org/10.1016/j.ejpb.2019.01.004.

    Article  CAS  PubMed  Google Scholar 

  20. Khorasani M, Amigo JM, Sonnergaard J, Olsen P, Bertelsen P, Rantanen J. Visualization and prediction of porosity in roller compacted ribbons with near-infrared chemical imaging (NIR-CI). J Pharm Biomed Anal. 2015;109:11–7. https://doi.org/10.1016/j.jpba.2015.02.008.

    Article  CAS  PubMed  Google Scholar 

  21. Johansson J, Sparén A, Svensson O. Quantitative transmission Raman spectroscopy of pharmaceutical tablets and capsules. Appl Spectrosc. 2007;61(11):1211–8.

    Article  CAS  Google Scholar 

  22. Iftimi L-D, Edinger M, Bar-Shalom D, Rantanen J, Genina N. Edible solid foams as porous substrates for inkjet-printable pharmaceuticals. Eur J Pharm Biopharm. 2018;136:38–47. https://doi.org/10.1016/j.ejpb.2019.01.004.

    Article  CAS  Google Scholar 

  23. Rambhatla S, Heat PM. Mass transfer issues in freeze-drying process development. In: Constantino H, Pikal M, editors. Lyophilization of biopharmaceuticals. Arlington: American Association of Pharmaceutical Scientists; 2004. p. 75–110.

    Google Scholar 

  24. Edinger M, Bar-Shalom D, Sandler N, Rantanen J, Genina N. QR encoded smart oral dosage forms by inkjet printing. Int J Pharm. 2018;536(1):138–45. https://doi.org/10.1016/j.ijpharm.2017.11.052.

    Article  CAS  PubMed  Google Scholar 

  25. Zeitler JA, Gladden LF. In-vitro tomography and non-destructive imaging at depth of pharmaceutical solid dosage forms. Eur J Pharm Biopharm. 2009;71(1):2–22. https://doi.org/10.1016/j.ejpb.2008.08.012.

    Article  CAS  PubMed  Google Scholar 

  26. Oosthuizen P, Emsley RA, Turner J, Keyter N. Determining the optimal dose of haloperidol in first-episode psychosis. J Psych Pharm. 2001;15(4):251–5. https://doi.org/10.1177/026988110101500403.

    Article  CAS  Google Scholar 

  27. Kahn RS, Fleischhacker WW, Boter H, Davidson M, Vergouwe Y, Keet IPM, et al. Effectiveness of antipsychotic drugs in first-episode schizophrenia and schizophreniform disorder: an open randomised clinical trial. Lancet. 2008;371(9618):1085–97. https://doi.org/10.1016/S0140-6736(08)60486-9.

    Article  CAS  PubMed  Google Scholar 

  28. DLI. Montelukast. Available from http://pro.medicin.dk/Medicin/Indholdsstoffer/2285. Accessed 01 Aug 2018. Dansk Lægemiddel Information A/S; 2018.

  29. McGee P, Miller S, Black C, Hoey S. Propranolol for infantile haemangioma: a review of current dosing regime in a regional paediatric hospital. Ulster Med J. 2013;82(1):16–20.

    PubMed  PubMed Central  Google Scholar 

  30. DLI. Propranolol. Available from http://pro.medicin.dk/Medicin/Indholdsstoffer/889. Accessed 01 Aug 2018. Dansk Lægemiddel Information A/S; 2018.

  31. Zimmermann B, Kohler A. Optimizing Savitzky–Golay parameters for improving spectral resolution and quantification in infrared spectroscopy. Appl Spectrosc. 2013;67(8):892–902. https://doi.org/10.1366/12-06723.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The results presented in this work was supported by The Danish Council for Independent Research (DFF), Technology and Production Sciences (FTP), grant number 12-126515/0602-02670B and the Drug Research Academy (University of Copenhagen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalja Genina.

Additional information

Guest Editors: William C. Stagner and Rahul V. Haware

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 1407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edinger, M., Iftimi, LD., Markl, D. et al. Quantification of Inkjet-Printed Pharmaceuticals on Porous Substrates Using Raman Spectroscopy and Near-Infrared Spectroscopy. AAPS PharmSciTech 20, 207 (2019). https://doi.org/10.1208/s12249-019-1423-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1208/s12249-019-1423-y

KEY WORDS

Navigation